UNIVERSIDAD NACIONAL DEL CALLAO

FACULTAD DE INGENIERÍA QUÍMICA

ESCUELA PROFESIONAL DE INGENIERÍA QUÍMICA

"MODELOS REOLOGICOS ASOCIADOS A LA

SANGRE "

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE

INGENIERO QUÍMICO

MOLINA RODRIGUEZ, EDUARDO DANIEL

ROJAS QUISPE, ROSA MARGARITA

CALLAO, Abril 2018

PERÚ

PRÓLOGO DEL JURADO

El presente informe fue expuesto por los bachilleres MOLINA RODRÍGUEZ EDUARDO DANIEL y ROJAS QUISPE ROSA MARGARITA ante el JURADO DE SUSTENTACIÓN DE TESIS conformado por los siguientes profesores ordinarios:

ING. CARRASCO VENEGAS LUIS AMERICO:	ASESOR
ING. LUNA CHAVEZ CARMEN MABEL:	VOCAL
ING. SUERO IQUIAPAZA POLICARPO AGATON:	SECRETARIO
ING. MEDINA COLLANA JUAN TAUMATURGO:	PRESIDENTE

Tal como está asentado en el Libro de Actas de Tesis N° 2 Folio N° 107 y Acta N° 290 de fecha NUEVE DE MARZO DE 2018 para la obtención del título profesional de Ingeniero Químico en la modalidad de Titulación por Tesis, de conformidad a lo establecido por el reglamento de Grados y Títulos aprobado por la Resolución N° 082 – 2011 – CU de fecha 29 de abril del 2011, Resolución N° 221 – 2012 – CU de fecha 19 de setiembre 2012.

. ..

DEDICATORIA

A Dios, por darnos la oportunidad de vivir, por estar con nosotros en cada paso que damos y por iluminar nuestras mentes. A nuestros padres y a nuestra menor hija que es el motor más grande que nos impulsa a cumplir y alcanzar todo lo que nos proponemos.

A todas aquellas personas que nos apoyaron en nuestro camino para así poder cumplir con nuestra meta; asimismo, a doña Elena Nieto Marón quien desde el cielo debe estar muy orgullosa por este nuevo logro.

4 · ·

.

"Porque el Señor da la sabiduría;

Conocimiento y ciencia brotan de sus labios."

Proverbios 2:6

AGRADECIMIENTOS

A lo largo de nuestro caminar en la vida hemos recibido el apoyo de muchas personas cercanas a nuestro entorno (familiares y amigos), son todas aquellas a las cuales en este momento deseamos agradecer por la ayuda y por las enseñanzas inculcadas en nosotros.

A nuestros padres quienes fueron el pilar que nos sostuvieron desde el principio de nuestras carreras y hasta el momento; estarnos muy agradecidos por todas sus palabras, su inconmensurable amor, incansable ayuda y por darnos la vida. A nuestra hermana Lic. Elena Molina Rodríguez quien fue la persona que nunca dejó de creer en nuestra determinación para lograr nuestra meta.

A nuestros profesores Dr. Luis Carrasco Venegas, Mg. Juan Medina Tamaturgo, Mg. Policarpo Suero Iquipaza, Mg. Mabel Luna Chávez por su apoyo en la revisión y asesoría en el desarrollo de esta tesis.

A nuestro incondicional primo Mg. Oswaldo Cauti Soto por habernos apoyado de manera desinteresada a concretar este peldaño de nuestro crecimiento personal, académico y profesional.

INDICE GENERAL

21
21
22
22
23
23
25
25
30
32
34
40
41
45
46
47
47
49
52
52 52
52 52 53
52 52 53 53
52 52 53 53

2.3	3.13. Reogramas	.55
111.	VARIABLES E HIPÓTESIS	.57
3.1.	Variables de la investigación	.57
3.1	1.1. Variables independientes (VI)	.57
3.1	I.2. Variables dependientes (VD)	.57
3.2.	Operacionalización de variables	.57
3.3.	Hipótesis general e hipótesis específicas	.59
3.3	3.1. Hipótesis General	.59
3.3	3.2. Hipótesis especifica	.59
IV.	METODOLOGÍA	60
4.1.	Tipo de Investigación	60
4.2.	Diseño de la investigación	61
4.2	2.1. Etapas de la investigación	61
4.3.	Población y muestra	63
4.4.	Técnicas e instrumentos de recolección de datos	63
4.4	.1. Lugar de ejecución	63
4.4	.2. Técnica de recolección de datos	63
4.4	.3. Instrumentos de Recolección de Datos	64
4.4	.4. Procesamiento de las muestras	65
4.5.	Procedimiento de recolección de datos	67
4.5	.1. Recopilación de información	67
4.5	.2. Fuente secundaria	68
4.6.	Procesamiento Estadístico y Análisis de Datos	68
V. R	ESULTADOS	70
5.1.	Parámetros de los modelos de fluidos no newtonianos y parámetros	
reolog		70
5.2. partir :	Calculo de los parámetros de los modelos de fluidos no newtonianos de los datos experimentales	a 85
VI.	DISCUSION DE RESULTADOS	BO
6.1.	Contrastación de las hipótesis con los resultados	80
6.2.	Contrastación de resultados con otros estudios similares	94
VII.	CONCLUSIONES	96
VIII.	RECOMENDACIONES	97
ix.	REFERENCIAS BIBLIOGRÁFICAS19	98
ANEXO	DS)1

INDICE DE TABLAS

Tabla 2.1: Valores de los parámetros reológicos de algunos tipos de	
fluidos	45
Tabla 3.1: Operacionalización De Variables Dependientes	57
Tabla 3.2: Operacionalización de variables independientes	58
Tabla 4.1: Rango de la composición de la sangre.	65
Tabla 4.2: Codificación y características de la muestra	. 66
Tabla 5.1: Datos reológicos de la sangre a 15°C	. 70
Tabla 5.2: Datos reológicos de la sangre a 20°C	. 70
Tabla 5.3: Datos reológicos de la sangre a 28°C	. 71
Tabla 5.4: Datos reológicos de la sangre a 37 °C	. 71
Tabla 5.5: Datos reológicos de la sangre a 45°C	. 71
Tabla 5.6: Datos reológicos de la sangre a 32°C	. 75
Tabla 5.7: Datos reológicos de la sangre a 37°C	. 75
Tabla 5.8: Datos reológicos de la sangre a 42°C	, 76
Tabla 5.9: Datos reológicos de la sangre a 32°C	78
Tabla 5.10: Datos reológicos de la sangre a 37°C	79
Tabla 5.11: Datos reológicos de la sangre a 42°C	79
Tabla 5.12: Datos reológicos de la sangre a 32 °C	82
Tabla 5.13: Datos reológicos de la sangre a 37 °C	82
Tabla 5.14: Datos reológicos de la sangre a 42 °C	82

3

「「「「「「「」」」」」」」」」」」」

	Tabla 5.15: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Herschel - Bulkleyl86
	Tabla 5.16: Parámetros reológicos de la sangre a las diferentes
	temperaturas basados en el modelo de Casson - Generalizada N°1 90
	Tabla 5.17: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Ostwald – de Waele-Nutting
	Tabla 5.18: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Sisko
	Tabla 5.19: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Steiger-Ory 101
	Tabla 5.20: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Ellis-de Haven 105
	Tabla 5.21: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Herschel-Bulkley109
	Tabla 5.22: Parámetros reológicos de la sangre a diferentes temperaturas
-	basados en el modelo de Casson - Generalizada Nº1 113
	Tabla 5.23: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Ostwald – de Waele-Nutting 117
	Tabla 5.24: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Sisko121
	Tabla 5.25: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Steiger-Ory 125

•

4

	Tabla 5.26: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Ellis-de Haven 129
	Tabla 5.27: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Herschel-Bulkley133
	Tabla 5.28: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Casson - Generalizada N°1 137
	Tabla 5.29: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Ostwald - de Waele-Nutting 141
	Tabla 5.30: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Sisko145
	Tabla 5.31: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Steiger-Ory149
	Tabla 5.32: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Ellis-de Haven 153
	Tabla 5.33: Parámetros reológicos de la sangre a diferentes temperaturas
:	basados en el modelo de Herschel-Bulkley157
	Tabla 5.34: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Casson -Generalizada Nº1161
	Tabla 5.35: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Ostwald – de Waele-Nutting 165
	Tabla 5.36: Parámetros reológicos de la sangre a diferentes temperaturas
	basados en el modelo de Sisko169

Tabla 5.37: Parámetros reológicos de la sangre a diferentes temperaturas
basados en el modelo de Steiger-Ory 173
Tabla 5.38: Parámetros reológicos de la sangre a diferentes temperaturas
basados en el modelo de Ellis-de Haven 177

.

.

理説

一次にない こうえい うきねしんや ボ

١.

· · ·

INDICE DE FIGURAS

Figura 2.1: Viscosímetro de cono y plato29
Figura 2.2: Diagrama de esfuerzos de fluidos viscoelásticos33
Figura 2.3: Comportamiento del fluido plástico de Bingham
Figura 2.4: Comportamiento del fluido seudoplástico
Figura 2.5: Comportamiento del fluido dilatante
Figura 2.6: Fluidos seudoplásticos y dilatantes con punto de cedencia36
Figura 2.7: Fluido tixotropico esforzado en tiempo diferente
Figura 2.8: Lazos de histéresis para un fluido tixotropico
Figura 2.9: (a) Plástico Bingham tixotrópico verdadero, (b) Comportamiento de un cuerpo falso
Figura 2.10: Formas de evaluar la viscosidad aparente para(a) un fluido tipo Bingham y (b) Un fluido pseudoplastico 50
Figura 2.11: Esquema para el cálculo de la viscosidad aparente y viscosidad diferencial
Figura 2.12: Punto de cedencia54
Figura 2.13: Reograma de algunos tipos de fluidos independientes del tiempo

7

INDICE DE GRÁFICOS

. . .

·..

Gráfico 5.1: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s)
aplicado a la sangre a 15 °C 72
Gráfico 5.2: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s)
aplicado a la sangre a 20 °C 72
Gráfico 5.3: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s)
aplicado a la sangre a 28 °C 73
Gráfico 5.4: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s)
aplicado a la sangre a 37 °C 73
Gráfico 5.5: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s)
aplicado a la sangre a 45 °C74
Gráfico 5.6: Grafico comparativo del esfuerzo de corte y velocidad de
corte aplicado a la sangre a 15°C, 20°C, 28°C, 37°C y 45°C 74
Gráfico 5.7: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s)
aplicado a la sangre a 32 °C 76
Gráfico 5.8: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s)
aplicado a la sangre a 37 °C 77
Gráfico 5.9: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s)
aplicado a la sangre a 42 °C
Gráfico 5.10: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s)
aplicado a la sangre a 32 °C, 37 °C y 42 °C78
Gráfico 5.11: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s)
aplicado a la sangre a 32 °C79

*** 2.4

Gráfico 5.12: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s)
aplicado a la sangre a 37 °C 80
Gráfico 5.13: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s) aplicado a la sangre a 42 °C
Gráfico 5.14: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s) aplicado a la sangre a 32 °C, 37°C y 42°C
Gráfico 5.15: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s) aplicado a la sangre a 32 °C
Gráfico 5.16: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s) aplicado a la sangre a 37 °C
Gráfico 5.17: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s) aplicado a la sangre a 42 °C
Gráfico 5.18: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s) aplicado a la sangre a 42 °C
Gráfico 5.19: Gráfico Comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Herschel-Bulkley I
Gráfico 5.20: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo Herschel-Bulkley I
Gráfico 5.21: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Herschel-Bulkley
Gráfico 5.22: Gráfico comparativo del esfuerzo de corte y velocidad de

-

corte a diferentes condiciones, modelo de Casson Generalizada Nº 1 91

諸事です。

Gráfico 5.23: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Casson Generalizada N° 191

Gráfico 5.25: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Ostwald – de Waele-Nutting.. 95

Gráfico 5.26: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Ostwald – de Waele-Nutting

 「海洋ない」

Gráfico 5.33: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Steiger-Ory .. 103

Gráfico 5.36: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Ellis-de Haven 107

Gráfico 5.39: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Herschel-Bulkley

Gráfico 5.40: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Casson - Generalizada N°1.114

Gráfico 5.41: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Casson - Generlizada N°1

11

10 H 10 H

Gráfico 5.43: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Ostwald – de Waele-Nutting 118

Gráfico 5.51: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Steiger-Ory .. 127

Gráfico 5.54: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Ellis-de Haven 131

Gráfico 5.58: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Casson - Generalizada N°1.138

Gráfico 5.59: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Casson - Generalizada N°1

Gráfico 5.61: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Ostwald – de Waele-Nutting 142

Gráfico 5.62: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Ostwald – de Waele-Nutting

Gráfico 5.69: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Steiger-Ory .. 151

Gráfico 5.72: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Ellis-de Haven

Gráfico 5.76: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Casson -Generalizada N°1.. 162

Gráfico 5.77: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Casson -Generalizada N°1

Gráfico 5.79: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Ostwald – de Waele-Nutting 166

Gráfico 5.80: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Ostwald – de Waele-Nutting 166

Gráfico 5.87: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Steiger-Ory .. 175

Gráfico 5.90: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Ellis-de Haven

RESUMEN

La sangre es un tejido líquido que recorre los organismos a través de los vasos sanguíneos, venas y arterias con el fin de llevar oxígeno y nutrientes. El siguiente estudio tiene por objetivo determinar los modelos reológicos asociados a la sangre en un intervalo de 15 °C – 45 °C.

Debido a las leyes tan estrictas en nuestro país referente a la extracción de sangre humana, se trabajó cuatro muestras; la muestra 01 se recogió en una bolsa recolectora de sangre de 300 ml con anticoagulante y 3 muestras en 2 tubos ensayo de 5 ml cada uno, en el Laboratorio Clínico del Hospital Emergencias III Grau y en el laboratorio del Policlínico Municipal del Rímac respectivamente. Las 4 muestras fueron tornadas de manera que, 2 muestras pertenecen al grupo de personas que se encuentran dentro de los parámetros para una sangre saludable y las otras 2 se encuentran fueras de este grupo. Las medidas reológicas fueron determinadas en un reómetro rotacional Anton Paa modelo RheolabQC con geometría de paletas en el laboratorio de Investigación de la Facultada de Ingeniera Química de la universidad Nacional de Callao.

En el estudio se concluye que los 5 modelos reológicos usados modelan satisfactoriamente el comportamiento reológico de la sangre, los modelos usados son Casson Generalizada N°1, Herschel-Bulkley I, Ostwald – de

17

「「「「「」」

Waele-Nutting, Sisko, Steiger-Ory y Ellis de Haven. A la vez se pudo determinar que el modelo con mayor índice de correlación entre estos cinco modelos para las diferentes muestras de sangres y para las diferentes temperaturas utilizadas, es el de Casson Generalizada N° 1; si bien los otros modelos cuentan con un índice muy cercano a la unidad, es éste el más próximo.

ABSTRACT

Blood is a liquid tissue that travels through organisms through blood vessels, veins and arteries in order to carry oxygen and nutrients. The following study aims to determine the rheological models associated with blood in a range of $15 \degree C - 45 \degree C$.

Due to the strict laws in our country regarding the extraction of human blood, we worked four samples; Sample 01 was collected in a 300 ml blood collection bag with anticoagulant and 3 samples in 2 test tubes of 5 ml each, in the Clinic Laboratory of Hospital Emergencias III Grau and in the laboratory of the Rímac Municipal Polyclinic, respectively. The 4 samples were taken so that, 2 samples belong to the group of people that are within the parameters for a healthy blood and the other 2 are outside this group. The rheological measurements were determined in a rotational rheometer Anton Paa RheolabQC model with vane geometry in the research laboratory of the Faculty of Chemical Engineering of the National University of Callao.

In the study it is concluded that the 5 rheological models used successfully model the rheological behavior of blood, the models used are Generalized Casson N ° 1, Herschel-Bulkley I, Ostwald - de Waele-Nutting, Sisko, Steiger-Ory and Ellis de Haven. At the same time it was possible to determine that the model with the highest correlation index among these

five models for the different blood samples and for the different temperatures used, is the one of Generalized Casson N ° 1; Although the other models have an index very close to the unit, this is the closest one.

I. PLANTEAMIENTO DE LA INVESTIGACIÓN

1.1. Identificación del Problema

Hoy en día la sangre humana se considera con frecuencia como un fluido newtoniano, sin embargo es un sistema formado por un medio líquido conocido como plasma y moléculas en suspensión que interactúan entre sí con el plasma, estas moléculas en suspensión, son células cuyas membranas tienen cargas negativas y sustancias como el colesterol. Esto da lugar a un sistema muy complejo, cuya respuesta reológica es variada dependiendo del sistema de flujo y las condiciones de estudios.

La reológia de la sangre humana no tiene una clara y permanente tendencia a desarrollarse; sin embargo, la falta de estudios y modelos adecuados de las propiedades reológicas de la sangre pueden permitir un avance de la tecnología para el desarrollo de la medicina técnica (construcción de piezas ortopédicas).

Actualmente, no encontramos muchos estudios reológicos relacionados a la sangre humana debido a su complejidad y a la restricción en la extracción de sangre. Es por ello, es necesario plantearnos la interrogante más importante que será respondida en el presente trabajo como es: ¿Cuáles son los modelos de flujo no newtoniano relacionados a la sangre?

1.2. Formulación del Problema

1.2.1. Problema general

¿Cuáles son los modelos de flujo no newtoniano relacionados a la sangre?

1.2.2. Problemas específicos

- ¿Cuál es la relación numérica entre el esfuerzo de corte y velocidad de corte determinado experimentalmente para la sangre?
- ¿Cómo debe ser la correlación no lineal de los datos experimentales conducentes a obtener los parámetros reológicos relacionados a la sangre?
- ¿Cómo son los reogramas relacionados a la sangre a temperaturas diversas?

1.3. Objetivos de la investigación

1.3.1. Objetivo general

 "Determinar los modelos reológicos que se ajustan al comportamiento de la sangre."

1.3.2. Objetivos específicos

 Obtener de forma experimental la relación numérica entre la velocidad de corte y esfuerzo de corte para la muestra de sangre.

- Obtener los parámetros reológicos de los modelos relacionados a la sangre mediante el tratamiento estadístico.
- Obtener los reogramas asociados a la sangre a temperaturas de pruebas.

1.4. Justificación

1.4.1. Justificación Teórica

Debido que el fluido de la sangre es muy compleja, cuyas propiedades de flujo resultan afectadas por el arreglo, orientación y deformabilidad de las células sanguínea, por tal motivo no se encuentran muchas investigaciones respecto al tema. En ese sentido el desarrollo de la investigación va a significar un aporte desde el punto de vista teórico.

1.4.2. Justificación Tecnológica:

Los resultados obtenidos permitirán brindar un aporte significativo sobre el conocimiento de la relación entre los modelos reológicos y la sangre, el cual nos permitirá el inicio del desarrollo de nuevas técnicas y sistemas artificiales para determinar enfermedades cardiovasculares y la cura de las mismas.

1.5. Importancia

El estudio de la Reología es muy importante ya que se puede encontrar diferentes modelos de fluidos no newtonianos al cual se asemeja según

las características de las mismas, para así poder predecir qué ocurre dentro del cuerpo del ser humano y dar solución al problema.

Es el de identificar enfermedades con cualquier cambio en la viscosidad de la sangre. Por ejemplo, la trombosis se puede causar fácilmente cuando se presente un grado mayor de viscosidad en la sangre, comparada con la viscosidad de una persona saludable. La elevación de la viscosidad con grados de esfuerzo bajos indica aglomeración, mientras que grados de esfuerzo altos sugieren la pérdida de deformabilidad de los glóbulos rojos. El cambio en la viscosidad sugiere que algunas enfermedades están relacionadas con los cambios en la sangre.

Otro factor importante de la Reología es el de estudiar las características de coagulación de la sangre. Un ejemplo es el de los pacientes hemofílicos con problemas de coagulación de sangre.

II. MARCO TEÓRICO

2.1. Antecedentes del estudio

La primera investigación sobre dinámica de suspensiones fue realizada en su tesis doctoral por Albert Einstein (1906-1911), quien demostró, teórica y experimentalmente, que una suspensión de esferas posee una viscosidad mayor que la del líquido. Su fórmula permanece hasta hoy, no solamente como un hito sino que también ha inspirado muchos desarrollos posteriores. Bingham (1929) fue el primero en utilizar el término de "reología", como el estudio de la deformación y el flujo de todo tipo de materiales. Bagnold (1954) realizó una extensa investigación sobre la reología de una suspensión de esferas, encontrando una ley que lleva su nombre y que se emplea hasta hoy. Además de los mencionados, múltiples autores han contribuido al desarrollo de esta área del conocimiento¹.

"La sangre humana desde el punto de vista de la reología".

Leonardo Moreno^{*} y Fausto Calderas, Departamento de Reología y Mecánica de Materiales, IIM- UNAM; Guadalupe Sánchez-Olivares, CIATEC; Luis Medina-Torres, Departamento de Ingeniería Química, UNAM; Antonio Sánchez-Solís y Octavio Manero, Departamento de

¹ Revista: minería chilena, información confiable y oportuna.

La importancia del análisis reológico

Publicado el 9 De Junio Del 2009

Para determinar los parámetros reológicos que gobiernan el movimiento de un fluido se requiere de la obtención de datos de terreno y/o laboratorio que permitan su caracterización.

Reología y Mecánica de Materiales, IIM- UNAM. Disponible en: F. Calderas. Recuperado el: 19 de marzo de 2016.

El efecto del colesterol en la sangre, en general, a mayor contenido de colesterol mayor viscosidad. El contenido de colesterol de una persona que se considera dentro de los límites normales es 200 mg/dl, en cambio la sangre que contiene 350 mg/dl de colesterol esta fuera de los límites que se consideran normales, dando lugar a una viscosidad alta.

Según este artículo, la viscosidad inicial para todas las curvas es más alta al inicio, conforme aumentan los esfuerzos, los constituyentes de la sangre se orientan cada vez más a la dirección del flujo y da origen a estructuras que cada vez se oponen menos al flujo, por tanto la viscosidad disminuye. La sangre está sometida a rapideces de deformación de 1 – 100 s⁻¹.

 ✓ "Revisión de modelos teóricos de la dinámica de fluidos asociada al flujo de sangre"

Instituto Tecnológico de Costa Rica (2013)- Ortiz-león, g; Araya-luna, d; Vílchez Monge, m. revisión de modelos teóricos de la dinámica de fluidos asociada al flujo de sangre. Tecnología en marcha. Vol. 27, Nº 1. pág. 66-76.

El comportamiento de la viscosidad en función de la tasa de corte para los modelos Newtoniano, de Ley de Potencias y de Carreau en la cual se observa que la viscosidad predicha tanto por el Modelo de Carreau como

por el de Ley de Potencias aumentan considerablemente para tasas de corte menores a 100 s⁻¹. A altas tasas de corte, superiores a 1600 s⁻¹, se observa que el modelo de Ley de Potencias disminuye hasta un 50% de los valores típicos esperados; por otro lado, se observa la concordancia que existe entre el Modelo de Carreau y el Modelo newtoniano para un amplio rango de tasas de corte (1000 - 2900 s⁻¹). Estos resultados concuerdan con lo esperado a partir del estudio de modelos no newtonianos.

El modelo de Ley de Potencia, para el caso del fluido sanguíneo a bajas tasas de corte (200 s⁻¹), la viscosidad aumenta rápidamente, llegando a valores críticos para tasas de corte cercanas a 0 s⁻¹ donde m tiende a infinito. Por otro lado, en altas tasas de corte (>1200 s– 1) este modelo subvalora la viscosidad.

El Modelo de Carreau requiere cuatro parámetros, dos más que el Modelo de Ley de Potencias, pero ofrece un comportamiento más adecuado tanto para altas como para bajas tasas de corte. A altas tasas de corte la viscosidad tiende al valor utilizado para modelos newtonianos 3,5 mPa s, mientras que a bajas tasas de corte el valor de la viscosidad tiende a $\mu_0=0,056$ Pa s. Su principal desventaja es que no incluye los efectos del hematocrito, por lo que la adaptación del modelo a condiciones de un paciente en particular es difícil de lograr.

También se observa que a bajas tasas de corte el comportamiento no newtoniano de la sangre es más pronunciado; esto también concuerda con estudios reológicos de sangre que muestran que a tasas de corte inferiores a 100 s⁻¹ los glóbulos rojos tienden a agruparse.

La viscosidad de la sangre humana con un hematocrito de 45% alcanza valores constantes de entre 3,5 y 4.0 mPa s. Se observa que tanto para el Modelo de Carreau como para el Newtoniano la velocidad presenta el mismo orden de magnitud, en tanto que la diferencia del Modelo de Ley de Potencias se debe a que este subestima la viscosidad sanguínea y eso provoca un aumento en la velocidad en comparación con los otros dos modelos. Estos resultados permiten justificar el uso de un modelo newtoniano en la caracterización de un modelo de sangre en vasos sanguíneos mayores

COMPORTAMIENTO REOLOGICO DE LA SANGRE HUMANA A PEQUEÑAS VELOCIDADES DE DEFORMACION".

Revista de obras públicas, Luis Berga Casafont, catedra de hidráulica e hidrología, febrero-marzo de 1980, paginas 207 al 2014.

El comportamiento reológico de la sangre a pequeñas velocidades de formación usando una técnica viscosimétrica.

Aquí se realizó con sangre de 8 individuos normales a los que se ha añadido como anticoagulante EDTA. Los ensayos se realizaron con el viscosímetro WELLS BROOKFIELD de tipo como plato, modelo LVT-C/P.

Figura 2.1: Viscosímetro de cono y plato

Variando los valores de velocidad angular o lo que es lo mismo, para diferentes valores de deformación.

La sangre debido a ser un fluido poco viscoso el esfuerzo generado a las primeras velocidades de deformación es tan pequeño que no pueden hacerse la lectura en las tres primeras velocidades de deformación, siendo por lo tanto el intervalo de la velocidad de deformación ensayado el que va de 22.5 a 450 l/seq.

La temperatura de ensayo ha sido la normal y la cantidad de muestra necesaria de plasma o sangre para cada ensayo ha sido de un cm³.

Los modelos reológicos del comportamiento no newtoniano de la sangre a pequeñas velocidades de deformación son: Casson, Whitmore, Ostwald, Herschel y Bulkey.

Se concluyó que el modelo de Casson se adapta muy bien a los datos experimentales. Actualmente, es el modelo más utilizado, ignorándose en algunos casos la posibilidad de aplicación de otros modelos.

Esta ecuación de Casson se puede tomar como ecuación constitutiva de la sangre total.

En cuanto la ecuación de Whitmore conviene señalar que, conociendo el valor de la viscosidad plasmática en cada caso, como es usual en los estudios reológicos, se puede pasar de la ecuación de Whitmore a la de Casson, por lo que a efectos de ecuación constitutiva se puede tomar la de Casson, ya que conceptualmente ambas tienen el mismo modelo reológico.

La ecuación de Ostwald, se adapta también a los resultados experimentales dentro del campo de velocidades de deformación ensayado, pero hay que señalar que según resultados de otros autores no se adapta bien al comportamiento reológico de la sangre a velocidades de deformaciones inferiores a 10 seg⁻¹, por lo que su aplicación no es tan general como el modelo de Casson.

2.2. Marco conceptual

2.2.1. Reología

La Reología es una parte de la mecánica de medios continuos. Una de las metas más importantes en reología es encontrar ecuaciones

constitutivas para modelar el comportamiento de los materiales. Dichas ecuaciones son en general de carácter tensorial².

Las propiedades mecánicas estudiadas por la Reología se pueden medir mediante reómetros, aparatos que permiten someter al material a diferentes tipos de deformaciones controladas y medir los esfuerzos o viceversa. Algunas de las propiedades reológicas más importantes son:

• Viscosidad aparente (relación entre esfuerzo de corte y velocidad de corte)

- Coeficientes de esfuerzos normales
- Viscosidad compleja (respuesta ante esfuerzos de corte oscilatorio)
- Módulo de almacenamiento y módulo de perdidas (comportamiento viscoelástico lineal)
- · Funciones complejas de viscoelasticidad no lineal

Los estudios teóricos en reología, en ocasiones, emplean modelos microscópicos para explicar el comportamiento de un material. Por ejemplo en el estudio de polímeros, éstos se pueden representar como cadenas de esferas conectadas mediante enlaces rígidos o elásticos³.

² Articulo reología. Disponible en <u>https://es.wikipedia.org/wiki/Reolog%C3%ADa</u>. Articulo web, visitada en abril del 2016.

³ Articulo reología. Disponible en <u>https://es.wikipedia.org/wiki/Reolog%C3%ADa</u>. Articulo web, visitada en abril del 2016.

2.2.2. Fluidos Newtonianos y Fluidos Viscoelásticos

La Ley de la viscosidad de Newton vista con anterioridad, establece que en movimientos de fluidos laminares existe una relación lineal entre las tensiones tangenciales y los gradientes de velocidad, siendo la constante de proporcionalidad una propiedad física del fluido llamada viscosidad dinámica o absoluta μ :⁴

$$\tau = \mu \frac{\partial v}{\partial y} \qquad 2.1$$

1

Aquellos fluidos que verifican la relación (2.1), se denominan fluidos newtonianos, y muchos fluidos comunes tanto líquidos como gaseosos se comportan siguiendo esa relación. La misma también puede expresarse de otro modo analizando la deformación en el entorno de un punto⁵.

Aquellos fluidos no-Newtonianos que cumplen tanto la ley de Hooke como la ley de newton de la viscosidad se conocen como FLUIDOS VISCOELÁSTICOS; una característica importante de este tipo de fluidos

⁴ Ing. Esteban Luis Ibarrola. Introducción a Los Fluidos No Newtonianos. Cátedra de Mecánica de los Fluidos- UNCor. Disponible en

http://www.efn.unc.edu.ar/departamentos/aero/Asignaturas/MecFluid/material/introducci%F3 n%20no%20newtonianos.pdf. Articulo web, visitada en abril del 2016.

⁵ Ing. Esteban Luis Ibarrola. Introducción a Los Fluidos No Newtonianos. Cátedra de Mecánica de los Fluidos- UNCor. Disponible en

http://www.efn.unc.edu.ar/departamentos/aero/Asignaturas/MecFluid/material/introducci%F3 n%20no%20newtonianos.pdf. Articulo web, visitada en abril del 2016.
es que pueden recuperar parte de la deformación al ser retirado el esfuerzo aplicado cuando se presentan deformaciones durante el flujo.⁶

Figura 2.2: Diagrama de esfuerzos de fluidos viscoelásticos

Fuente: Desarrollo de fluidos viscoelásticos para la estimulación de pozos

Estos fluidos tienen una fracción elástica que cumple la ley de Hooke (modelo del resorte) y una fracción viscosa que obedece la ley de Newton (efecto amortiguador). Cuando son sometidos estos tipos de fluidos a cargas que posteriormente son removidas, la deformación que se presenta sólo se restablece en la fracción elástica del fluido; la fracción viscosa del fluido permanecerá parcialmente deformada por tanto se podría afirmar que la recuperación no es completa⁷.

⁶ José Carlos Cárdenas1, Oscar Javier López, Karem Tatiana Pinto R. **Estudio Reológico De Los** Fluidos Viscoelásticos Surfactantes Utilizados En Operaciones De Fracturamiento Hidráulico. Revista Fuentes: El Reventón Energético Vol. 9 № 1 de 2011 - Ene/Jun - pp 5/12.

⁷ José Carlos Cárdenas1, Oscar Javier López, Karem Tatiana Pinto R. Estudio Reológico De Los Fluidos Viscoelásticos Surfactantes Utilizados En Operaciones De Fracturamiento Hidráulico. Revista Fuentes: El Reventón Energético Vol. 9 № 1 de 2011 - Ene/Jun - pp 5/12.

2.2.3. Fluidos no Newtonianos

Son aquellos fluidos que no exhiben una relación directa entre el esfuerzo y la velocidad de corte⁸.

Los fluidos no-newtonianos se dividen en dos principales grupos:

Fluidos independientes del tiempo. Son así llamados debido a que sus propiedades reológicas no cambian con el tiempo. Entre estos se encuentran los siguientes⁹:

- *Fluidos plásticos de Bingham*; Estos fluidos, para iniciar su movimiento requieren vencer un esfuerzo inicial finito o punto de cedencia y al graficar en escala lineal exhibiendo una relación lineal entre el esfuerzo de corte y la velocidad de corte¹⁰, figura 2.3.

Figura 2.3: Comportamiento del fluido plástico de Bingham.

Fuente: Métodos de control de pozos, Wild Welt Control

⁸ Apéndice A. Propiedades Reológicas De Los Fluidos, Disponible en:

⁹ Apéndice A. Propiedades Reológicas De Los Fluidos, Disponible en:

http://www.academia.edu/29900869/AP%C3%89NDICE A PROPIEDADES REOL%C3%93GICAS

DE_LOS_FLUIDOS. Articulo web. Revisado 10 de abril del 2016.

¹⁰ Apéndice A. Propiedades Reológicas De Los Fluidos, Disponible en:

http://www.academia.edu/29900869/AP%C3%89NDICE_A_PROPIEDADES_REOL%C3%93GICAS_ DE_LOS_FLUIDOS. Articulo web. Revisado 10 de abril del 2016.

http://www.academia.edu/29900869/AP%C3%89NDICE_A_PROPIEDADES_REOL%C3%93GICAS_ DE_LOS_FLUIDOS. Articulo web. Revisado 10 de abril del 2016.

- *Fluidos pseudoplásticos*; son aquellos fluidos que con un esfuerzo cortante infinitesimal iniciará su movimiento y posteriormente la velocidad de corte se incrementará en forma no lineal; lo que nos indica que la viscosidad del fluido disminuye al incrementarse la velocidad de corte¹¹, figura 2.4.

Figura 2.4: Comportamiento del fluido pseudoplásticas.

Fuente: Métodos de control de pozos, Wild Welt Control

- *Fluidos dilatantes;* estos fluidos presentan un comportamiento similar a los fluidos pseudoplásticos, con la diferencia de que en los fluidos dilatantes el ritmo del incremento del esfuerzo cortante con la velocidad de corte se incrementa¹², figura 2.5.

¹¹ Apéndice A. Propiedades Reológicas De Los Fluidos, Disponible en:

http://www.academia.edu/29900869/AP%C3%89NDICE_A_PROPIEDADES_REOL%C3%93GICAS_ DE_LOS_FLUIDOS. Articulo web. Revisado 10 de abril del 2016.

¹² Apéndice A. Propiedades Reológicas De Los Fluidos, Disponible en:

http://www.academia.edu/29900869/AP%C3%89NDICE_A_PROPIEDADES_REOL%C3%93GICAS_ DE_LOS_FLUIDOS. Articulo web. Revisado 10 de abril del 2016.

Figura 2.5: Comportamiento del fluido dilatante.

Fuente: Métodos de control de pozos, Wild Welt Control

 Fluidos pseudoplásticos y dilatantes con puntos de cedencia; son aquellos fluidos que exhiben un esfuerzo inicial finito o punto de cedencia.
Una vez que el esfuerzo inicial ha sido rebasada, la relación entre el esfuerzo cortante, con la velocidad de corte resultante no es línea¹³l. Ver figura 2.6.

Fuente: Métodos de control de pozos, Wild Welt Control

¹³ Apéndice A. Propiedades Reológicas De Los Fluidos, Disponible en: <u>http://www.academia.edu/29900869/AP%C3%89NDICE_A_PROPIEDADES_REOL%C3%93GICAS_DE_LOS_FLUIDOS</u>. Articulo web. Revisado 10 de abril del 2016. Fluidos dependientes del tiempo. Estos fluidos se caracterizan porque sus propiedades reológicas varían con la duración del corte (esfuerzo cortante y velocidad de corte), bajo ciertas consideraciones. Los fluidos dependientes del tiempo se subdividen en¹⁴:

 Fluidos tixotrópicos; son aquellos fluidos en los cuales el esfuerzo cortante decrece con la duración del corte¹⁵.

La consistencia o viscosidad aparente de los fluidos tixotrópicos depende del tiempo de esfuerzo, así como también de la rata secante. Al esforzar el fluido desde el estado de reposo, se fracciona (a escala molecular), pero luego la reformación estructural se incrementa con el tiempo. Eventualmente, se logra una situación de equilibrio en donde la rata de fraccionamiento iguala la reagrupación. Al permitir el reposo, de nuevo, el fluido se recupera lentamente y fortuitamente logra la consistencia original. La tixotropía es, pues, un proceso reversible.

La figura N° 2.7 muestra una gráfica del esfuerzo contra la recta secante de un fluido tixotrópico inmediatamente después de esforzado y luego de que el fluido reposa durante tiempos variables. La curva inicial se muestra en la figura N° 2.7 como newtoniana, pero podría ser no-newtoniana.

Si un fluido tixotrópico se esfuerza a una rata constante creciente, entonces al crecer constantemente la rata, se genera una curva similar a

¹⁴ Apéndice A. Propiedades Reológicas De Los Fluidos, Disponible en:

http://www.academia.edu/29900869/AP%C3%89NDICE_A_PROPIEDADES_REOL%C3%93GICAS_ DE_LOS_FLUIDOS. Articulo web. Revisado 10 de abril del 2016.

¹⁵ Apéndice A. Propiedades Reológicas De Los Fluidos, Disponible en:

http://www.academia.edu/29900869/AP%C3%89NDICE_A_PROPIEDADES_REOL%C3%93GICAS_ DE_LOS_FLUIDOS. Articulo web. Revisado 10 de abril del 2016.

un lazo de histéresis; la figura Nº 2.8 muestra la curva para un tipo pseudoplástico de fluido tixotrópico. A medida que disminuye el esfuerzo, la viscosidad aparente es menor que la correspondiente a esfuerzo creciente.

Figura II.7: Fluido tixotrópico esforzado en tiempo diferente

Fuente: Dinámica de Fluidos

Figura 2.8: Lazos de histéresis para un fluido tixotrópico

Fuente: Dinámica de Fluidos

Algunos materiales plásticos Bingham manifiestan un comportamiento como líquidos verdaderos mientras se reconstruye la estructura. (Véase la figura el N° 2.9 (a)) muestra este comportamiento. Sin embargo, algunos materiales, conocidos como cuerpos falsos, muestran un esfuerzo de fluencia disminuye (véase la figura el N° 2.9 (b)). Generalmente un cuerpo falso toma bastante tiempo para recuperar su resistencia de influencia original.

Figura 2.9: (a) Plástico Bingham tixotrópico verdadero, (b) Comportamiento de un cuerpo falso

Fuente: Dinamica de Fluidos

- *Fluido reopécticos;* a diferencia de los fluidos tixotrópicos, el esfuerzo cortante se incrementa conforme se incrementa la duración del corte¹⁶. Un ejemplo de la formación de la estructura por efecto secante es la agitación y espesamiento de la clara de huevo, aunque la clara de

¹⁶ Apéndice A. Propiedades Reológicas De Los Fluidos, Disponible en:

http://www.academia.edu/29900869/AP%C3%89NDICE A PROPIEDADES REOL%C3%93GICAS DE LOS FLUIDOS. Articulo web. Revisado 10 de abril del 2016.

huevo no es probablemente un verdadero reopéctico. Muchas sustancias pierden su propiedad reopéctica a ratas extremadamente altas de esfuerzo secante y pueden aun comportarse como fluidos tixotrópicos.

2.2.4. Estructura de los líquidos no newtonianos.

Los líquidos simples y las disoluciones verdaderas suelen ofrecer un comportamiento newtoniano. Los líquidos no newtonianos son generalmente muy complejos y constan de más de una fase, aunque las disoluciones de polímeros puedan considerarse como fases únicas. Una de las fases es continua y la otra discontinua (dispersa). Pese a lo mucho que se ha estudiado, la relación entre la reología y la estructura de los líquidos no newtonianos sigue sin estar demasiado clara.

Cualitativamente, la reología de un sistema disperso depende de las propiedades de la fase continua, las de la fase dispersa y la interacción entre ambas. En la fase continua, son de interés la viscosidad, la composición química, el pH y la concentración de electrolitos. En la dispersa, que puede ser líquida o sólida (emulsiones y suspensiones, respectivamente), la concentración en volumen (si se trata de una emulsión), el tamaño de partícula, la forma, la distribución por tamaños y la composición química. La interacción entre las dos fases puede verse afectada, también, por la presencia de agentes estabilizantes y surfactantes; el comportamiento puede verse modificado además por las propiedades de cualquier película estabilizante.

Un sistema tixotrópico puede visualizarse como un fluido en el que los enlaces químicos se rompen, o en el que las partículas se alinean, al aumentar la velocidad de deformación. En el comportamiento de flujo dependiente del tiempo el statu que se alcanza lentamente; en los fenómenos de estado estacionario, de un modo muy rápido. Se ha sugerido que en los sistemas espesantes (reopexía) la intensidad de las interacciones eléctricas aumenta con la velocidad de deformación. (Consuelo, 2008).

2.2.5. Modelos de fluidos no newtonianos

Los efectos no newtonianos de la sangre son despreciados cuando el diámetro del vaso sanguíneo considerado es mucho mayor que el diámetro de las partículas sólidas en el fluido sanguíneo, por ejemplo, en la aorta ascendente (y la aorta torácica en general) y particularmente a velocidades de corte menores a 100 s⁻¹ (Johnston, Corney y Kilpatrick, 2004, Finocchiaro et al., 2009)¹⁷.

Un modelo de sangre no newtoniano ideal debe satisfacer los siguientes parámetros (Goubergrits, Wellnhofer y Kertzscher, 2008)¹⁸:

¹⁷ Instituto Tecnológico de Costa Rica (2013)- Ortiz-león, g; Araya-luna, d; Vílchez Monge, m. **Revisión de Modelos Teóricos de la Dinámica de Fluidos Asociada al Flujo de Sangre**. Tecnología en marcha. Vol. 27, № 1. pág. 66-76.

¹⁸ Instituto Tecnológico de Costa Rica (2013)- Ortiz-león, g; Araya-luna, d; Vílchez Monge, m. Revisión de Modelos Teóricos de la Dinámica de Fluidos Asociada al Flujo de Sangre. Tecnología en marcha. Vol. 27, Nº 1. pág. 66-76.

 Simular el fenómeno de adelgazamiento por corte ("shear thinning"), es decir, la disminución en la viscosidad cuando se incrementa la tasa tensión de corte.

Incluir la dependencia del hematocrito.

- Considerar la dependencia de la temperatura.
- Contener la concentración de proteínas en la sangre.
- Valorar las condiciones del flujo, es decir, si el flujo es pulsátil o continuo.

A continuación detallamos algunos modelos de fluidos no newtonianos:

Ley de Potencias ("Power Law"); Este modelo es una modificación del Modelo Newtoniano con la velocidad de deformación (\dot{y}) elevada a una potencia que incluye un índice no newtoniano (Goubergrits et al., 2008, Johnston etal., 2004). Este comportamiento es la base para los otros modelos no newtonianos y se expresa por medio de la ecuación 2.2

$$\mu = \mu_0 (\dot{\gamma})^{n-1} \qquad 2.2$$

La ecuación 2.2 representa el cambio en la viscosidad μ debido a los parámetros m₀ y n, donde m₀ es un índice de consistencia de valor 0,035 y n es el índice no newtoniano con valor de 0,6. Los parámetros m₀ y n corresponden a constantes de ajuste determinadas experimentalmente, entre más alto sea m₀ más viscoso es el fluido y entre más alejado se

encuentre n de la unidad, las características no newtonianas se hacen más pronunciadas (Kim, 2002)¹⁹.

Modelo de Ostwald y de Waele; fluidos como la sangre presentan un comportamiento en que la viscosidad disminuye con el aumento del esfuerzo aplicado. Este tipo de fluido es descrito por el modelo de Ostwald y de Waele, que se muestra en la ecuación 2.3.

$$t = K \left(\frac{dv}{dx}\right)^n \qquad 2.3$$

Modelo Casson; este modelo es una modificación de la Ley de Potencias que incluye la dependencia de la viscosidad con el hematocrito (Goubergrits et al., 2008). La expresión de la viscosidad en este caso se considera como:

$$\mu = \left(\sqrt{\mu_{\infty}} + \sqrt{\frac{\gamma_{y}}{\dot{\gamma}}}\right)^{2} \qquad 2.4$$

Los parámetros utilizados son: m₀ = 0,0012, 0 <H < 1, donde H representa el hematocrito, es decir, el porcentaje de eritrocitos en la sangre, $\gamma_y = 0,01(0,625 H)$ y $\mu_{\infty} = \mu_0 * (1-H)^{-2,5}$ ambas dependencias al

¹⁹ Instituto Tecnológico de Costa Rica (2013)- Ortiz-león, g; Araya-luna, d; Vílchez Monge, m. **Revisión de Modelos Teóricos de la Dinámica de Fluidos Asociada al Flujo de Sangre.** Tecnología en marcha. Vol. 27, № 1. pág. 66-76.

hematocrito ($\gamma_y, y \mu_{\infty}$) son ajustadas experimentalmente (Goubergrits et al., 2008)²⁰.

Modelo Carreau; este modelo asume que la viscosidad varía siguiendo la siguiente ecuación (Shibeshi & Collins, 2006)²¹:

$$\mu = \mu_{\infty} + (\mu_0 - \mu_{\infty}) [1 + (\lambda \dot{\gamma})^2]^{\frac{n-1}{2}}$$
 2.5

Modelo Walburn-Schneck; Walburny Schneck describieron los datos experimentales obtenidos de sangre con anticoagulantes por medio de cuatro constantes y dos parámetros que incluyen la dependencia al hematocrito (H) y la concentración total de proteína menos albúmina (TPMA) (Goubergrits et al., 2008).

La viscosidad se describe con la siguiente expresión:

$$\mu = C_1 e^{C_2 H} \left[e^{C_4 \left[\frac{TPM}{H^2} \right]} \right] (\dot{\gamma})^{-C_3 H} \qquad 2.6$$

___.

Donde las constantes se determinaron experimentalmente en:

 $C_1 = 0,00797$; $C_2 = 0,0608$; $C_{3=}0,00499$ Y $C_4 = 14,585$

²¹ Instituto Tecnológico de Costa Rica (2013)- Ortiz-león, g; Araya-luna, d; Vílchez Monge, m. **Revisión de Modelos Teóricos de la Dinámica de Fluidos Asociada al Flujo de Sangre**. Tecnología en marcha. Vol. 27, № 1. pág. 66-76.

²⁰ Instituto Tecnológico de Costa Rica (2013)- Ortiz-león, g; Araya-luna, d; Vílchez Monge, m. Revisión de Modelos Teóricos de la Dinámica de Fluidos Asociada al Flujo de Sangre. Tecnología en marcha. Vol. 27, Nº 1. pág. 66-76.

A partir de los resultados experimentales que obtuvieron, estos autores proponen un modelo con H= 40% y TPMA=25,9 g/l.

En la tabla (que tiene el Nº 2.1) se muestran los rangos de los parámetros de ajuste de distintos fluidos, así como la clasificación que con ellos se hace de dichos fluidos²².

Tabla 2.1: Valores de los parámetros reológicos de algunos tipos de fluidos.

	🦄 k 🖉	ň.	O o	Ejemplos
Herschel-Bulkley	>0	0 <n<∞< th=""><th>>0</th><th>Pasta de pescado</th></n<∞<>	>0	Pasta de pescado
Newtoniano	> 0	1	0	Sumo de frutas, miel, aceite vegetal
Pseudoplástico	>0	() <n<1< td=""><td>0</td><td>Puré de plátano, zumo de na- ranja concentrado</td></n<1<>	0	Puré de plátano, zumo de na- ranja concentrado
Dilatante	>0	I<⊓<∞	0	Algunos tipo de miel, disolu- ciones almidón
Plástico de Bingham	>0	1	> ()	Pasta de dientes, pasta de tomate

Fuente: Reología de Productos alimentarios (Consuelo, 2008).

2.2.6. Parámetros para modelado de fluido sanguíneo

Las características y composición de la sangre hacen difícil la construcción de un modelo funcional que pueda ser utilizado en distintos estudios, por lo cual es común realizar simplificaciones para cada caso en particular. Los parámetros utilizados por diferentes autores para modelar el fluido sanguíneo incluyen características, como tipo de fluido, densidad,

²² Instituto Tecnológico de Costa Rica (2013)- Ortiz-león, g; Araya-luna, d; Vílchez Monge, m. **Revisión de Modelos Teóricos de la Dinámica de Fluidos Asociada al Flujo de Sangre**. Tecnología en marcha. Vol. 27, № 1. pág. 66-76.

viscosidad y, por último, particularidades del flujo utilizado para el modelo a utilizar.

Variación de la viscosidad con la temperatura: Se ha observado que en los líquidos, la viscosidad disminuye al aumentar la temperatura. En cambio en gases, se observa que la viscosidad aumenta con la temperatura. En el caso de **líquidos, la relación más admitida es del tipo Arrhenius²³.**

2.2.7. ¿Por qué la sangre humana se comporta como un fluido no newtoniano?

La sangre es un fluido no newtoniano, ya que su viscosidad aumenta cuando hay más presencia de hematocrito, y además la viscosidad de la sangre varía cuando cambia la temperatura.

También, se sabe que la sangre es un sistema que está formado por una fase dispersa (plasma), que en esencia es un fluido newtoniano, pero tiene partículas en suspensión (fase dispersa) que interactúan entre sí y con el plasma. Esta fase dispersa está compuesta de células cuyas membranas tienen una carga eléctrica negativa y sustancias como el colesterol. Esto da lugar a un sistema complejo cuya respuesta reológica es muy variada dependiendo del sistema de flujo y las condiciones en las que se estudie. Aquí se observa el fenómeno de la pseudoplasticidad, a

²³ Instituto Tecnológico de Costa Rica (2013)- Ortiz-león, g; Araya-luna, d; Vílchez Monge, m. **Revisión de Modelos Teóricos de la Dinámica de Fluidos Asociada al Flujo de Sangre**. Tecnología en marcha. Vol. 27, № 1. pág. 66-76.

mayor velocidad de deformación (y por ende mayor esfuerzo), la viscosidad disminuye.

2.3. Definiciones de términos básicos

2.3.1. Sangre

La sangre humana es un fluido con gran cantidad de funciones dentro del cuerpo humano, entre ellas la entrega de oxígeno y la remoción de dióxido de carbono de tejidos distales, y el transporte de nutrientes y metabolitos de todos los órganos y sistemas del cuerpo humano.

La sangre está conformada por las células sanguíneas y el plasma:

✓ Eritrocitos (de 4.10⁶ a 5.10⁶ / mm³ de sangre).

✓ Plaquetas (de 200.000 a 400.000 / mm³ de sangre).

Leucocitos (de 6.000 a 9.000 / mm³).

<u>Granulocitos</u>

- Neutrófilos (55-60% de los leucocitos).
- Eosinófilos (2-5%).
- Basófilos (0-1%).
- <u>Agranulocitos</u>

- --

- Linfocitos (30-35%).
- Monocitos (3-7%).

Plasma sanguíneo; es la sustancia intercelular líquida en la que nadan las células y que puede asimilarse a la matriz extracelular en otros tipos de tejido conectivo. El plasma sanguíneo supone el 55% del volumen sanguíneo y está compuesto por:

- Agua.
- Electrolitos.
- Proteínas nutrientes.
- Sustancias nitrogenadas no proteicas.
- Sustancias reguladoras.

2.3.2. Plaquetas:

Las plaquetas o trombocitos son uno de los elementos que conforman nuestra sangre y juegan un papel muy importante en su proceso de coagulación, de allí que la alteración de sus niveles pueda tener consecuencías graves en nuestra salud, afectando nuestro rendimiento y alterando la capacidad de nuestra sangre para coagular de manera adecuada.

Los niveles normales de plaquetas en la sangre de una persona adulta oscilan entre las 150.000 y las 450.000 por milímetro cúbico.

2.3.3. Colesterol

El colesterol es una sustancia grasa natural presente en todas las células del cuerpo humano necesaria para el normal funcionamiento del organismo. La mayor parte del colesterol se produce en el hígado, aunque también se obtiene a través de algunos alimentos.

Definamos su función:

Interviene en la formación de ácidos biliares, vitales para la digestión de las grasas.

Los rayos solares lo transforman en vitamina D para proteger la piel de agentes químicos y evitar la deshidratación.

A partir de él se forman ciertas hormonas, como las sexuales y las tiroideas.

2.3.4. Viscosidad

La viscosidad está relacionada con la resistencia que opone un fluido a ponerse en movimiento al aplicarse sobre él esfuerzos cortantes (los esfuerzos normales no son capaces de poner en movimiento un fluido). Por esta razón, un aspecto relevante en el transporte de fluidos es el valor de esta propiedad. Por ejernplo, la mayoría de las personas tienen la vivencia de que la leche condensada se pone en movimiento con bastante dificultad, en tanto que el agua puede ponerse en movimiento sin mayor esfuerzo.

Las unidades de la viscosidad cinemática, se pueden deducir a partir de la ecuación y corresponden a:

longitud² tiempo

En el sistema CGS, las unidades son de cm2/s, que se denomina Stoke.

2.3.5. Viscosidad aparente y viscosidad diferencial

Como ya se ha mencionado, cuando los fluidos son no newtonianos la relación entre el esfuerzo de corte y dv/dy es no lineal, pudiendo definirse en estos casos una viscosidad aparente a través de:

Geométricamente, la viscosidad aparente se puede calcular trazando la secante entre dos puntos de la curva de la forma que se muestra en la figura 2.10.

Otro concepto utilizado es la viscosidad diferencial que viene dado por el ángulo que forma la tangente a la curva, en un punto dado, en el eje de las abscisas: $\mu_{dif} = \tan \beta$ tal como se muestra en la figura 2.11²⁴

Figura 2.10: Formas de evaluar la viscosidad aparente para(a) Un fluido tipo Bingham y (b) Un fluido pseudoplástico.

Fuente: Métodos de control de pozos, Wild Welt Control

²⁴ Luis Carrasco Venegas, Luz Castañeda Pérez, Karina Altamirano Oncoy. Modelos de Viscosidad de Fluidos No Newtoniano. Universidad Nacional del Callao.

Figura 2.11: Esquema para el cálculo de la viscosidad aparente y viscosidad diferencial

Fuente: Modelos de viscosidad de fluidos no newtonianos, Luis Carrasco Venegas, Luz Castañeda Perez, Karina Altamirano Oncoy.

2.3.6. Viscosidad efectiva, µe [cp.].

Describe la resistencia del fluido a fluir a través de una geometría particular. El fluido fluyendo a través del espacio anular tendrá una viscosidad efectiva diferente a la que tiene cuando fluye dentro de la tubería de perforación.

También la podemos definir como la viscosidad verdadera en cualquiera de los puntos obtenidos por lecturas del viscosímetro²⁵.

Viscosidad plástica, µ_p [cP]. Es la parte de la resistencia al flujo causada por la fricción, afectada principalmente por la concentración de sólidos, tamaño y forma de las partículas sólidas y la viscosidad de la fase fluida²⁶.

²⁵ Apéndice A. **Propiedades Reológicas De Los Fluidos,** Disponible en:

http://www.academia.edu/29900869/AP%C3%89NDICE_A_PROPIEDADES_REOL%C3%93GICAS_ DE_LOS_FLUIDOS. Articulo web. Revisado 10 de abril del 2016.

2.3.7. Reómetro

Los reómetros son equipos que permiten obtener los datos de esfuerzo y velocidad de corte del fluido a analizar y con estos valores nos permite la elaboración de reogramas. Existen dos tipos de reómetros más utilizados, reómetros de flujo de arrastre y reómetro de flujo por presión. Reómetro de flujo de arrastre, que incluyen a los reómetros rotacionales que son los que se detallaran en este trabajo. Véase anexo 7.

2.3.8. Esfuerzo Cortante

r

Se define como la fuerza necesaria para mover una superficie determinada de fluido y se denota con la letra τ . Según Newton el esfuerzo cortante, también llamado tensión de cizalla, es proporcional al gradiente de velocidad (du/dy); si se duplica la fuerza, se duplica el gradiente de velocidad.

En este caso es necesario un Newton por cada metro cuadrado de área. Las unidades de Esfuerzo Cortante son Newton por metro cuadrado, conocida también como Pascal. Existen unidades alternas, tales como dinas por centímetro cuadrado y libras de fuerza por pulgada cuadrada. Este concepto está relacionado con la fuerza necesaria para mantener a un fluido fluyendo.

²⁶ Apéndice A. Propiedades Reológicas De Los Fluidos, Disponible en:

http://www.academia.edu/29900869/AP%C3%89NDICE_A_PROPIEDADES_REOL%C3%93GICAS_ DE_LOS_FLUIDOS. Articulo web. Revisado 10 de abril del 2016.

2.3.9. Velocidad de Corte

Se define como la tasa de movimiento del fluido contenido entre dos superficies.

Se determina dividiendo la velocidad con que se mueven las superficies entre la distancia que las separa. En este caso se desplazan a un metro por segundo por cada metro de fluido y por lo tanto se mide en segundos recíprocos (1/segundo ó seg⁻¹).

Dicho en otras palabras, es la tasa de desplazamiento a la cual una partícula del fluido se mueve con respecto a otra, dividido por la distancia entre ellas.

2.3.10. Índice de consistencia

Representado por K [cP]. Es el factor de consistencia del flujo laminar. Podemos describirla de forma idéntica al concepto de viscosidad plástica dado que un aumento de K indica un aumento en la concentración de sólidos o disminución del tamaño de las partículas²⁷.

Indica la consistencia del fluido; es decir, si el valor de K es alto, el fluido es más "viscoso" y viceversa²⁸.

²⁷ Apéndice A. Propiedades Reológicas De Los Fluidos, Disponible en:

http://www.academia.edu/29900869/AP%C3%89NDICE A PROPIEDADES REOL%C3%93GICAS DE LOS FLUIDOS. Articulo web. Revisado 10 de abril del 2016.

²⁸ Apéndice A. Propiedades Reológicas De Los Fluidos, Disponible en: http://www.academia.edu/29900869/AP%C3%89NDICE A PROPIEDADES REOL%C3%93GICAS

DE LOS FLUIDOS. Articulo web. Revisado 10 de abril del 2016.

2.3.11. Índice de flujo, n [Adimensional].

Es la relación numérica entre el esfuerzo de corte y la velocidad de corte.

Es una medida de la no-newtonianidad del fluido, entre más alejado de la unidad sea el valor de n, mas no-Newtoniano es el comportamiento del fluido²⁹.

2.3.12. Punto de cedencia, PC [lb / 100 pies].

Es el esfuerzo mínimo de corte que debe aplicarse a un fluido para que comience a desplazarse³⁰, figura 2.12.

Figura 2.12: Punto de Cedencia

Fuente: Métodos de control de pozos, Wild Welt Control

²⁹ Apéndice A. Propiedades Reológicas De Los Fluidos, Disponible en:

http://www.academia.edu/29900869/AP%C3%89NDICE_A_PROPIEDADES_REOL%C3%93GICAS_ DE_LOS_FLUIDOS. Articulo web. Revisado 10 de abril del 2016.

³⁰ Apéndice A. Propiedades Reológicas De Los Fluidos, Disponible en:

http://www.academia.edu/29900869/AP%C3%89NDICE_A_PROPIEDADES_REOL%C3%93GICAS_ DE_LOS_FLUIDOS. Articulo web. Revisado 10 de abril del 2016.

2.3.13. Reogramas

Los fluidos no-newtonianos se caracterizan por los reogramas, que son las representaciones gráficas de sus comportamientos, o bien por sus parámetros reológicos, que son las constantes de las ecuaciones que definen el comportamiento reológico respectivo.

Tanto los reogramas como los parámetros reológicos se obtienen a partir de datos experimentales. En general se traza primero el reograma, buscando un sistema de escalas que permita la linealización y, a partir de los datos gráficos, se calculan los parámetros reológicos. En muchos casos se utilizan solamente reogramas³¹. Ejemplos de algunos reogramas en la figura 2.13.

³¹ Luis Carrasco Venegas, Luz Castañeda Pérez, Karina Altamirano Oncoy. Modelos de Viscosidad de Fluidos No Newtoniano. Universidad Nacional del Callao.

Figura 2.13: Reograma de algunos tipos de fluidos independientes del tiempo

Fuente: Modelos de viscosidad de fluidos no newtonianos, Luis Carrasco Venegas, Luz Castañeda Perez, Karina Altamirano Oncoy.

権制と

.

III. VARIABLES E HIPÓTESIS

3.1. Variables de la investigación

3.1.1. Variables independientes (VI)

X1: la relación no lineal entre el esfuerzo de corte y velocidad de corte asociado a la sangre.

X₂: tratamiento estadístico de los datos de esfuerzo de corte y velocidad de corte para obtener los parámetros de los modelos asociados a la sangre.

X₃: los reogramas asociados a la sangre.

3.1.2. Variables dependientes (VD)

Y1: Y1: Modelos reológicos asociados a la sangre.

3.2. Operacionalización de variables

DEPENDIENTE	DIMENSIÓN	INDICADORES	MÉTODO
Modelos	Reproducibilidad de los	Los índices de	Correlacionando
reológicos	datos experimentales	correlación	las variables x1,
asociados a la	mediante los modelos	múltiple y	x2 y x3.
sangre.	reológicos asociados al	análisis de la	
	comportamiento de la	varianza.	
	sangre		

Tabla 3.1: Operacionalización De Variables Dependientes

Fuente propia

INDEPENDIENTES	DIMENSIÓN INDICADORES		MÉTODO
La relación no lineal		r 1	
entre el esfuerzo de	Análisis cuantitativo	Diferencias	7 •
corto y volocidad do	de la relación de la		
cone y velocidad de	velocidad de corte y	respecto a la	Grafico.
corte asociado a la	osfuerzo de corto	relación lineal.	· .
sangre	esiderzo de corte		•
Tratamiento	· · ·	· · · · · · · · · · · · · · · · · · ·	í i
estadístico de los	Correlación		
datos de esfuerzo		f	
corte y velocidad de	cuantitativa	Indice de	
corte para obtener	entre los datos de	correlación y	Regresión no
cone para obtener	esfuerzo de corte y	varianza	lineal
los parámetros de	velocidad de corte		
los modelos			
asociados a la	asociado a la sangre		
605.050			
Sangre.			
	Forma típica de los		· · · · · · · · · · · · · · · · · · ·
•	reogramas de los	Desviacion	
Los reogramas	i modelos que	respecto al	Gráfico
asociados a la		comportamiento a	
sangre	representan su	ⁱ las propiedades del	ł
	comportamiento		
	reológico de la sangre.	; nuldo newtoniano.	
	·····	- 	

Tabla 3.2: Operacionalizaci	ón de variables	independientes
-----------------------------	-----------------	----------------

Fuente propia

j

3.3. Hipótesis general e hipótesis específicas.

3.3.1. Hipótesis General

La sangre tiene un comportamiento reológico característico de los fluidos pseudoplástico como los de Ostwald, Waele, Herschelbulkley, Casson y otros.

3.3.2. Hipótesis especifica

- Existe una relación no lineal entre el esfuerzo de corte y velocidad de corte asociado a la sangre.
- El tratamiento estadístico de los datos de esfuerzo de corte y velocidad de corte permite obtener los parámetros de los modelos asociados a la sangre.
- Los reogramas de sangre tienen el comportamiento típico de un fluido no newtoniano específicamente al del fluido pseudoplástico.

IV. METODOLOGÍA

4.1. Tipo de Investigación

• Correlacional: Debido a que la utilidad de este tipo de investigación es saber cómo se puede comportar un concepto o variable conociendo el comportamiento de otra u otras variables relacionadas.

• Transversal: Debido a que se determinará los parámetros y modelos matemáticos en un tiempo determinado interesando estudiar el problema en ese momento.

• Aplicada: Ya que es una generación de conocimientos con aplicación directa a los problemas de la sociedad como por ejemplo el posible diagnóstico de padecer alguna enfermedad cardiovascular.

• Experimental: Ya que se realizará un conjunto de actividades metódicas y técnicas para recabar la información y datos necesarios sobre el tema a investigar y el problema a resolver. Principalmente se manipula una variable importante la temperatura.

4.2. Diseño de la investigación

4.2.1. Etapas de la investigación

Se ha considerado 4 etapas para la investigación propuesta.

Primera etapa de la investigación

En esta primera etapa de la investigación se recurrió a la revisión de teorías vinculadas a la variable de investigación, en nuestro caso será la variable X₁, con el fin de identificar esta variable se realizaron Análisis

cuantitativos de la relación de la velocidad de corte y esfuerzo de corte; con el método grafico se identificó dicha variable.

Segunda etapa de la investigación

En la segunda etapa de la investigación se volvió a requerir de la revisión teórica vinculada a la variable de investigación, en esta etapa la variable será X₃, con el propósito de identificar algunos argumentos científicos, antecedentes de estudio o base científica.

Se obtuvo esta variable mediante el método de regresión no lineal

Tercera etapa de la investigación

En esta etapa de la investigación, también se requirió revisar teorías vinculadas a la variable de investigación, para esta etapa nuestra variable será X₃, para este caso usamos el método grafico para su identificación.

Cuarta etapa de la investigación

En esta última etapa de la investigación con la teoría y la información lograda en las otras tres etapas anteriores, se correlacionaron las variables X_1 , X_2 y X_3 . Se realizaron los ensayos experimentales de viscosidad con un reómetro rotacional.

4.3. Población y muestra

Población: Se extrajo un total de 318 ml de sangre humana a 4 personas, integrantes de una familia domiciliada en el distrito del Rímac, provincia de Lima, departamento de Lima. Se trabajó en 2 grupos: sangre que cumple con los estándares de una persona sana, según Tabla N° 4.1, y sangre que se encuentra fuera de los estándares saludables.

Muestra: Se utilizó 6ml por cada muestra obtenida; en la Tabla N° 4.2 se detalla los códigos y algunas características de las muestras y en el Anexo N° 3 se detallan los parámetros de las muestras.

4.4. Técnicas e instrumentos de recolección de datos

4.4.1. Lugar de ejecución

Las pruebas experimentales se realizaron en una sola etapa. Se realizó en el laboratorio de investigación de la FIQ-UNAC.

4.4.2. Técnica de recolección de datos

A. Análisis clínico

Se obtuvo los análisis clínicos de la sangre para cada muestra en los siguientes laboratorios:

Muestra 1: MedLab Laboratorio Clínico Muestra 2: Policlínico Municipal – Servicio de Laboratorio Muestra 3: 4G Laboratorio clínico Muestra 4: 4G Laboratorio clínico

Las características clínicas de cada muestra se encuentran en el anexo 3

4.4.3. Instrumentos de Recolección de Datos

A. Muestra

- Fluido de la sangre
- B. Materiales
 - Tubos de ensayos para la recolección de la muestra
 - Bolsa recolectora de sangre
- C. Equipos
 - Refrigeradora
 - Cooler
 - Reómetro Rotacional
- D. Desinfectante
 - Alcohol
 - Agua destilada
- E. Implementos de protección
 - Guantes quirúrgicos.
 - Cofia.
 - Tapa boca
 - Mandil blanco

- Pantalón blanco
- Zapatos cerrados blancos.

4.4.4. Procesamiento de las muestras

a. Identificación de las muestras

La sangre usada en la investigación corresponde a 4 personas que pertenecen a una misma familia, todas domiciliadas en el distrito del Rímac – provincia de Lima – departamento de Lima, las cuales se encuentran dentro y fuera del rango de los parámetros de la sangre para considerarlos normales, ver tabla 4.1.

Composición	Rango de Referencia	Unidades	
Hemoglobina	12.0 – 16.0	g/dL	
Hematocrito	36.0 - 48.0	%	
Hematies	4.0 - 5.2	10 ⁶ /mm ³	
Plaquetas	150 – 350	10 ³ / uL	
Glucosa	90 – 130	mg/dl	
Colesterol Total	menos 200	mg/dl	

Tabla 4.1: Rango de la composición de la sangre.

Fuente: análisis clínicos del Laboratorios MEDLAB

b. Caracterización de las muestras

Para conocer la composición de la sangre, se realizó los análisis clínicos correspondientes en los laboratorios clínicos ya mencionados en el punto 4.4.2.

c. Extracción de Sangre

El especialista recolecto un total de 318 ml de sangre los cuales fueron recolectados para la primera muestra en una bolsa recolectora de sangre y las otras 3 muestras en tubos de ensayo.

Luego se codificó la sangre, ver tabla Nº 4.2

Côdigo de las muestras	යිට්ටෙ	Volumendele Muestre(ml)	പ്രസ്ത
MS – 01	28	06	
MS – 02	64	06	1
MS 03	36	06	l
MS – 04	54	06	II

Tabla 4.2: Codificación y características de la muestra

I: Sangre que cumple con los estándares II: Sangre que se encuentra fuera de los estándares

Fuente propia

d. Conservación y Transporte de las Muestras

Las muestras fueron conservadas en un ambiente de temperatura moderada (10 °C - 14 °C), el transporte de la muestra se realizó mediante un cooler para mantener la temperatura indicada.

e. Medidas Reológicas

• Antes de empezar los ensayos experimentales, se procedió a lo siguiente: desinfectar las manos y usar la indumentaria correspondiente (mandil blanco, pantalón blanco, cofia, tapa bocas, guantes quirúrgicos, zapatos blancos).

• Se utilizó un reómetro rotacional con una geometría de paletas de la marca Anton-Paar modelo RheoLab QC.

 Se desinfectó el porta muestra del reómetro con alcohol y agua destilada.

• Se colocaron las muestras de sangre en el contenedor del reómetro para luego fijar la temperatura de análisis; este procedimiento se realizó con todas las temperaturas de trabajo.

• El reómetro RheoLab QC, fue operado desde un computador utilizando el Software RheoPlus.

 El reómetro arrojo como resultado el esfuerzo de corte y la velocidad de corte de la muestra.

 Después de terminar con las corridas se procedió a limpiar y desinfectar el equipo de trabajo.

 Con estos datos obtenidos se realizó los análisis estadísticos para encontrar el modelo de fluido no newtoniano que se asocia al comportamiento de la sangre, y a la vez obtendremos los diferentes reogramas asociados a la sangre.

4.5. Procedimiento de recolección de datos

4.5.1. Recopilación de información

Para la realización del proceso de obtención de la velocidad de corte y esfuerzo de corte de la sangre (muestra de 4 personas) en un reómetro rotacional y a diferentes temperaturas, se hizo uso del reómetro

rotacional que se encuentra en el laboratorio de investigación de la FIQ - UNAC

4.5.2. Fuente secundaria

Se revisaron fuentes bibliográficas de libros, revistas, normas de extracción de sangre, referencias electrónicas, investigaciones preliminares. Además se realizó el análisis clínico de las muestras en laboratorios clínicos especializados.

4.6. Procesamiento Estadístico y Análisis de Datos

Del diseño experimental resultaron 14 combinaciones. Las variables de respuesta fueron la relación no lineal entre el esfuerzo de corte y velocidad de corte asociado a la sangre. Los reogramas asociados a la sangre y Tratamiento estadístico de los datos de esfuerzo de corte y velocidad de corte para obtener los parámetros de los modelos asociados a la sangre, los cuales en conjunto definen el o los modelos reológicos asociados a la sangre.

El análisis de los ajustes de los modelos a los resultados experimentales se realizará a través de los parámetros estadísticos de coeficiente de determinación (R2) y las pruebas de validación de supuestos para cada uno de ellos, para la determinación de los parámetros reológicos se utilizó el programa POLYMATH.
Mediante el uso de pruebas paramétricas de análisis de varianza (ANOVA) y prueba de Tuckey, con un nivel de significancia (p=0,05), se determinó la diferencia o similitud de los Valores de los parámetros de los modelos obtenidos. Y con el grafico de banderas (Excel), se realizó la comparación de los R² obtenidos, se determinó gráficamente cual es el más cercano a 1.

ſ

V. RESULTADOS

5.1. Parámetros de los modelos de fluidos no newtonianos y

parámetros reológicos

A. MS - 01

Luego de haber obtenido la muestra de sangre, se llevaron al laboratorio para ser evaluadas en el reómetro a las siguientes temperaturas 15°C, 20°C, 28°C, 37°C y 45°C; las cuales se muestran a continuación.

ß P	Velocidadide corie(fi/s)	Estuezode core(Pa)
1	7.33	1
2	17.4	1.5
3	30.6	1.99
4	47.1	2.49
5	66.3	2.99
6	87.9	3.49

Tabla 5.1: Datos reológicos de la sangre a 15°C

Fuente: Datos reportados del reómetro

Tabla 5.2: Datos reológicos de la sangre a 20°C

.	Velocidad de corre(f/s)	Estuerzode corie(Pa)
1	4.71	1
2	14.2	1.5
3	26.1	1.99
4	40.9	2.49
5	59	2.99
6	80.3	3.49

Fuente: Datos reportados del reómetro

Ø	Veloeidad)de corie(f/s)	Estrezodo corto(Pe)
1	4.2	1
2	12.3	1.5
3	24.1	1.99
4	38.8	2.49
5	56.6	2.99
6	77.5	3.49

Tabla 5.3: Datos reológicos de la sangre a 28°C

Fuente: Datos reportados del reómetro

Velocidadidecorte	Esfuerzode
(US)	conte (Pa)
	Velocidad decorte ((US)

Tabla 5.4: Datos	reológicos de la	sangre a 37 °C
------------------	------------------	----------------

	(US)	COT(B((;-8))
1	6.72	1
2	14.7	1.5
3	26.1	1.99
4	40.5	2.49
5	58	2.99
6	78.5	3.49

Fuente: Datos reportados del reómetro

Tabla 5.5: Datos reológicos de la sangre a 45°C			
	NP	Velocidad de conte (fUS)	Estuezode corte(Pe)

NP	Velocitad de corte (US)	Estrezodo corio(Pa)
1	3.78	1
2	13.1	1.5
3	24.3	1.99
4	38.9	2.49
5	56.6	2.99
6	77.7	3.49

Fuente: Datos reportados del reómetro

Gráfico 5.1: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s) aplicado a la sangre a 15 °C

Fuente propia: Obtenida a partir de los datos de la Tabla 5.1

Fuente propia: Obtenida a partir de los datos de la Tabla 5.2

Gráfico 5.3: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s) aplicado a la sangre a 28 °C

Fuente propia: Obtenida a partir de los datos de la Tabla 5.3

Fuente propia: Obtenida a partir de los datos de la Tabla 5.4

Gráfico 5.5: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s) aplicado a la sangre a 45 °C

Fuente propia: Obtenida a partir de los datos de la Tabla 5.5

Fuente propia: Obtenida a partir de los datos de la Tabla 5.1, 5.2, 5.3, 5.4 y 5.5

B. MS – 02

Luego de haber obtenido la muestra de sangre, se llevaron al laboratorio para ser evaluadas en el reómetro a las siguientes temperaturas 32°C, 37°C y 42°C; las cuales se muestran a continuación.

Ø	Valoatdad da ପୋଡ଼((//ଣ)	Estuerzoda corta(Pa)
1	4.38	1
2	14.8	1.5
3	26.7	1.99
4	41.9	2.49
5	60.1	2.99
6	81.7	3.49

Tabla 5.6: Datos reológicos de la sangre a 32°C

Fuente: Datos reportados del reómetro

ለም	Velocidad de corte(f/s)	Estrazoda core(Pa)
1	6.16	1
2	15.4	1.5
3	27.1	1.99
4	41.8	2.49
5	59.9	2.99
6	81.1	3.49

Tabla 5.7: Datos reológicos de la sangre a 37°C

Fuente: Datos reportados del reómetro

ØP	Velocitlad de corte (fVS)	(Esturzo de conte (Pe)
1	6.93	1
2	15.4	1.5
3	27	1.99
4	41.4	2.49
5	59.3	2.99
6	80.7	3.49

Tabla 5.8: Datos reológicos de la sangre a 42°C

Fuente: Datos reportados del reómetro

Gráfico 5.7: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s) aplicado a la sangre a 32 °C

Fuente propia: Obtenida a partir de los datos de la Tabla 5.6

Gráfico 5.8: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s) aplicado a la sangre a 37 °C

Fuente propia: Obtenida a partir de los datos de la Tabla 5.7

Gráfico 5.9: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s) aplicado a la sangre a 42 °C

Fuente propia: Obtenida a partir de los datos de la Tabla 5.8

Gráfico 5.10: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s) aplicado a la sangre a 32 °C, 37 °C y 42 °C

C. MS - 03

Luego de haber obtenido la muestra de sangre, se llevaron al laboratorio para ser evaluadas en el reómetro a las siguientes temperaturas 32°C, 37°C y 42°C; las cuales se muestran a continuación.

N ₽	Velocided de coñe(f/s)	(Estrezzode) cone(Pa)
1	5.59	1
2	14.3	1.5
3	26	1.99
4	40.7	2.49
5	59.2	2.99
6	81	3.49

Tabla 5.9: Datos reológicos de la sangre a 32°C

Fuente: Datos reportados del reómetro

Fuente propia: Obtenida a partir de los datos de la Tabla 5.6, 5.7 y 5.8

(XP)	Velocifiedde corie(fils)	Estuerzode coñe(Pa)		
1	3.08	1		
2	12	1.5		
3	23.7	1.99		
4	38.2	2.49		
5	55.9	2.99		
6	77.1	3.49		

Tabla 5.10: Datos reológicos de la sangre a 37°C

Fuente: Datos reportados del reómetro

T	abla 5.1	11: Datos reológicos	de la sangre a 42°C
	(TD)	Velocidad de	Esfuerzode
		(A)(3)	CONTRACTOR (DEC)

	COTO (IIS)	COLO(PI)
1	4.33	1
2	13.7	1.5
3	25	1.99
4	39.7	2.49
5	57.5	2.99
6	78.4	3.49

Fuente: Datos reportados del reómetro

Fuente propia: Obtenida a partir de los datos de la Tabla 5.9

Gráfico 5.12: Grafico del esfuerzo de corte (Pa) y velocidad de corte 1/s) aplicado a la sangre a 37 °C

Fuente propia: Obtenida a partir de los datos de la Tabla 5.10

Gráfico 5.13: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s) aplicado a la sangre a 42 °C

Fuente propia: Obtenida a partir de los datos de la Tabla 5.11

 $\begin{array}{c} 4 \\ 3.5 \\ \hline \\ 3.5 \\$

Gráfico 5.14: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s) aplicado a la sangre a 32 °C, 37°C y 42°C

Fuente propia: Obtenida a partir de los datos de la Tabla 5.9, 5.10 y 5.11

D. MS - 04

Luego de haber obtenido la muestra de sangre, se llevaron al laboratorio para ser evaluadas en el reómetro a las siguientes temperaturas 32°C, 37°C y 42°C; las cuales se muestran a continuación.

₽ ₽	Velocidad de corie ((1/s)	lestuerzoda corce(Pe)
1	6.78	1
2	15.1	1.5
3	26.6	1.99
4	40.9	2.49
5	58.4	2.99
6	79.4	3.49

Tabla 5.12: Datos reológicos de la sangre a 32 °C

Fuente: Datos reportados del reómetro

N P	Velocidadidə cortə(fils)	Esfuerzode corte(Pa)		
1	3.38	1		
2	11.3	1.5		
3	23.1	1.99		
4	37.4	2.49		
5	55	2.99		
6	75.9	3.49		

Tabla 5.13: Datos reológicos de la sangre a 37 °C

Fuente: Datos reportados del reómetro

Ta	bla	5.1	4:	Datos	reológicos	de	la	sangre	а	42	°C
----	-----	-----	----	-------	------------	----	----	--------	---	----	----

ለም	Velocidad de cone (1/s)	Estuerzode corte(Pa)		
1	2.84	1		
2	10.8	1.5		
3	21.5	1.99		
4	35.1	2.49		
5	52.4	2.99		
6	73.1	3.49		

Fuente: Datos reportados del reómetro

Gráfico 5.15: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s) aplicado a la sangre a 32 °C

Gráfico 5.16: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s) aplicado a la sangre a 37 °C

Fuente propia: Obtenida a partir de los datos de la Tabla 5.13

Fuente propia: Obtenida a partir de los datos de la Tabla 5.12

Fuente propia: Obtenida a partir de los datos de la Tabla 5.14

Gráfico 5.18: Grafico del esfuerzo de corte (Pa) y velocidad de corte (1/s) aplicado a la sangre a 42 °C

5.2. Cálculo de los parámetros de los modelos de fluidos no

newtonianos a partir de los datos experimentales

A. MS - 01

- Cálculo de los parámetros del modelo de Herschel-Bulkley I

Forma estándar	Forma alterna	Forma para la regresión
$\tau = \tau_0 + \mu \left(\frac{du}{dy}\right)^{1/m}$	$\frac{du}{dy} = \left(\frac{1}{\mu}\right)^m \left(\tau - \tau_{\bullet}\right)^m$	$y = A + Bx^{c}$

Fuente: Obtenida a partir del anexo 4

	** ** +		- · · · · · · · · · · · · · · · · · · ·		•
	BC	20°C	28°C	3 7 %	4 9 %
Α	0.257132	0.4351388	0.4197392	0.0113791	0.5114224
B	0.2293223	0.2191854	0.2565153	0.3756052	0.2128055
C	0.5909976	0.6014206	0.5707111	0.5100339	0.6071641
R^2	0.9999955	0.9998451	0.999978	0.9999713	0.9997047
R^2adj	0.9999926	0.9997419	0.9999634	0.9999522	0.9995079
Rmsd	0.0007337	0.0043183	0.0016266	0.0018594	0.0059629
Variance	6.46E-06	0.0002238	3.18E-05	4.15E-05	0.0004267

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.1, 5.2, 5.3, 5.4. y 5.5.

85

· · · · · · · · · · · · · · · · · · ·															
	15 C		1	20°C	20'6		28%		37'C			45%3			
Gamma	1670	viscocidad	viscocidad	16m	viscocidad	viscocidad	1 270	viscocidad	viscocidad		viscocidad	viscocidad		viscocidad	viscocidad
		aparente	diferencial		aparente	diferencial		aparente	diferencial		aparente)	diferencial		aparente	diferencia
7.0	0.98139651	0.1401995	0.06114837	1.14157182	0.16308169	0.06069477	1.19852873	0.17121839	0.06349483	1.0247309	0.14639013	0.07383482	1.20500157	0.17214308	0.06015948
17.0	1.48072969	0.08710175	0.04253784	1.63970022	0.09645295	0.04261459	1.71198203	0.10070483	0.0433822	1.60469635	0.0943939	0.04780269	1.70010871	0.10000639	0.04245457
27.0	1.86547561	0.06909169	0.03520471	2.02611351	0.07504124	0.0354387	2.10244605	0.07786837	0.03556813	2.02870302	0.07513715	0.03810754	2.08560657	0.07724469	0.03539956
37.0	2.19466784	0.05931535	0.03094808	2.35805538	0.06373123	0.03125626	2.43394297	0.06578224	0.03106834	2.38039316	0.06433495	0.03265615	2.41749148	0.06533761	0.03127829
47.0	2.48891574	0.05295565	0.02806338	2.65561294	0.0565024	0.02841359	2.72860176	0.05805536	0.02803603	2.68782327	0.05718773	0.0290442	2.71546832	0.05777592	0.02847271
57.0	2.75842239	0.04839338	0.02593433	2.92876258	0.0513818	0.02631082	2.99730965	0.05258438	0.02580786	2.96454127	0.0520095	0.02642479	2.98934094	0.05244458	0.02639479
67.0	3.00915535	0.04491277	0.02427521	3.18335329	0.04751274	0.02466915	3.2464048	0.0484538	0.02407775	3.21832512	0.0480347	0.0244127	3.24486471	0.04843082	0.02477087
77.0	3.24497505	0.04214253	0.02293257	3.42317604	0.04445683	0.02333853	3.47997204	0.04519444	0.02268193	3.45413172	0.04485885	0.02280416	3.4857739	0.04526979	0.0234535
87.0	3.46855499	0.03986845	0.02181544	3.65086049	0.04196391	0.0222299	3.70083144	0.04253829	0.02152363	3.67535126	0.04224542	0.02147989	3.71466115	0.04269725	0.02235508
97.0	3.68184053	0.03795712	0.02086592	3.86832273	0.03987962	0.02128647	3.91102945	0.04031989	0.02054142	3.884424	0.04004561	0.02035479	3.933417	0.04055069	0.02141971
107.0	3.88630132	0.03632057	0.02004514	4.07701209	0.03810292	0.02047007	4.11210842	0.03843092	0.01969417	4.08317611	0.03816052	0.01940892	4.14347244	0.03872404	0.02060982

Tabla 5.15: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Herschel – Bulkley I

Fuente propia: Obtenida a partir del modelo de Herschel-Bulkley I

Gráfico 5.19: Gráfico Comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Herschel-Bulkley I

Fuente propia: Obtenida a partir de la Tabla Nº 5.15

Gráfico 5.20: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo Herschel-Bulkley I

Fuente propia: Obtenida a partir de la Tabla Nº 5.15

Gráfico 5.21: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Herschél-Bulkley I

Fuente propia: Obtenida a partir de la Tabla Nº 5.15

 Cálculo de los parámetros del modelo de Casson -Generalizada N°1

Forma estándar	Forma alterna	Forma para la regresión
$\tau^{1/n} = \tau_0^{1/n} + \mu_c \left(\frac{du}{dy}\right)^{1/m}$	$\frac{du}{dt} = \frac{1}{m} \left(\tau^{1/n} - \tau_0^{1/n} \right)^m$	$y = (A + Bx^{c})^{n}$
n > 1 m > 1	ay μ_c^{m}	

Fuente: Obtenida a partir del anexo 4

6					and the second		
	BBG	20'G	23%3	97/G	45°C		
Α	0.2952584	0.4748685	0.4364669	0.0138818	0:6099531		
· B	0.304568	0.0419146	0.2759012	0.4590128	0.029272		
C	0.421527	1.630014	0.4986589	0.4030528	1.946386		
n	1.49638	0.3137394	1.193486	1.268225	0.2527464		
R^2	0.9999986	0.9999928	0.9999789	0.9999714	0.9999989		
R^2adj	0.9999965	0.9999819	0.9999471	0.9999286	0.9999973		
Rmsd	0.0004118	0.0009338	0.0015957	0.0018551	0.0003589		
Variance	3.05E-06	1.57E-05	4.58E-05	6.20E-05	2.32E-06		

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.1, 5.2, 5.3, 5.4 y 5.5

.

Tabla 5.16: Parámetros reológicos de la sangre a las diferentes temperaturas basados en el modelo de Casson - Generalizada N°1

	(1795)			·····											
	ibic			2003			28°C			973				45°C	
Gamma	160	viscocidad	viscocidad	12m	viscocidad	viscocidad	- Pero	viscocidad	viscocidad	995	viscodidad	viscocidad		viscocidad	viscocidad
		aparente	diferencial		aparente	diferencial		aparente	diferencial		aparente	diferencial		aparente	diferencial
7.0	0.98054371	0.14007767	0.06192337	1.12958916	0.16136988	0.05594911	1.19936144	0.17133735	0.06375164	1.02482665	0.14640381	0.07381705	1.17646753	0.16806679	0.05616726
17.0	1.48199401	0.08717612	0.04250533	1.62733478	0.09572558	0.04403013	1.71282064	0.10075416	0.04329013	1.60460273	0.0943884	0.04778642	1.68483485	0.09910793	0.04498019
27.0	1.86594823	0.06910919	0.03510825	2.02659394	0.07505903	0.03646666	2.10236992	0.07786555	0.0354887	2.02848095	0.07512892	0.03809781	2.09040716	0.07742249	0.03683114
37.0	2.1942647	0.05930445	0.03087463	2.36582437	0.0639412	0.03170158	2.43327347	0.06576415	0.03102981	2.38009856	0.06432699	0.03265111	2.43150332	0.06571631	0.03174227
47.0	2.48796655	0.05293546	0.02802837	2.66541939	0.05671105	0.02839676	2.7277494	0.05803722	0.02803722	2.68749598	0.05718077	0.02904253	2.73049957	0.05809574	0.02825213
57.0	2.75732043	0.04837404	0.02593845	2.93656572	0.0515187	0.02594288	2.99664658	0.05257275	0.02584364	2.96421049	0.05200369	0.02642564	2.99958359	0.05262427	0.0256835
67.0	3.00827874	0.04489968	0.02431557	3.18607087	0.0475533	0.02403136	3.24625112	0.04845151	0.02414307	3.21801303	0.04803005	0.02441551	3.24609232	0.04844914	0.02369636
77.0	3.24466831	0.04213855	0.02300559	3.418417	0.04439503	0.02248922	3.48060117	0.04520261	0.02277253	3.45385572	0.04485527	0.02280852	3.47481229	0.04512743	0.02210203
87.0	3.46912716	0.03987502	0.02191766	3.636733	0.04180153	0.02121158	3.70247801	0.04255722	0.02163599	3.67512532	0.04224282	0.0214855	3.68905999	0.04240299	0.0207871
97.0	3.68356792	0.03797493	0.02099427	3.84330248	0.03962168	0.0201308	3.91389633	0.04034945	0.02067269	3.88425959	0.04004391	0.02037144	3.89124124	0.04011589	0.019679
107.0	3.88943141	0.03634983	0.02019692	4.03985137	0.03775562	0.01920115	4.1163725	0.03847077	0.01984198	4.08308276	0.03815965	0.01941645	4.08316513	0.03816042	0.01872892
Evente pro	nia: Obtania	la a partir d	al mandala d		47	10.4									0.010/20072

Fuente propia: Obtenida a partir del modelo de Casson Generalizada Nº 1

N,

Gráfico 5.22: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Casson Generalizada N° 1

Fuente propia: Obtenida a partir de la Tabla Nº 5.16

Gráfico 5.23: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Casson Generalizada N° 1

Fuente propia: Obtenida a partir de la Tabla Nº 5.16

Gráfico 5.24: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de

Fuente propia: Obtenida a partir de la Tabla Nº 5.16

- Cálculo de los parámetros del modelo de Ostwald - de Waele-

Nutting

Forma estándar	Forma alterna	Forma para la regresión
$\tau = k \left(\frac{du}{dy}\right)^n$ $0 < n < 1$	$\frac{du}{dy} = \left(\frac{\tau}{k}\right)^{1/n}$	$y = A * x^n$

Fuente: Obtenida a partir del anexo 4

	<u> </u>	<u> </u>	and the second second		
	<u>159</u> C	20%3	2393	37 °G	ଫ୍ଟେ
Α	0.3442521	0.4396446	0.4860921	0.3814041	0.4861905
n	0.5159097	0.4700479	0.4504292	0.5072163	0.4498491
R^2	0.9993098	0.9970058	0.9975761	0.9999703	0.9950492
R^2adj	0.9991373	0.9962572	0.9969701	0.9999629	0.9938115
Rmsd	0.0091165	0.0189886	0.0170847	0.0018899	0.0244168
Variance	0.000748	0.0032451	0.002627	3.22E-05	0.0053656

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.1, 5.2, 5.3, 5.4 y 5.5.

Tabla 5.17: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Ostwald – de Waele-Nutting

١

15°C 20°C 28°C 37%G **45°C** viscocidad viscocidad viscocidad viscocidad viscocidad viscocidad Gamma Tao viscocidad viscocidad Tao viscocidad viscocidad Tao I Tao aparente diferencial Tao aparente diferencial aparente diferencial aparente diferencial aparente diferencial 0.93944395 | 0.13420628 | 0.06923832 | 1.09733265 7.0 0.15676181 0.07368556 1.16781862 0.16683123 0.07514566 1.02337042 0.14619577 0.07415288 1.16673724 0.16667675 0.07497939 17.0 1.48483136 | 0.08734302 | 0.04506111 | 1.66522022 0.09795413 0.04604313 1.74160108 0.10244712 0.04614518 1.605052 0.09441482 0.04788874 1.73909301 0.10229959 0.04601938 27.0 1.88508548 0.06981798 0.03601977 2.06971847 0.07665624 0.0360321 2.14509533 0.07944798 0.03578569 2.02953427 0.07516794 0.0381264 2.14143142 0.07931227 0.03567856 2.217824 37.0 0.05994119 0.03092424 2.4001129 0.06486792 0.03049103 2.47219322 0.06681603 0.03009589 2.38123816 0.06435779 0.03264332 2.46751955 0.06668972 0.03000031 47.0 2.50915854 0.05338635 0.02754254 2.68576389 0.05714391 0.02686038 2.75346946 0.05858446 0.02638815 2.68844184 0.05720089 0.02901322 2.74788267 0.05846559 0.02630069 57.0 2.77172072 0.04862668 0.02508698 2.94067502 0.05159079 0.02425014 3.00341862 0.05269155 0.02373381 2.96478841 0.05201383 0.02638226 2.9969893 0.05257876 0.02365251 67.0 3.01277225 0.04496675 0.02319878 3.17281222 0.04735541 0.02225931 3.23024881 0.04821267 0.02171639 3.21810539 0.04803142 0.02436232 3.22303169 0.04810495 0.02163997 77.0 3.23694606 0.04203826 0.02168795 3.38721487 0.0439898 0.02067731 3.43913379 0.04466408 0.020118 3.45337868 0.04484907 0.02274818 3.43117306 0.04456069 0.02004559 87.0 3.44741363 0.03962544 0.02044315 | 3.58730824 | 0.04123343 | 0.01938169 | 3.63357951 | 0.04176528 0.0188123 3.67401679 0.04223008 0.02141978 3.62491192 0.04166565 0.01874326 97.0 3.64645961 0.03759237 0.01939427 3.77554477 0.03892314 0.01829574 3.81608962 0.03934113 | 0.01772039 | 3.88247229 0.04002549 0.02030158 3.8067464 0.03924481 0.01765424 107.0 3.83579487 0.03584855 0.01849461 0.03695094 | 0.01736871 | 3.98852459 | 0.03727593 | 0.01679017 | 4.08057992 | 0.03813626 | 0.01934333 | 3.97853272 | 3.9537511 0.03718255 0.01672654

Fuente propia: Obtenida a partir del modelo de Ostwald – de Waele-Nutting.

Gráfico 5.25: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Ostwald – de Waele-Nutting

Fuente propia: Obtenida a partir de la Tabla Nº 5.17

Gráfico 5.26: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Ostwald – de Waele-Nutting

Fuente propia: Obtenida a partir de la Tabla Nº 5.17

Fuente propia: Obtenida a partir de la Tabla Nº 5.17

-	Cálculo	de	los	parámetros	del	modelo	de	Sisko
---	---------	----	-----	------------	-----	--------	----	-------

Forma estándar	Forma alterna	Forma para la regresión
$\tau = A \cdot \frac{du}{dy} + B \cdot \left(\frac{du}{dy}\right)^n$ $0 < n < 1$	$\frac{du}{dy} = \frac{\tau}{A + B \cdot \left(\frac{du}{dy}\right)^{n-1}}$	$y = A * x + B * x^n$

		· ·		
15°C	20°C	28%3	27 3	45%3
0.0093967	0.0137802	0.0127705	0.0008137	0.0156502
0.3986297	0.5423392	0.5795675	0.3845673	0.6133977
0.4245152	0.3389646	0.3367683	0.5012056	0.3029452
0.9999925	0.9995266	0.9999006	0.9999734	0.9991683
0.9999875	0.999211	0.9998344	0.9999557	0.9986138
0.0009486	0.0075502	0.0034592	0.0017888	0.0100078
1.08E-05	0.0006841	0.0001436	3.84E-05	0.0012019
	15% 0.0093967 0.3986297 0.4245152 0.9999925 0.99999875 0.0009486 1.08E-05	£15%£0% 0.00939670.01378020.39862970.54233920.42451520.33896460.99999250.99952660.99998750.9992110.00094860.00755021.08E-050.0006841	15%20%28% 0.00939670.01378020.01277050.39862970.54233920.57956750.42451520.33896460.33676830.99999250.99952660.99990060.99999750.9992110.99983440.00094860.00755020.00345921.08E-050.00068410.0001436	15%20%23%5%% 0.00939670.01378020.01277050.00081370.39862970.54233920.57956750.38456730.42451520.33896460.33676830.50120560.99999250.99952660.99990060.99997340.99998750.9992110.99983440.99995570.00094860.00755020.00345920.00178881.08E-050.00068410.00014363.84E-05

ente: Obtenida a partir del anexo 4

Fuente: Obtenido a partir de la regresión de los datos de las Tablas 5.1, 5.2, 5.3, 5.4 y 5.5

r	<u></u>	<u></u>	 		<u></u>						*				
	153				20°C	1	28°C			57/C				45°C	
Gamma	130	viscocidad aparente	viscocidad diferencial	teo	viscocidad	viscocidad	ත	viscocidad	viscocidad	1730	viscocidad	viscocidad	Tao	viscocidad	viscocidad
7.0	0.97637474	0.13948211	0.06461993	1.14534988	0.16362141	0.06457107	1.20550158	0.17221451	0.06646619	1 02555511	0 14650787	0.07383644	1 21556519	aparente 0.17265217	diferencial
17.0	1.48687529	0.08746325	0.04253714	1.6511974	0.09712926	0.04203258	1.72190346	0.10128844	0.04258054	1.60486977	0.0944041	0.04772173	1.71316071	0.10077416	0.06351614
27.0	1.86883288	0.06921603	0.03479092	2.02956198	0.07516896	0.03458882	2.10330185	0.07790007	0.03470407	2.02819605	0.07511837	0.03805562	2.08737402	0.07731015	0.03432979
37.0	2.19394751	0.05929588	0.03057966	2.35418566	0.06362664	0.03067638	2.42785916	0.06561782	0.0305678	2.37954409	0.064312	0.0326394	2.41061815	0.06515184	0.03064648
47.0	2.48526709	0.05287802	0.02785518	2.64777524	0.05633564	0.02820499	2.71961666	0.05786418	0.02795662	2.68697068	0.05716959	0.02905959	2.70478813	0.05754868	0.02834314
57.0	2.75363068	0.04830931	0.02591569	2.92072968	0.05124087	0.02647804	2.98957692	0.05244872	0.02613287	2.96398704	0.05199977	0.02646845	2.97979943	0.05227718	0.02674617
67.0	3.00513977	0.04485283	0.02444837	3.17878836	0.0474446	0.02519124	3.24380941	0.04841507	0.02477446	3.21833428	0.04803484	0.0244812	3.24107924	0.04837432	0.02556381
77.0	3.24362191	0.04212496	0.02329034	3.42549511	0.04448695	0.0241887	3.48606022	0.04527351	0.02371648	3.45493785	0.04486932	0.02289462	3.49195634	0.04535008	0.02464764
87.0	3.47166041	0.03990414	0.02234757	3.66321024	0.04210586	0.0233816	3.71882356	0.0427451	0.02286499	3.67716175	0.04226623	0.02158994	3.73463544	0.04292684	0.02391353
97.0	3.69109366	0.03805251	0.02156153	3.89359435	0.04014015	0.02271529	3.94385369	0.04065829	0.02216222	3.88742462	0.04007654	0.02049245	3.97066025	0.04093464	0.02331
107.0	3.90328363	0.03647929	0.02089367	4.1178654	0.03848472	0.02215416	4.16243694	0.03890128	0.02157052	4.08753451	0.03820126	0.01955255	4.20115817	0.03926316	0.02280363

Tabla 5.18: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Sisko

Fuente propia: Obtenida a partir del modelo de Sisko

4

,

÷,

Gráfico 5.28: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Sisko

Fuente propia: Obtenida a partir de la Tabla Nº 5.18

Fuente propia: Obtenida a partir de la Tabla Nº 5.18

Gráfico 5.30: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Sisko

Fuente propia: Obtenida a partir de la Tabla Nº 5.18

- Cálculo de los parámetros del modelo de Steiger-Ory

Dado que este modelo no es explícito en el esfuerzo de corte (variable dependiente), para la regresión se toma la forma alterna; es decir, se toma como variable dependiente la velocidad de corte y en el proceso de regresión, se toma como modelo la función alterna, en términos de las variables $x \in y$.

Forma estándar	Forma alterna	Forma para la
		regresión
$\gamma = C * \tau + A * \tau^3$	$\tau = \frac{1}{C + A * \tau^2} * \gamma$	$x = C * y + A * y^3$

Fuente: Obtenida a partir del anexo 4

	15°G	20%3	2833	8773	45%3
́С С	9.800658	7.343554	6.325358	7.972374	6.462674
A	1.311038	1.327264	1.346822	1.225965	1.337751
R^2	0.9931622	0.9929855	0.9929826	0.9958492	0.9927385
R^2adj	0.9914527	0.9912319	0.9912283	0.9948115	0.9909232
Rmsd	0.9404921	0.888735	0.868312	0.6538086	0.8835941
Variance	7.960728	7.108648	6.785692	3.847191	7.026647

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.1, 5.2, 5.3, 5.4 y 5.5

J	<u>. </u>	<u>'C</u>		20°C					2	28°C		37°C							
	-	viscocidad	viscocidad	_		all coold ad	-O-10						<u>-</u>	<u> </u>	·····		4		
	Gamma	aparente	diferencial	Tao	Gamma	aparente	viscocidad	Tao	Gamma	viscocidad	viscocidad	Tao	Gamma	viscocidad	viscocidad	160	Gamma	viscocidad	viscocidad
0.67340	7.000	0.09619851	0.08632449	0.84440	7.000	0 12063960		0.03370		aparente	diferencial			aparente	diferencial			aparente	diferencia
1.38170	17.000	0.02127722	0.05777376	1.00000	17.000	0.12002880	0.09820658	0.93350	7.000	0.13335096	0.10156089	0.79950	7.000	0.11420726	0.09686839	0.92130	7,000	0.13161101	0.10132538
1 87424	27.000	0.00127733	0.03/1/220	1.55932	17.000	0.09349167	0.05746692	1.67926	17.000	0.09878221	0.05643619	1.55460	17.000	0.09144727	0.05930832	1.66870	17 000	0.09815737	0.05660526
1.07424	27.000	0.06941533	0.04234273	2.07109	27.000	0.07670630	0.04094483	2.15060	27.000	0.07965260	0.03997947	2.05405	27.000	0.07607531	0.04257156	2 1/2/1	27.000	0.03013737	0.03003030
2,25050	37.000	0.06082452	0.03364636	2.43358	37.000	0.06577206	0.03233633	2.50450	37.000	0.06768956	0.03157636	2 43120	37.000	0.06670952	0.02365709	2.14241	27.000	0.0/934/16	0.04018778
2.55760	47.000	0.05441711	0.02814649	2.72858	47.000	0.05805437	0.02703537	2,79270	47.000	0.05941963	0.02642970	3 72021	47.000	0.00370832	0.03303708	2.49814	37.000	0.06751656	0.03173777
2.81906	57.000	0.04945695	0.02435608	2.97981	57.000	0.05227751	0 02341978	3 03846	57.000	0.05320623	0.02042070	2.73021	47.000	0.05826010	0.02813060	2.78778	47.000	0.05931446	0.02655863
3.04807	67.000	0.04549351	0.02157862	3,20018	67.000	0.04775401	0.020720000	3.35436	57.000	0.05550621	0.02292111	2.99956	57.000	0.05262376	0.02435240	3.03471	57.000	0.05324064	0.02302949
3.25278	77.000	0.04274365	0.010//0/7	2 20747	77.000	0.04//0401	0.02076065	3.25426	67.000	0.04857084	0.02036049	3.22863	67.000	0.04818837	0.02159317	3.25151	67.000	0.04853002	0.02045322
3 43851	87.000	0.02052220	0.01770007	3.33/4/	77.000	0.04412303	0.018/6011	3.44765	77.000	0.04477463	0.01839875	3.43356	· 77.000	0.04459173	0.01948091	3.44577	77.000	0 04475027	0.01847973
2 0000	07.000	0.03952552	0.01776097	3.5/6//	87.000	0.04111230	0.01715744	3.62357	87.000	0.04165021	0.01684133	3.61970	87.000	0.04160556	0.01780595	3 627/15	87.000	0.04162746	0.0101010
3.00903	97.000	0.03/20646	0.01638542	3.74161	97.000	0.03857313	0.01585107	3.78543	97.000	0.03902497	0.01557071	3 79071	97.000	0.02007051	0.01644147	3.70400	07.000	0.04103/40	0.01091327
3.76700	107.000	0.03520548	0.01524096	3.89452	107.000	0.03639732	0.01476308	3.93568	107.000	0.03678220	0.01451159	2 04070	107,000	0.03507551	0.0104414/	3.78499	97.000	0.03902059	0.01563547
Fuente p	propia: Obl	enida a p	artir del n	nodelo de	Steiger-	Orv				0.00070220	0.01401100	3.74720	107.000	0.03690919	0.01530554	3.93587	107.000	0.03678381	0.01457041

Tabla 5.19: Parametros reológicos de	la sangre a diferentes temperaturas	basados en el modelo de Steiger-Ory
,	•	

· . .

Te

101

Gráfico 5.31: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Steiger-Ory

Fuente propia: Obtenida a partir de la Tabla Nº 5.19

Gráfico 5.32: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Steiger-Ory

Fuente propia: Obtenida a partir de la Tabla № 5.19

Fuente propia: Obtenida a partir de la Tabla Nº 5.19

103

- Cálculo de los parámetros del modelo de Ellis-de Haven

Dado que este modelo no es explícito en el esfuerzo de corte (variable dependiente), para la regresión se toma la forma alterna; es decir, se toma como variable dependiente la velocidad de corte y en el proceso de regresión, se toma como modelo la función alterna, en términos de las variables x e y.

Forma estándar	Forma alterna	Forma para la
		regresión
$\tau = \frac{\mu_0}{1 + c\tau^{n-1}} \frac{du}{dy}$ $n > 1$	$\frac{du}{dy} = \frac{1}{\mu_0} \left(1 + c t^{n-1} \right) \tau$	$x = A * y + A * C * y^n$

Fuente: Obtenida a partir del anexo 4

	15°C	20°C	28°C	37°C	45°G
C	5.29059	3.114924	2.213742	3.778535	2.332569
А	4.039951	3.910964	3.864807	· 3.804791	3.868901
. n)	2.287848	2.309605	2.324169	2.280532	2.319594
R^2	0.9981002	0.9980385	0.9981768	0.9994647	0.9979238
R^2adj	0.9968336	0.9967308	0.9969614	0.9991079	0.9965397
Rmsd	0.4957401	0.4699704	0.4425925	0.2347852	0.4724671
Variance	2. 9 49099	2.650466	2.350657	0.6614892	2.678701

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.1, 5.2, 5.3, 5.4 y 5.5
			20	ľC:	1		1 07	R°C.				700	· · · · · · · · · · · · · · · · · · ·	(<u> </u>					
	-	viscocidad	viscocidad		1 .								,	<u> </u>				26	
100	Gamma			Tao	Gamma	VISCOCIDIZO	viscocidad	120	Giorna	viscocidad	viscocidad			viscocidad	viscocidad		_	viscocidad	viscocidad
J	<u> </u>	aparente	diferencial			aparente	diferencial		Gainaia	aparente	diferencial	100	Gamma	anaranta	(IV) (IV)	190	Gamma		
0.52440	7.000	0.07491883	0.03947133	0.64768	7.000	0.09252059	0.05039985	0 73360	7.000	0 10490452	0.05003101	à 51407		<u>reparente</u>	unerencial			aparente	diferencial
0.82270	17.000	0.04839448	0.02376870	1.02795	17.000	0.00046116	0.03033503	4.47540	7.000	0.10400403	0.05862164	0.61107	7.000	0.08728959	0.04705021	0.72016	7.000	0.10287370	0.05733090
1 02045	37.000	0.03013700	0.02370870	1.02/03	17.000	0.00040110	0.03023158	1.1/543	17.000	0.06914482	0.03509338	0.96710	17.000	0.05688778	0.02839610	1.15243	17.900	0.06779010	0.03435019
1.02345	27.000	0.03812758	0.01824744	1.29045	27.000	0.04779410	0.02314695	1.48000	27.000	0.05481497	0.02682216	1,21418	27 000	0.04/96975	0.02101401	1 /5002	27.000	0.05373057	0.0202021
1.19567	37.000	0.03231553	0.01524522	1.50111	37.000	0.04057004	0.01930241	1 77 795	37.000	0.04650210	0.02022000	1 41200	37.000	0.01100070	0.02101401	1.43003	27.000	0.03372037	0.02626833
1.33780	47.000	0.02846388	0.01330240	1 68097	17.000	0.02576450	0.01001011	1.02407		0.04005310	0.02200506	1.41295	37.000	0.03818738	0.01823242	1.68958	37.000	0.04566423	0.02188598
1 46356	57.000	0.02567641	0.01101001	1.00032	47.000	0.05570459	0.01081311	1.93197	47.000	0.04110536	0.01944614	1.58295	47.000	0.03367957	0.01591331	1.89340	47.000	0.04028518	0.01905707
1.40000	37.000	0.0230/041	0.01191891	L83984	57.000	0.03227787	0.01505298	2.11562	57.000	0.03711631	0.01739104	1.73340	57.000	0.03041059	0.01426143	2 07241	52 000	0.02627550	D DITDACCC
1.5//29	67.000	0.02354165	0.01087191	1.98341	67.000	0.02960314	0.01371797	2,78144	67.000	0.03405138	0.01502054	1 00000	67.000	0.00700004	0.01120113	2.07.541	J7.000	0.03037556	0.01704000
1.68173	77.000	0.02184053	0.01004525	2 11513	77.000	0.02746029	0.01266500	3 42240	77.000	0.03403230	0.01303034	1.00950	07.000	0.02/90294	0.01301089	2.23595	67,000	0.03337263	0.01552783
1 77870	87.000	0.07044494	0.00027207	2.22220	07.000	0.02/40320	0.01200500	2.43349	//.000	0.03160359	0.01461483	1.99449	77.000	0.02590248	0.01202345	2.38503	77.000	0.03097437	0.01433031
1.000004	07.000	0.020999999	0.00937207	2.23/30	87.000	0.02571678	0.01180813	2.57449	87.000	0.02959199	0.01361975	2.11057	87.000	0.02425954	0.01121914	2 52330	87.000	0.02000357	0.01225625
1.86954	97.000	0.01927355	0.00881048	2.35177	97.000	0.02424502	0.01109395	2,70643	97.000	0.02790132	0.01279068	2 21022	07.000	0.03397040	0.01054011	3 (5330)	07.000	0.02500057	0.01553055
1.95520	107.000	0.01827280	0.00833318	2 45960	107.000	0.02298685	0.01049722	1 02073	107.000	0.020150252	0.0127 3000	2,21332	97.000	0.0228/949	0.01054811	2.65270	97.000	0.02734729	0.01254477
Fuente r	propia: Obt	enida a na	rtir dol mo	dolo do E	illia da Li	0.022.0000	0.010-0732	2.03072	107.000	0.02645544	0.01208685	2.32187	107.000	0.02169976	0.00997778	2.77461	107.000	0.02593089	0.01185571
		u pu			1113-08 178	aven													

Tabla 5.20: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Ellis-de Haven

Gráfico 5.34: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Ellis-de Haven

Gráfico 5.35: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Ellis-de Haven

Fuente propia: Obtenida a partir de la Tabla Nº 5.20

Fuente propia: Obtenida a partir de la Tabla Nº 5.20

Gráfico 5.36: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Ellis-de

Fuente propia: Obtenida a partir de la Tabla № 5.20

B. MS - 02

- Cálculo de los parámetros del modelo de Herschel-Bulkiey

Forma estándar	Forma alterna	Forma para la regresión
$\tau = \tau_0 + \mu \left(\frac{du}{dy}\right)^{1/m}$	$\frac{du}{dy} = \left(\frac{1}{\mu}\right)^m \left(\tau - \tau_o\right)^m$	$y = A + Bx^{C}$

Fuente: Obtenida a partir del anexo 4

	32°C	37°C	42°C
Α	0.5205176	0.2217525	0.003652
В	0.1827107	0.2785915	0.36972
C	0.6343509	0.5605952	0.5112995
Ř^2	0.9996012	0.9999173	0.9999706
R^2adj	0.9993354	0.9998621	0.999951
Rmsd	0.0069297	0.0031567	0.0018813
Variance	0.0005762	0.0001196	4.25E-05

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.6, 5.7 y 5.8.

ų,

		57 7 3	······		0700	<u></u>			
	<u> </u>				5/3			428	
Gamma	โลอ	Viscoeiched	viscocidad	Terra	viscocidad	viscoeldad	<u></u>	viscoeldad	viscoaldad
		aparente	diferencial		aparente	diferencial	130	aparente	diamental
7.0	1.14836295	0.16405185	0.05689632	1.05107943	0.1501542	0.06641667	1.00358557	0.14336937	0 07303793
17.0	1.62281901	0.09545994	0.04113211	1.58555544	0.09326797	0.04497302	1.57763799	0.09280223	0.0473399
27.0	1.99877776	0.07402881	0.03473095	1.98935056	0.07367965	0.03670026	1.99766746	0.07398768	0.03776071
37.0	2.32583745	0.06286047	0.03095152	2.33083817	0.06299563	0.03195522	2 34622807	0.06341157	0.03770071
47.0	2.62168553	0.05578054	0.0283591	2.63353364	0.05603263	0.02876666	2 65102871	0.05640497	0.03237184
57.0	2.89519586	0.05079291	0.02642771	2.90897036	0.05103457	0.0264788	2 92545466	0.05122277	0.02880005
67.0	3.15161046	0.04703896	0.02491099	3.16384709	0.0472216	0.0204200	2.32.34.3400	0.03132377	0.02020906
77.0	3.39434758	0.04408244	0.02367554	3.40247299	0.04/18796	0.02401078	3.17713274	0.04/420/9	0.02421836
87.0	3.62579044	0.04167575	0.02264175	3 62781839	0.04169906	0.0231371	3.41114293	0.04430056	0.0226266
97.0	3.84768322	0.03966684	0.02175966	2 04202502	0.04103300	0.0219474	3.03065/12	0.04173169	0.02131593
107.0	4.0612602	0.03705654	0.02173800	5.84203582	0.03960862	0.02092282	3.83814844	0.03956854	0.02021212
107.0	4.0013503	0.03795654	0.02099187	4.04674569	0.03782005	0.02003993	4.03542299	0.03771423	0.01926582

Tabla 5.21: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Herschel-Bulkley I

Fuente propia: Obtenida a partir del modelo de Herschel-Bulkley I

Gráfico 5.37: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Herschel-Bulkley I

Gráfico 5.38: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Herschel-Bulkley I

Fuente propia: Obtenida a partir de la Tabla Nº 5.21

Fuente propia: Obtenida a partir de la Tabla Nº 5.21

Gráfico 5.39: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Herschel-Bulkley

Fuente propia: Obtenida a partir de la Tabla № 5.21

- Cálculo de los parámetros del modelo de Casson - Generalizada N°1

Forma estándar	Forma alterna	Forma para la regresión
$\tau^{1/n} = \tau_0^{1/n} + \mu_c \left(\frac{du}{dy}\right)^{1/m}$ $n > 1 \qquad m > 1$	$\frac{du}{dy} = \frac{1}{\mu_c^m} \left(\tau^{1/n} - \tau_0^{1/n} \right)^m$	$y = (A + Bx^{c})^{n}$

Fuente: Obtenida a partir del anexo 4

1. 2. 2

ż

	·····		<u> </u>
	52 7 0	97°G	42'0
A	0.6556898	0.2208068	0.0074181
B	0.0118016	0.0697943	0.1031314
С	2.282422	1.322387	1.168619
n	0.2227516	0.395902	0.4374796
R^2	0.9999985	0.9999681	0.999971
R^2adj	0.9999963	0.9999203	0.9999276
Rmsd	0.0004242	0.0019594	0.0018678
Variance	3.24E-06	6.91E-05	6.28E-05

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.6, 5.7 y 5.8.

Tabla 5.22: Parámetros r	eológicos de la sangre a diferentes temperaturas basados en el modelo de Or
- Generalizada N°1	e a la contrata de la
· · ·	•

.

		32'0		87%9			4220		
Gamma	ି କିତ୍ର	Viscocidad	Viscocidad	1970	Viscocidad	viscocidad		viscocidad	Vhoodbad
ļ	·····	aparente	diferencial		aparente	diferencial	150	anarente	rfl?avaur8-fl
7.0	1.11914691	0.15987813	0.04913013	1.05166586	0.15023798	0.06336246	1 00/22059	0 14246152	
17.0	1.59997099	0.09411594	0.04404564	1.58062733	0.09297808	0.04529575	1.57720277	0.14540155	0.07280542
27.0	2.00036713	0.07408767	0.03656843	1 98820394	0.07262710	0.04525575	1.37739277	0.092/8/81	0.04731333
37.0	2.34003241	0.06324412	0.03169029	2 22241127	0.07303718	0.03705138	1.997327	0.07397507	0.03776182
47.0	2 63909518	0.05615096	0.03103028	2.35241137	0.06303815	0.03214463	2.3459451	0.06340392	0.03238082
57.0	2.00000752	0.05013036	0.02830788	2.6362209	0.05608981	0.02880462	2.65085195	0.05640111	0.02881186
57.0	2.30303753	0.0510368	0.0258069	2.91139858	0.05107717	0.0263436	-2.92540211	0.05132284	0.02622191
07.0	3.15/08/9	0.04712071	0.0238667	3.16491266	0.0472375	0.02443308	3.17727073	0.04742195	0.02423153
	3.38769189	0.043996	0.02230685	3.40129102	0.04417261	0.02289407	3.41135271	0.04430328	0.02262075
87.0	3.60412468	0.04142672	0.02101818	3.62367199	0.0416514	0.02161968	2 62000757	0.0417056	0.02203975
97.0	3.8087234	0.03926519	0.01993061	3,83433681	0.03952925	0.02101508	3.03033737	0.0417356	0.0213289
107.0	4.00324819	0.03741353	0.0189969	4 03500547	0.03771022	0.02034107	5.83861/31	0.03957337	0.02022483
Evionto			0.0100000	4.0300347	0.037/1033	0.01961414	4.0360175	0.03771979	0.01927823

Fuente propia: Obtenida a partir del modelo de Casson N°1

Gráfico 5.40: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Casson - Generalizada N°1

Fuente propia: Obtenida a partir de la Tabla Nº 5.22

Gráfico 5.41: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Casson -

Fuente propia: Obtenida a partir de la Tabla Nº 5.22

Gráfico 5.42: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Casson - GeneralizdaN°1

Fuente propia: Obtenida a partir de la Tabla Nº 5.22

 Cálculo de los parámetros del modelo de Ostwald – de Waele-Nutting

Forma estándar	Forma alterna	Forma para la regresión
$\tau = k \left(\frac{du}{dy}\right)^n$ $0 < n < 1$	$\frac{du}{dy} = \left(\frac{\tau}{k}\right)^{1/n}$	$y = A * x^n$

Fuente: Obtenida a partir del anexo 4

······································			
	52 33	8773	42°C
Α	0.4409688	0.3870272	0.3715515
n	0.4669226	0.4994703	0.5103946
R^2	0.9946199	0.9994068	0.9999705
R^2adj	0.9932749	0.9992585	0.9999631
Rmsd	0.0254533	0.0084518	0.0018845
Variance	0.0058308	0.0006429	3.20E-05

Fuente: Obtenido a partir de la regresión de los datos de las Tablas 5.6, 5.7 y 5.8.

. . .

 Tabla 5.23:
 Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Ostwald – de

 Waele-Nutting

	526			373			4283		
Gamma	ସମ	viscocidad aparente	viscoaldad diferencial	Teo	viscoaldad aparente	viscocidad diferencial	ମିଲ୍ଲ	Viscoaldad	viscoaidad
7.0	1.09396452	0.15628065	0.07297097	1.0229228	0.14613183	0.07298851	1.00311909	0.14330273	0.07314094
17.0	1.65551177	0.09738305	0.04547034	1.59336099	0.09372712	0.04681391	1.57773298	0.09280782	0.04736861
27.0	2.05467886	0.07609922	0.03553244	2.00754448	0.0743535	0.03713736	1.9979258	0.07399725	0.0377678
37.0	2.38032736	0.06433317	0.03003861	2.34969598	0.0635053	0.03171901	2.34650082	0.06341894	0.03236869
47.0	2.66163281	0.05663049	0.02644205	2.64791907	0.0563387	0.02813951	2.65123813	0.05640932	0.02879101
57.0	2.91249719	0.05109644	0.02385808	2.91574023	0.05115334	0.02554957	2.92555363	0.0513255	0.02619626
67.0	3.14082296	0.04687795	0.02188838	3.16090627	0.04717771	0.02356386	3.17715013	0.04742015	0.02420299
77.0	3.35160645	0.04352736	0.02032391	3.38834463	0.04400448	0.02197893	3.410937	0.04429788	0.0226094
87.0	3.54824202	0.04078439	0.01904315	3.60141983	0.04139563	0.02067589	3.63027205	0.04172726	0.0220004
97.0	3.73315899	0.03848618	0.01797006	3.80255025	0.03920155	0.01958001	3.83757241	0.0395626	0.02019254
107.0	3.90816609	0.03652492	0.01705431	3.99354343	0.03732284	0.01864165	4.03464697	0.03770698	0.02019294

Fuente propia: Obtenida a partir del modelo de Ostwald – de Waele-Nutting

•

Gráfico 5.43: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Ostwald – de Waele-Nutting

Fuente propia: Obtenida a partir de la Tabla Nº 5.23

Gráfico 5.44: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Ostwald – de Waele-Nutting

Fuente propia: Obtenida a partir de la Tabla Nº 5.23

Gráfico 5.45: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Ostwald – de Waele-Nutting

Forma estándar	Forma alterna	Forma para la regresión
$\tau = A \cdot \frac{du}{dy} + B \cdot \left(\frac{du}{dy}\right)^n$ $0 < n < 1$	$\frac{du}{dy} = \frac{\tau}{A + B \cdot \left(\frac{du}{dy}\right)^{n-1}}$	$y = A * x + B * x^n$

- Cálculo de los parámetros del modelo de Sisko

Fuente: Obtenida a partir del anexo 4

· · · ·	ଞେତ	37 7G	ସହତ				
A	0.0163018	0.0075962	0.3260273				
B	0.580322	0.4271871	-0.1727677				
n.**	0.3005263	0.4342733	1.113126				
R^2	0.9990307	0.999823	0.9785346				
R^2adj	0.9983846	0.999705	0.9642244				
Rmsd	0.0108036	0.0046167	0.0508416				
Variance	0.0014006	0.0002558	0.0310184				

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.6, 5.7 y 5.8.

Tabla 5.24: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Sisko.

.

		82°G			97°C	·		4293		
Gamma	Teo	<u>एडिट्ट्रिटी</u> हाजालारिक	viscoddad ciferendal	ୗୖଶ୍ଚ	Viscociciaci	VBcccfferd Recordend	Teo	viscoaldad	Viscocidad	
7.0	1.15557411	0.16508202	0.06101417	1.047712	0.14967314	0.06929642	0.77501794	0.11071685	0.08635964	
17.0	1.63685627	0.09628566	0.04033905	1.59120903	0.09360053	0.04494558	1.49570606	0.08798271	0.06105368	
27.0	2.00268985	0.0741737	0.03369383	1.9924951	0.07379611	0.03634506	2.03020966	0.07519295	0.04681706	
37.0	2.32089658	0.06272693	0.03025377	2.33055159	0.06298788	0.03165133	2.44536684	0.066091	0.03668544	
47.0	2.61195815	0.05557358	0.028104	2.63089115	0.05597641	0.02860643	2.77113219	0.05896026	0.02874803	
57.0	2.88514296	0.05061654	0.02661428	2.90554829	0.05097453	0.02643425	3.02488478	0.05306815	0.02218938	
67.0	3.14552122	0.04694808	0.02551181	3.16131267	0.04718377	0.02478803	3.21807382	0.04803095	0.01658234	
77.0	3.39620136	0.04410651	0.02465785	3.40245124	0.04418768	0.0234869	3.35885102	0.04362144	0.011674	
87.0	3.63924137	0.04183036	0.0239738	3.63184822	0.04174538	0.02242628	3.45333509	0.03969351	0.00730171	
97.0	3.87608174	0.03995961	0.02341159	3.85155883	0.03970679	0.02154097	3.50629857	0.03614741	0.00335446	
107.0	4.10777424	0.03839041	0.02294001	4.06310741	0.03797297	0.02078802	3.52157442	0.03291191	-0.00024706	

Fuente propia: Obtenida a partir del modelo de Sisko

Gráfico 5.46: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Sisko

Fuente propia: Obtenida a partir de la Tabla Nº 5.24

Gráfico 5.47: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Sisko

Fuente propia: Obtenida a partir de la Tabla Nº 5.24

Gráfico 5.48: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Sisko

Fuente propia: Obtenida a partir de la Tabla Nº 5.24

- Cálculo de los parámetros del modelo de Steiger-Ory

Dado que este modelo no es explícito en el esfuerzo de corte (variable dependiente), para la regresión se toma la forma alterna; es decir, se toma como variable dependiente la velocidad de corte y en el proceso de regresión, se toma como modelo la función alterna, en términos de las variables x e y.

Forma estándar	Forma alterna	Forma para la regresión
$\gamma = C * \tau + A * \tau^3$	$\tau = \frac{1}{C + A * \tau^2} * \gamma$	$x = C * y + A * y^3$

Fuente: Obtenida a partir del anexo 4

	ଅଂଓ	97 ° G	4276		
C	7.566808	8.170852	8.243976		
A	1.343627	1.273175	1.25189		
R^2	0.9919391	0.9948844	0.9963991		
R^2adj	0.9899239	0.9936055	0.9954989		
Rmsd	0.9708127	0.7532645	0.6233271		
Variance	8.482296	5.106667	3.49683		

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.6, 5.7 y 5.8.

	32°C				37	² C		[42%			
Teo	Gamma	viscocidad aparente	viscocidad) diferencial	টিত	Gamma	viscocidad aparente	viscocidad ciferencial	ପିଲ୍ଲ	Gamma	viscocidad	viscocidad	
0.93350	8.157	0.11444693	0.09025753	0.79950	7.183	0.11130075	0.09423034	0.92130	8 574	0 10745095	0.09747556	
1.67926	19.069	0.08806134	0.05281631	1.55460	17.486	0.08890598	0.05746529	1.66870	19.574	0.08525194	0.08747350	
2.15060	29.638	0.07256267	0.03815344	2.05405	27.817	0.07384144	0.04117617	2.14241	29.972	0.07147936	0.03924307	
2.50450	40.059	0.06252057	0.03044085	2.43120	38.161	0.05370948	0.03252345	2.49814	40.112	0.05227949	0.03156367	
2.79270	50.397	0.05541398	0.02563817	2.73821	48.512	0.05644342	0.02716737	2.78778	50.106	0.05563805	0.02671512	
3.03846	60.683	0.05007137	0.02233097	2.99956	58.870	0.05095265	0.02350922	3.03471	60.006	0.05057347	0.02334720	
3.25426	70.930	0.04587977	0.01989865	3.22863	69.230	0.04663637	0.02083951	3.25151	69.840	0.04655633	0.02085501	
3.44765	81.149	0.04248531	0.01802483	3.43356	79.592	0.04313927	0.01879681	3.44577	79.625	0.04327491	0.01892639	
3.62357	91.347	0.03966841	0.01653075	3.61970	89.958	0.04023775	0.01717766	3.62245	89.371	0.04053267	0.01738332	
3.78543	101.526	0.03728521	0.01530755	3.79071	100.324	0.03778473	0.01585906	3.78499	99.086	0.03819894	0.01611649	
3.93568	111.691	0.03523730	0.01428501	3.94928	110.692	0.03567819	0.01476161	3.93587	108.776	0.03618325	0.01505495	

Tabla 5.25: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Steiger-Ory

Fuente propia: Obtenida a partir del modelo de Steiger-Ory

Gráfico 5.49: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Steiger-Ory

Fuente propia: Obtenida a partir de la Tabla Nº 5.25

Gráfico 5.50: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Steiger-Ory

Fuente propia: Obtenida a partir de la Tabla Nº 5.25

Gráfico 5.51: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Steiger-Ory

- Cálculo de los parámetros del modelo de Ellis-de Haven

Dado que este modelo no es explícito en el esfuerzo de corte (variable dependiente), para la regresión se toma la forma alterna; es decir, se toma como variable dependiente la velocidad de corte y en el proceso de regresión, se toma como modelo la función alterna, en términos de las variables $x \in y$.

Forma estándar	Forma alterna	Forma para la regresión
$\tau = \frac{\mu_0}{1 + c\tau^{n-1}} \frac{du}{dy}$ $n > 1$	$\frac{du}{dy} = \frac{1}{\mu_0} \left(1 + c t^{n-1} \right) \tau$	$x = A' * y + A * C * y^n$

Fuente: Obtenida a partir del anexo 4

	ଫେଟ	57/G	42°C
À	0.4823369	0.8794319	1.403257
С	12.64843	7.050957	4.149959
n	2.063374	2.027931	2.053112
R^2	0.9986442	0.9997438	0.9999523
R^2adj	0.9977404	0.999573	0.9999205
Rmsd	0.3981431	0.1685707	0.0717424
Variance	1.902215	0.3409928	0.0617636

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.6, 5.7 y 5.8.

32°C 37°C				(42°C							
Teo	Gamma	viscocidad aparente	viscocidad diferencial	Tio	Gamma	viscocidad aparente	viscocidad diferencial	Tao	Gamma	viscocidad aparente	viscocidad diferencial
0.73360	3.573	0.20530185	0.04607524	0.61107	2.82Í	0.21659997	0.06835226	0.72016	3.979	0.18100888	0.07929259
1.17543	9.083	+ 0.12941233	0.03623533	0.96710	6.645	0.14554642	0.05208129	1.15243	9.410	0.12247160	0.05545420
1.48000	14.413	0.10268342	0.03149834	1.21418	10.259	0.11835321	0.04463868	1.45063	14.535	0.09980531	0.04578737
1.72395	19.600	0.08795722	0.02848027	1.41295	13.742	0.10281817	0.04001441	1.68958	19.465	0.08680260	0.04012588
1.93197	24.674	0.07830104	0.02631233	1.58295	17.130	0.09240627	0.03674668	1.89340	24.254	0.07806615	0.03627320
2.11562	29.655 ·	0.07134169	0.02464535	1.73340	20.444	0.08478613	0.03426333	2.07341	28.933	0.07166158	0.03342355
2.28144	34.559	0.06601596	0.02330520	1.86950	23.698	0.07888761	0.03228502	2.23595	33.523	0.06669884	0.03120053
2.43349	39.397	0.06176900	0.02219368	1.99449	26.901	0.07414142	0.03065629	2.38503	38.038	0.06270138	0.02940035
2.57449	44.175	0.05827894	0.02125022	2.11057	30.060	0.07021168	0.02928204	2.52330	42.487	0.05938949	0.02790240
2.70643	48.903	0.05534301	0.02043462	2.21932	33.181	0.06688545	0.02810015	2.65270	46.880	0.05658452	0.02662910
4.18000	118.726	0.03520722	0.01423290	4.00661	107.000	0.03744503	0.01682791	3.98000	104.853	0.03795801	0.01806425

Tabla 5.26: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Ellis-de Haven

Fuente propia: Obtenida a partir del modelo de Ellis-de Haven

Gráfico 5.52: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Ellis-de Haven

Fuente propia: Obtenida a partir de la Tabla Nº 5.26

Gráfico 5.53: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Ellis-de Haven

Fuente propia: Obtenida a partir de la Tabla Nº 5.26

Gráfico 5.54: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Ellis-de Haven

Fuente propia: Obtenida a partir de la Tabla Nº 5.26

<u>،</u> ۲

C. MS - 03

. . .

ţ

Forma estándar	Forma alterna	Forma para la regresión
$\tau = \tau_0 + \mu \left(\frac{du}{dy}\right)^{1/m}$	$\frac{du}{dy} = \left(\frac{1}{\mu}\right)^m \left(\tau - \tau_{\bullet}\right)^m$	$y = A + Bx^{c}$

- Cálculo de los parámetros del modelo de Herschel-Bulkley

	32°G	37?G	42°G
A	0.2192515	0.5954234	0.4561721
В	0.3073782	0.1977279	0.2212639
IC .	0.538455	0.6185575	0.6009767
R^2 [.]	0.9999478	0.9998207	0.9997863
R^2adj	0.999913	0.9997012	0.9996439
Rmsd	0.0025077	0.0046466	0.0050726
Variance	7.55E-05	0.0002591	0.0003088

Fuente: Obtenida a partir del anexo 4

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.9, 5.10 y 5.11.

· · ·

	£23°G			37 °C			ଏଅଂତ		
Gamma	ମିହ	viscocidad aparente	viscocidad diferencial	นีออ	viscocidad aparente	viscocidad diferencial	ন্দ্রি	viscoeidad eperente	र्णाउट्टानीटी जिल्लानीटी
7.0	1.09568774	0.15652682	0.06741735	1.2543085	0.17918693	0.05822262	1.16868838	0.16695548	0.06117224
17.0	1.63248667	0.09602863	0.04476256	1.73612319	0.10212489	0.0415052	1.67062785	0.09827223	0.04293292
27.0	2.03225248	0.07526861	0.03615628	2.11404211	0.07829786	0.03479085	2.05988578	0.07629207	0.03569609
37.0	2.36747331	0.06398577	0.03126272	2.440825	0.06596824	0.030851	2.39421444	0.0647085	0.03147887
47.0	2.66280873	0.0566555	0.02799459	2.73514182	0.05819451	0.0281604	2.69387495	0.05731649	0.02861292
57.0	2.93027111	0.05140827	0.02560986	3.00631406	0.05274235	0.02616271	2.9689288	0.05208647	0.02649313
67.0	3.17680201	0.04741496	0.02376877	3.25982827	0.04865415	0.02459832	3.22527422	0.04813842	0.0248383
77.0	3.40684863	0.04424479	0.02229062	3.49925175	0.04544483	0.02332708	3.46673381	0.04502252	0.02349711
87.0	3.62346588	0.04164903	0.02106915	3.72706558	0.04283983	0.02226553	3.69595899	0.04248229	0.02237973
97.0	3.82886114	0.0394728	0.02003724	3.94508173	0.04067095	0.02136037	3.91488157	0.0403596	0.02142891
107.0	4.02469173	0.03761394	0.01915008	4.15467353	0.03882872	0.02057571	4.12496273	0.03855105	0.02060615

Tabla 5.27: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Herschel-Bulkley I

Fuente propia: Obtenida a partir del modelo de Herschel-Bulkley I

Gráfico 5.55: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Herschel-Bulkley I

Fuente propia: Obtenida a partir de la Tabla Nº 5.27

Gráfico 5.56: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Herschel-Bulkley I

Fuente propia: Obtenida a partir de la Tabla Nº 5.27

Gráfico 5.57: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Herschel-Bulkley I

Fuente propia: Obtenida a partir de la Tabla Nº 5.27

 Cálculo de los parámetros del modelo de Casson -Generalizada N°1

Forma estándar	Forma alterna	Forma para la
	· · · · · · · · · · · · · · · · · · ·	regresión
$\tau^{1/n} = \tau_0^{1/n} + \mu_c \left(\frac{du}{dy}\right)^{1/m}$ $n > 1 \qquad m > 1$	$\frac{du}{dy} = \frac{1}{\mu_c^m} \left(\tau^{1/n} - \tau_0^{1/n} \right)^m$	$y = (A + Bx^c)^n$

Fuente: Obtenida a partir del anexo 4

1.12.1 .

. . .

·· .

Los de la companya de			
	ଫ୍ରେ	97/G	ସ୍ଥିତ
Α	0.2535361	0.6195373	0.5320527
В	0.0280715	0.0915057	0.0292339
С	1.906692	1.268934	1.889782
n	0.2600289	0.3971195	0.2650608
R^2	0.9999869	0.9999832	0.999997
R^2adj	0.9999672	0.9999579	0.9999925
Rmsd	0.0012573	0.0014239	0.0006003
Variance	2.85E-05	3.65E-05	6.49E-06

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.9, 5.10 y 5.11.

	52°C		377 G		4273				
Gamma	660	viscoeidad energende	viscocidad diferencial	ମିଳ	viscoelded	viscoeidad	୳୕ୖ୲୕	Viscoeldad	viscoeidad diferential
7.0	1.09156623	0.15593803	0.06331859	1.23472225	0.17638889	0.05650275	1.14886099	0.164123	0.0562979
17.0	1.62577618	0.09563389	0.04556012	1.72592326	0.1015249	0.04314075	1.65657273	0.09744545	0.04494341
27.0	2.03261098	0.07528189	0.03670589	2.11750176	0.07842599	0.03581844	2:06256318	0.07639123	0.03693878
37.0	2.37164433	0.0640985	0.03148874	2.45115666	0.06624748	0.03122007	2.40517304	0.06500468	0.03192933
47.0	2.66797277	0.05676538	0.02798014	2.74647127	0.05843556	0.02801387	2.70628272	0.05758048	0.02848375
57.0	2.93437151	0.0514802	0.02542058	3.01411607	0.05287923	0.02562087	2.9778269	0.05224258	0.02594177
67.0	3.17832926	0.04743775	0.02344955	3.26061264	0.04866586	0.02374899	3.22700821	0.0481643	0.02397136
77.0	3.40466697	0.04421645	0.02187233	3.49027847	0.04532829	0.0222339	3.45853608	0.04491605	0.02238785
87.0	3.61669962	0.04157126	0.02057358	3.7061424	0.04259934	0.02097545	3.6756798	0.04224919	0.02108
97.0	3.81682063	0.03934867	0.01948022	3.91042436	0.04031365	0.01990874	3.8808148	0.0400084	0.01997652
107.0	4.00682417	0.03744695	0.01854339	4.10480805	0.03836269	0.0189897	4.07572977	0.03809093	0.01902939
Fuente pro	uente propia: Obtenida a partir del modelo de Casson - Generalizada N°1								

Tabla 5.28: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Casson -Generalizada Nº1

Fuente propia: Obtenida a partir del modelo de Casson - Generalizada N°1

.

Gráfico 5.58: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Casson - Generalizada Nº1

Fuente propia: Obtenida a partir de la Tabla Nº 5.28

Gráfico 5.59: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Casson -Generalizada N°1

Fuente propia: Obtenida a partir de la Tabla Nº 5.28

Gráfico 5.60: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Casson - Generalizada N°1

Fuente propia: Obtenida a partir de la Tabla Nº 5.28

- Cálculo de los parámetros del modelo de Ostwald – de Waele-Nutting

Forma estándar	Forma alterna	Forma para la regresión
$\tau = k \left(\frac{du}{dy}\right)^n$ $0 < n < 1$	$\frac{du}{dy} = \left(\frac{\tau}{k}\right)^{1/n}$	$y = A * x^n$

Fuente: Obtenida a partir del anexo 4

. .

	1376	67/3	4233
Α	0.4209996	0.5307467	0.4579971
n	0.4803933	0.4293727	0.4630493
R^2	0.9994562	0.9923818	0.9965104
R^2adj	0.9993203	0.9904772	0.9956379
Rmsd	0.0080921	0.0302885	0.0204994
Variance	0.0005893	0.0082565	0.003782

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.9, 5.10 y 5.11.
Tabla 5.29: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Ostwald – deWaele-Nutting

.

.

.

	ଥ୍ୟେତ			67 °G			4283		
Gamma	Teo	bebleosely esterace	viscocidad diferencial	Teo	viscocidad aparente	viscocidad diferencial	Teo	viscocidad aparente	viscooldad diferencial
7.0	1.07216375	0.15316625	0.07358004	1.22390957	0.17484422	0.07507334	1.12767716	0.16109674	0.07459573
17.0	1.64203005	0.09659	0.04640119	1.79146562	0.10538033	0.04524744	1.70067466	0.10003969	0.04632331
27.0	2.05068637	0.07595135	0.03648652	2.18512269	0.08093047	0.03474933	2.10695237	0.07803527	0.03613418
37.0	2.38580687	0.06448127	0.03097637	2.50167167	0.06761275	0.02903107	2.43790871	0.06588942	0.03051005
47.0	2.67637085	0.05694406	0.02735555	2.77230159	0.05898514	0.02532661	2.7234943	0.05794669	0.02683217
57.0	2.93624439	0.05151306	0.02474653	3.01170223	0.05283688	0.02268671	2.97796337	0.05224497	0.024192
67.0	3.17333399	0.04736319	0.02275296	3.22815197	0.04818137	0.02068777	3.20941137	0.04790166	0.02218083
77.0	3.39265101	0.0440604	0.02116632	3.42684861	0.04450453	0.01910903	3.42295301	0.04445394	0.02058436
87.0	3.59760715	0.04135181	0.01986513	3.61130293	0.04150923	0.01782293	3.622061	0.04163289	0.01927808
97.0	3.79064848	0.03907885	0.01877322	3.78401497	0.03901046	0.01675003	3.80921941	0.0392703	0.01818409
107.0	3.97359914	0.03713644	0.0178401	3.94683794	0.03688634	0.01583799	3.98627693	0.03725492	0.01725087

Fuente propia: Obtenida a partir del modelo de Ostwald - de Waele-Nutting

•

.

Gráfico 5.61: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Ostwald – de Waele-Nutting

Gráfico 5.62: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Ostwald – de Waele-Nutting

Fuente propia: Obtenida a partir de la Tabla Nº 5.29

Gráfico 5.63: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Ostwald – de Waele-Nutting

143

- Cálculo de los parámetros del modelo de Sisko

Forma estándar	Forma alterna	Forma para la regresión
$\tau = A \cdot \frac{du}{dy} + B \cdot \left(\frac{du}{dy}\right)^n$ $0 < n < 1$	$\frac{du}{dy} = \frac{\tau}{A + B \cdot \left(\frac{du}{dy}\right)^{n-1}}$	$y = A * x + B * x^n$

Fuente: Obtenida a partir del anexo 4

	<u> </u>	
527 3	97°C	4283
0.0068731	0.0174088	0.0144191
0.460223	0.6875472	0.566699
0.4220025	0.2644328	0.3284963
0.9998696	0.9992185	0.9994042
0.9997827	0.9986975	0.999007
0.0039625	0.0097009	0.0084705
0.0001884	0.0011293	0.000861
	EERG 0.0068731 0.460223 0.4220025 0.9998696 0.9997827 0.0039625 0.0001884	EERCEF/C0.00687310.01740880.4602230.68754720.42200250.26443280.99986960.99921850.99978270.99869750.00396250.00970090.00018840.0011293

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.9, 5.10 y 5.11.

	82°G				97°G			42°C		
Gamma	വി	viscocidad aparente	viscocidad diferencial	- Teo	viscooidad aparente	viscoaidad diferencial	1eo	viscocidad ensureme	viscoddad diferendal	
. 7.0	1.0942806	0.1563258	0.06994251	1.27206371	0.18172339	0.06085897	1.17483415	0.16783345	0.06481515	
17.0	1.63816363	0.09636257	0.04463788	1.75031513	0.10295971	0.04003127	1.68243443	0.09896673	0.04219268	
27.0	2.03487385	0.0753657	0.03577715	2.11365998	0.0782837	0.03350612	2.06252453	0.0763898	0.03477624	
37.0	2.36659384	0.063962	0.03096476	2.4305576	0.06569075	0.03017613	2.3891774	0.06457236	0.03089426	
47.0	2.65970792	0.05658953	0.02785356	2.72130671	0.05790014	0.02811604	2.68508146	0.05712939	0.02844927	
57.0	2.92661456	0.05134412	0.02563998	2.99499018	0.05254369	0.02669962	2.96059348	0.05194024	0.02674465	
67.0	3.17428903	0.04737745	0.02396604	3.25653544	0.04860501	0.0256581	3.22141575	0.04808083	0.02547685	
77.0	3.40710499	0.04424812	0.02264545	3.50894323	0.04557069	0.02485573	3.4710624	0.04507873	0.02449068	
87.0	3.62801317	0.0417013	0.02157069	3.75418914	0.0431516	0.02421604	3.71187013	0.04266517	0.02369783	
97.0	3.83911274	0.03957848	0.02067485	3.99364936	0.04117164	0.02369248	3.94548067	0.04067506	0.02304409	
107.0	4.04195839	0.03777531	0.01991391	4.22832439	0.03951705	0.02325495	4.1730966	0.0390009	0.02249413	

Tabla 5.30: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Sisko

Fuente propia: Obtenida a partir del modelo de Sisko

Gráfico 5.64: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Sisko

Fuente propia: Obtenida a partir de la Tabla Nº 5.30

Gráfico 5.65: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Sisko

Fuente propia: Obtenida a partir de la Tabla Nº 5.30

Gráfico 5.66: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Sisko

Fuente propia: Obtenida a partir de la Tabla Nº 5.30

- Cálculo de los parámetros del modelo de Steiger-Ory

Dado que este modelo no es explícito en el esfuerzo de corte (variable dependiente), para la regresión se toma la forma alterna; es decir, se toma como variable dependiente la velocidad de corte y en el proceso de regresión, se toma como modelo la función alterna, en términos de las variables x e y.

Forma estándar	Forma alterna	Forma para la regresión
$\gamma = C * \tau + A * \tau^3$	$\tau = \frac{1}{C + A * \tau^2} * \gamma$	$x = C * y + A * y^3$

Fuente: Obtenida a partir del anexo 2

	92°G	97 °C	4270
C	7.357479	5.893488	6.928981
A	1.337294	1.373042	1.316492
R^2	0.9952436	0.9917091	0.9929625
R^Źadj	0.9940545	0.9896364	0.9912032
Rmsd	0.7325469	0.9471199	0.87246
Variance	4.829624	8.073324	6.850678

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.9, 5.10 y 5.11.

		32*C			37	°C			4	2°C	
T	Gamma	viscocidad aparente	viscoddad Ciferencial	<u>1</u> 20	Gamma	viscocidad aparente	viscocidad diferencial	1êo	Gamma	viscocidad	viscocidad
0.93350	7.956	0.11733196	0.09213599	0.79950	5.414	0.14768569	0.11728232	0.92130		0.12427901	0.09726424
1.67926	18.688	0.08985910	0.05356002	1.55460	14.321	0.10855606	0.06309740	1.66870	17.680	0.09438564	0.05578324
2.15060	29.125	0.07384122	0.03859103	2.05405	24.005	0.08556868	0.04296902	2.14241	27.790	0.07709164	0.03990939
2.50450	39.435	0.06350947	0.03074833	2.43120	34.059	0.07138180	0.03306819	2.49814	37.834	0.06602919	0.03166913
2.79270	49.674	0.05621999	0.02587534	2.73821	44.327	0.06177311	0.02719028	2.78778	47.839	0.05827375	0.02657935
3.03846	59.869	0.05075190	0.02252448	2.99956	54.734	0.05480280	0.02328031	3.03471	57.821	0.05248471	0.02309387
3.25426	70.031	0.04646905	0.02006254	3.22863	65.238	0.04948989	0.02047860	3.25151	67.785	0.04796772	0.02054059
3.44765	80.168	0.04300531	0.01816733	3.43356	75.816	0.04528834	0.01836371	3.44577	77.737	0.04432599	0.01857962
3.62357	90.287	0.04013405	0.01665708	3.61970	86.451	0.04187009	0.01670475	3.62245	87,678	0.04131518	0.01701995
3.78543	100.390	0.03770710	0.01542123	3.79071	97.131	0.03902684	0.01536495	3.78499	97.612	0.03877586	0.01574561
3.93568	110.481	0.03562320	0.01438852	3.94928	107.849	0.03661855	0.01425746	3.93587	107.539	0.03659940	0.01468200

Tabla 5.31: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Steiger-Ory.

Fuente propia: Obtenida a partir del modelo de Steiger-Ory

Gráfico 5.67: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Steiger-Ory

Fuente propia: Obtenida a partir de la Tabla Nº 5.31

Gráfico 5.68: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Steiger-Ory

Fuente propia: Obtenida a partir de la Tabla Nº 5.31

Gráfico 5.69: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Steiger-Ory

Fuente propia: Obtenida a partir de la Tabla Nº 5.31

- Cálculo de los parámetros del modelo de Ellis-de Haven

Dado que este modelo no es explícito en el esfuerzo de corte (variable dependiente), para la regresión se toma la forma alterna; es decir, se toma como variable dependiente la velocidad de corte y en el proceso de regresión, se toma como modelo la función alterna, en términos de las variables x e y.

Forma estándar	Forma alterna	Forma para la regresión
$\tau = \frac{\mu_0}{1 + c\tau^{n-1}} \frac{du}{dy}$ $n > 1$	$\frac{du}{dy} = \frac{1}{\mu_0} \left(1 + c t^{n-1} \right) \tau$	$x = A * y + A * C * y^n$

Fuente: Obtenida a partir del anexo 4

	3290	37 °C	4280
A	0.7805481	0.5706665	0.4818619
C	7.266704	8.437277	11.6023
n	2.10198	2.203563	2.099741
R^2	0.9997559	0.9981433	0.9990458
R^2adj	0.9995932	0.9969055	0.9984097
Rmsd	0.1659361	0.4482029	0.3212526
Variance	0.3304174	2.41063	1.238439

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.9, 5.10 y 5.11.

	32°C				37°C			42°C			
Tao	Gamma	Viscocidad aparente	viscocidad diferencial	Tao	Gampa	viscocidad	viscooldad diferencial	teo	Gamma	viscocidad	viscodidad
0.73360	3.530	0.20780798	0.06352829	0.61107	1.975	0.30938694	0.06991965	0.72016	3.153	0.22839554	0.05054601
1.17543	8.884	0.13230300	0.04648216	0.96710	5.025	0.19247328	0.05368134	1.15243	8.086	0.14251936	0.03948895
1.48000	14.086	0.10506912	0.03901420	1.21418	8.077	0.15032255	0.04579032	1.45063	12.908	0.11237886	0.03415884
1.72395	19.166	0.08995019	0.03448957	1.41295	11.120	0.12706791	0.04078072	1.68958	17.631	0.09583043	0.03076779
1.93197	24.149	0.08000060	0.03134741	1.58295	14.151	0.11186523	0.03720494	1.89340	22.272	0.08501072	0.02833645
2.11562	29.055	0.07281557	0.02899123	1.73340	17.170	0.10095229	0.03447379	2.07341	26.847	0.07723090	0.02647019
2.28144	33.894	0.06731081	0.02713411	1.86950	20.181	0.09263782	0.03229282	2.23595	31.364	0.07129092	0.02497275
2.43349	38.677	0.06291810	0.02561856	1.99449	23.182	0.08603683	0.03049558	2.38503	35.831	0.06656256	0.02373274
2.57449	43.410	0.05930685	0.02434959	2.11057	26.175	0.08063454	0.02897916	2.52330	40.255	0.06268328	0.02268184
2.70643	48.099	0.05626838	0.02326537	2.21932	29.160	0.07610854	0.02767578	2.65270	44.640	0.05942494	0.02177470
2.83072	52.747 \	0.05366578	0.02232443	2.32187	32.138	0.07224723	0.02653922	2.77461	48.988	0.05663809	0.02098043

Tabla 5.32: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Ellis-de Haven

Fuente propia: Obtenida a partir del modelo de Ellis-de Haven.

Gráfico 5.70: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Ellis-de Haven

Fuente propia: Obtenida a partir de la Tabla Nº 5.32

Gráfico 5.71: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Ellis-de Haven

Fuente propia: Obtenida a partir de la Tabla Nº 5.32

Gráfico 5.72: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Ellis-de Haven

Fuente propia: Obtenida a partir de la Tabla Nº 5.32

D. MS - 04

- Cálculo de los parámetros del modelo de Herschel-Bulkley

Forma estándar	Forma alterna	Forma para la regresión
$\tau = \tau_0 + \mu \left(\frac{du}{dy}\right)^{1/m}$	$\frac{du}{dy} = \left(\frac{1}{\mu}\right)^m \left(\tau - \tau_{\circ}\right)^m$	$y = A + Bx^{c}$

Fuente: Obtenida a partir del anexo 4

	ଥେତ	37 °C	4233
A	0.0285139	0.5184949	0.5426857
В	0.3610825	0.2362336	0.2446666
С	0.5169318	0.5851797	0.5807204
R^2	0.9999761	0.99994	0.9998057
R^2adj	0.9999601	0.9999	0.9996762
Rmsd	0.001697	0.0026878	0.004837
Variance	3.46E-05	8.67E-05	0.0002808

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.12, 5.13 y 5.14.

	32°C				37°C			42:0		
Gamma	ମିଟ୍ଟର	Viscoeidad	viscociciad	ाहा	viscocidad	र्राइटवर्नातीन्त	1 670	viscocidad	viscocidad	
<u> </u>		aparente	diferencial		aparente	diferencial		aparente	diferencial	
7.0	1.01584881	0.14512126	0.07291212	1.25618828	0.17945547	0.06166903	1.30011196	0.18573028	0.06283613	
17.0	1.59045487	0.09355617	0.04749512	1.75836275	0.1034331	0.04267915	1.81069219	0.10651131	0.04331513	
27.0	2.01243268	0.07453454	0.03798336	2.14384412	0.07940163	0.03522672	2.20149639	0.0815369	0.03567797	
37.0	2.36336818	0.06387482	0.03262055	2.47293103	0.06683597	0.03091071	2.53455767	0.06850156	0.03126272	
47.0	2.67072186	0.05682387	0.02906045	2.76661439	0.05886414	0.02799051	2.8314234	0.06024305	0.02827908	
57.0	2.94778206	0.05171547	0.02647478	3.03526757	0.05325031	0.02583797	3.10272738	0.05443381	0.0260819	
67.0	3.20218981	0.04779388	0.02448618	3.28494967	0.0490291	0.02416229	3.35467444	0.05006977	0.02437282	
77.0	3.43882098	0.04466001	0.02289476	3.51957609	0.04570878	0.02280743	3.59127089	0.04663988	0.02299189	
87.0	3.66101387	0.04208062	0.02158339	3.74185602	0.04300984	0.02168098	3.81528688	0.04385387	0.02184444	
97.0	3.87117363	0.03990901	0.02047828	3.9537592	0.0407604	0.0207242	4.02873531	0.04153335	0.02087031	
107.0	4.0711016	0.03804768	0.0195303	4.15677272	0.03884834	0.01989763	4.23313502	0.03956201	0.02002915	

Tabla 5.33: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Herschel-Bulkley

Fuente propia: Obtenida a partir del modelo de Herschel-Bulkley I

•

Gráfico 5.73: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Herschel-Bulkley I

Gráfico 5.74: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Herschel-Bulkley I

Gráfico 5.75: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Herschel-Bulkley I

Fuente propia: Obtenida a partir de la Tabla Nº 5.33

- Cálculo de los parámetros del modelo de Casson - Generalizada N°1

Forma estándar	Forma alterna	Forma para la regresión
$\tau^{1/n} = \tau_0^{1/n} + \mu_c \left(\frac{du}{dy}\right)^{1/m}$ $n > 1 m > 1$	$\frac{du}{dy} = \frac{1}{\mu_c^m} \left(\tau^{1/n} - \tau_0^{1/n} \right)^m$	$y = (A + Bx^{c})^{n}$

Fuente: Obtenida a partir del anexo 4

,

	*		
	ଥେଓ	87 °G	42'6
A	0.2535361	0.5070807	0.5821829
B	0.0280715	0.2183903	0.098533
C .	1.906692	0.6710458	1.385649
n in	0.2600289	0.8320127	0.3430051
R^2	0.9999767	0.9999423	0.9999866
R^2adj	0.9999417	0.9998558	0.9999664
Rmsd	0.0016751	0.0026354	0.0012718
Variance	5.05E-05	0.000125	2.91E-05

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.12, 5.13 y 5.14.

· ·

•

Tabla 5.34: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Casson -Generalizada Nº1

	52°G			8770			428		
Gamma	1600	Viscocidad	viscodidad		viscocidad	viscocidad	0	viscocidad	viscocidad
		aparente	diferencial		aparente	diferencial		aparente	diferencial
7.0	1.09156623	0.15593803	0.06331859	1.25435029	0.1791929	0.06141093	1.27768099	0.18252586	0.06203036
17.0	1.62577618	0.09563389	0.04556012	1.7571735	0.10336315	0.04284744	1.80313894	0.106067	0.04514986
27.0	2.03261098	0.07528189	0.03670589	2.14417288	0.07941381	0.03534919	2.20787332	0.08177309	0.03661748
37.0	2.37164433	0.0640985	0.03148874	2.4741215	0.06686815	0.03096103	2.54642792	0.06882238	0.03146201
47.0	2.66797277	0.05676538	0.02798014	2.7679785	0.05889316	0.02797674	2.84249093	0.06047853	0.02794855
57.0	2.93437151	. 0.0514802	0.02542058	3.03621855	0.05326699	0.02577079	3.10846738	0.05453452	0.02536644
67.0	3.17832926	0.04743775	0.02344955	3.28500054	0.04902986	0.0240508	3.35175418	0.05002618	0.02336946
77.0	3.40466697	0.04421645	0.02187233	3.51832151	0.04569249	0.02265889	3.57716482	0.04645669	0.02176735
87.0	3.61669962	0.04157126	0.02057358	3.73895531	0.0429765	0.02150114	3.78803301	0.04354061	0.0204461
97.0	3.81682063	0.03934867	0.01948022	3.94892293	0.04071055	0.02051761	3.98677757	0.0411008	0.01933283
107.0	4.00682417	0.03744695	0.01854339	4.14975246	0.03878273	0.01966797	4.17521804	0.03902073	0.01837855

Fuente propia: Obtenida a partir del modelo de Casson -Generalizada N°1

.....

Gráfico 5.76: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Casson -Generalizada N°1

Fuente propia: Obtenida a partir de la Tabla Nº 5.34

Gráfico 5.77: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Casson - Generalizada N°1

Fuente propia: Obtenida a partir de la Tabla Nº 5.34

Gráfico 5.78: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Casson -Generalizada N°1

Fuente propia: Obtenida a partir de la Tabla Nº 5.34

 Cálculo de los parámetros del modelo de Ostwald – de Waele-Nutting

Forma estándar	Forma alterna	Forma para la regresión
$\tau = k \left(\frac{du}{dy}\right)^n$ $0 < n < 1$	$\frac{du}{dy} = \left(\frac{\tau}{k}\right)^{1/n}$	$y = A * x^n$

Fuente: Obtenida a partir del anexo 4

	<u></u>		· · · · · · · · · · · · · · · · · · ·
	ଅଂଓ	97°G	ସ୍ଥିତ
Α	0.3754	0.5319402	0.5663103
n	0.5097759	0.4309517	0.4202334
R^2	0.9999698	0.9954517	0.9942981
R^2adj	0.9999623	0.9943147	0.9928727
Rmsd	0.001907	0.023403	0.0262035
Variance	3.27E-05	0.0049293	0.0061796

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.12, 5.13 y 5.14.

 Tabla 5.35: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Ostwald – de Waele-Nutting

	82°C			87°G			4283		
60000	600	viscocidad	viscocidad	<u>6</u>	viscoeldad	viscocidad	<u>6</u> ~	viscocidad	viscocidad
		aparente	diferencial		aparente	diferencial		aparente	diferencial
7.0	1.01228985	0.14461284	0.07372014	1.23043662	0.17577666	0.07575125	1.28290023	0.18327146	0.07701679
17.0	1.59128319	0.09360489	0.04771752	1.80354452	0.10609085	0.04572003	1.86264544	0.10956738	0.04604387
27.0	2.01450811	0.07461141	0.0380351	2.20146335	0.08153568	0.03513794	2.26235796	0.08379104	0.03521179
37.0	2.36551504	0.06393284	0.03259142	2.52163377	0.06815226	0.02937033	2.58264791	0.06980129	0.02933284
47.0	2.67232613	0.056858	0.02898484	2.79547895	0.05947828	0.02563226	2.85578711	0.06076143	0.02553398
57.0	2.94847163	0.05172757	0.02536947	3.03780621	0.05329485	0.0229675	3.09693237	0.05433215	0.02283218
67.0	3.20171886	0.04778685	0.02436058	3.25696321	0.04861139	0.02094916	3.31460731	0.04947175	0.02078968
	3.43701775	0.04463659	0.02275466	3.45819276	0.04491159	0.01935473	3.51415467	0.04563837	0.01917877
87.0	3.65775355	0.04204314	0.02143258	3.64503692	0.04189698	0.01805557	3.69917801	0.04251929	0.01786802
<u>97.0</u>	3.86636292	0.03985941	0.02031937	3.82001852	0.03938163	0.01697158	3.87224031	0.03992	0.01677572
107.0	4.06466923	0.03798756	0.01936514	3.98500803	0.03724307	0.01604996	4.0352394	0.03771252	0.01584806

Fuente propia: Obtenida a partir del modelo de Ostwald – de Waele-Nutting.

۰.

1

Gráfico 5.79: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Ostwald – de Waele-Nutting

Gráfico 5.80: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Ostwald – de Waele-Nutting

Fuente propia: Obtenida a partir de la Tabla Nº 5.35

Gráfico 5.81: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Ostwald – de Waele-Nutting

įξ

- Cálculo de los parámetros del modelo de Sisko

Forma estándar	Forma alterna	Forma para la regresión
$\tau = A \cdot \frac{du}{dy} + B \cdot \left(\frac{du}{dy}\right)^n$ $0 < n < 1$	$\frac{du}{dy} = \frac{\tau}{A + B \cdot \left(\frac{du}{dy}\right)^{n-1}}$	$y = A * x + B * x^n$

Fuente: Obtenida a partir del anexo 4

	فيرجد بمرجم بساحية المحمد بمناهم والمحمور بأعمان		
	ଫେଡ	97 3	ଫ୍ଟଡ
Α	0.000906	0.0151148	0.0157669
В	0.3789276	0.6544077	0.6928072
n	0.5030111	0.295863	0.2852406
R^2	0.9999736	0.999732	0.9992302
R^2adj	0.9999561	0.9995534	0.9987171
Rmsd	0.0017819	0.0056805	0.0096279
Variance	3.81E-05	0.0003872	0.0011123

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.12, 5.13 y 5.14.

									<u> </u>
· ·		32°C			37°C		42°G		
Garage	1 570	viscoeldad	viscocidad	62	viscocidad	viscocidad		viscociclad	พระออสได้ออไ
		aparente	diferencial		aparente	diferencial		aparente	diferencial
7.0	1.0147817	0.14496881	0.07337119	1.26961241	0.1813732	0.06430451	1.31726101	0.18818014	0.06494616
17.0	1.59114615	0.09359683	0.04753052	1.77013898	0.10412582	0.04144987	1.82252175	0.10720716	0.04184938
27.0	2.01306505	0.07455796	0.03795376	2.14324542	0.07937946	0.03412834	2.19946873	0.0814618	0.03450575
37.0	2.36364643	0.06388234	0.0325838	2.46392429	0.06659255	0.03034516	2.52393583	0.06821448	0.03072708
47.0	2.67067072	0.05682278	0.02903276	2.75476932	0.05861211	0.02798405	2.81864742	0.05997122	0.02837577
57.0	2.94752347	0.05171094	0.02646145	3.02598984	0.05308754	0.02634953	3.09383797	0.05427786	0.02675179
67.0	3.20187701	0.04778921	0.02448877	3.28316475	0.04900246	0.0251409	3.35508637	0.05007592	0.02555322
77.0	3.43861464	0.04465733	0.02291341	3.52971139	0.04584041	0.02420537	3.60580326	0.04682861	0.02462696
87.0	3.6610725	0.04208129	0.02161763	3.76789066	0.04330909	0.02345645	3.84824137	0.04423266	0.02388649
97.0	3.87164978	0.03991392	0.02052741	3.99928408	0.04122973	0.02284124	4.08397428	0.04210283	0.02327898
107.0	4.07214037	0.03805739	0.01959356	4.22504573	0.03948641	0.02232546	4.31414883	0.04031915	0.0227702

Tabla 5.36: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Sisko

Fuente propia: Obtenida a partir del modelo de Sisko

Gráfico 5.82: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Sisko

Fuente propia: Obtenida a partir de la Tabla Nº 5.36

Gráfico 5.83: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Sisko

Fuente propia: Obtenida a partir de la Tabla Nº 5.36

Gráfico 5.84: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Sisko

Fuente propia: Obtenida a partir de la Tabla Nº 5.36

- Cálculo de los parámetros del modelo de Steiger-Ory

Dado que este modelo no es explícito en el esfuerzo de corte (variable dependiente), para la regresión se toma la forma alterna; es decir, se toma como variable dependiente la velocidad de corte y en el proceso de regresión, se toma como modelo la función alterna, en términos de las variables $x \in y$.

a manufactor and a second s		
1 · · · · · · · · · · · · · · · · · · ·		
N.S. POTTO ACTONATION	11. N. & M P APPR 2 317 APP 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	EAMAS HORS IS
Construction and the second	E STATE OF FIGTOR CITCLES STATE	🖣 🗉 📾 🖉 EVHILA PALA 1A 🖂 🖓 🖓
i series in the second s	およう かんしん あいちょう エー・エンエースト 交換した	
		the state of the second st
1 「「「「「「」」 ?		
Le 🖉 (1975) - 100 State & C	[19] · · · · · · · · · · · · · · · · · · ·	i Martin i Cuicoiun 🦷 🔅 🕺
「たいき」が知られる。 ひってやたい ちょうちょう いぼし		
1987 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		「「「「「「「」」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「
197	in manual of the second of the	
$1 y = f y \neq 1 A y \neq 2$		
- L ~ I T A ~ I		$x = 1 * v + 4 * v^{-1}$
	7	
		1
		£
	UTA*1-	
ì		
	i	

Fuente: Obtenida a partir del anexo 4

	1270	97°C	4273
C	8.133459	5.656272	4.991865
A	1.230908	1.363947	1.34729
R^2	0.9961326	0.9924024	0.9935171
R^2adj	0.9951658	0.990503	0.9918963
Rmsd	0.6361826	0.8930653	0.7964683
Variance	3.642554	7.178091	5,709256

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.12, 5.13 y 5.14.

		32°C			37				4	2°,C	
Tao	Gamma	viscocidad aparente	viscocidad diferencial	নিত	Gamma	viscocidad aparente	र्णाडवन्वविवर्ट टीरिवरवानीवी	130	Gamma	viscocidad aparente	viscocidad diferencial
0.93350	8.594	0.10862363	0.08809501	0.79950	5.219	0.15318376	0.12089300	0.92130	5.653	0.16298760	0.11872848
1.67926	19.487	0.08617336	0.05391817	1.55460	13.918	0.11169898	0.06432789	1.66870	14.590	0.11437101	0.06155099
2.15060	29.735	0.07232484	0.03966270	2.05405	23.439	0.08763528	0.04362955	2.14241	23.943	0.08947890	0.04247416
2.50450	39.707	0.06307415	0.03195282	2.43120	33.352	0.07289587	0.03350976	2.49814	33.475	0.07462741	0.03309507
2.79270	49.524	0.05639037	0.02707558	2.73821	43.491	0.06296093	0.02752088	2.78778	43.106	0.06467208	0.02746941
3.03846	59.242	0.05128864	0.02368233	2.99956	53.777	0.05577807	0.02354490	3.03471	52.803	0.05747231	0.02368808
3.25426	68.890	0.04723882	0.02116842	3.22863	64.166	0.05031668	0.02069972	3.25151	62.546	0.05198629	0.02095391
3.44765	78.484	0.04392826	0.01922107	3.43356	74.633	0.04600599	0.01855413	3.44577	72.322	0.04764472	0.01887422
3.62357	88.037	0.04115972	0.01765164	3.61970	85.161	0.04250433	0.01687237	3.62245	82.125	0.04410883	0.01723251
3.78543	97.557	0.03880221	0.01638048	3.79071	95.736	0.03959536	0.01551496	3.78499	91.950	0.04116354	0.01589919
3.93568	107.049	0.03676511	0.01530639	3.94928	106.352	0.03713400	0.01439347	3.93587	101.793	0.03866553	0.01479185

 Tabla 5.37: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Steiger-Ory

Fuente propia: Obtenida a partir del modelo de Steiger-Ory

Gráfico 5.85: Gráfico comparativo del esfuerzo de corte y velocidad de corte a diferentes condiciones, modelo de Steiger-Ory

Fuente propia: Obtenida a partir de la Tabla Nº 5.37

Gráfico 5.86: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Steiger-Ory

Fuente propia: Obtenida a partir de la Tabla Nº 5.37

Gráfico 5.87: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Steiger-Ory

Fuente propia: Obtenida a partir de la Tabla Nº 5.37

- Cálculo de los parámetros del modelo de Ellis-de Haven

Dado que este modelo no es explícito en el esfuerzo de corte (variable dependiente), para la regresión se toma la forma alterna; es decir, se toma como variable dependiente la velocidad de corte y en el proceso de regresión, se toma como modelo la función alterna, en términos de las variables x e y.

Forma estándar	Forma alterna	Forma para la regresión
$\tau = \frac{\mu_0}{1 + c\tau^{n-1}} \frac{du}{dy}$ $n > 1$	$\frac{du}{dy} = \frac{1}{\mu_0} \left(1 + c t^{n-1} \right) \tau$	$x = A * y + A * C * y^n$

Fuente: Obtenida a partir del anexo 4

	32°C	87°C	42°C		
C C	1.265911	0.5314292	0.3215314		
A	4.612615	8.765822	13.41239		
n	2.042553	2.218998	2.256797		
R^2	0.9999402	0.9984853	0.9988019		
R^2adj	0.9999004	0.9974755	0.9980032		
Rmsd	0.0790928	0.3987579	0.3423927		
Variance	0.075068	1.908095	1.406793		

Fuente: Obtenido a partir de la regresión de los datos de las tablas 5.12, 5.13 y 5.14.
32°C			37°C			42°C					
1 SER	620000	Viscocidad	viscocidad	<u>~</u>		viscocidad	viscocidad	<u> </u>		ประกอสโต	viscocidad
	Camina	aparente	diferencial	160	Gamma	aparénte	diferencial	130	Gamma	aparente	diferencial
0.73360	6.485	0.11312058	0.07548579	0.61107	6.918	0.08832856	0.05926854	0.72016	11.715	0.06147415	0.05036600
1.17543	13.545	0.08677912	0.05339461	0.96710	12.803	0.07553960	0.05350520	1.15243	21.397	0.05385997	0.03992886
1.48000	19.832	0.07462714	0.04432385	1.21418	17.809	0.06817773	0.04574202	1.45063	29.441	0.04927244	0.03454736
1.72395	25.713	0.06704637	0.03897741	1.41295	22.417	0.06302961	0.04078282	1.68958	36.747	0.04597865	0.03102994
1.93197	31.326	0.06167397	0.03532363	1.58295	26.784	0.05910113	0.03722972	1.89340	43.609	0.04341746	0.02847188
2.11562	36.741	0.05758272	0.03261288	1.73340	30.984	0.05594563	0.03450899	2.07341	50.167	0.04133023	0.02649191
2.28144	42.002	0.05431779	0.03049258	1.86950	35.060	0.05332297	0.03233234	2.23595	56.499	0.03957538	0.02489505
2.43349	47.137	0.05162570	0.02877221	1.99449	39.039	0.05108948	0.03053618	2.38503	62.655	0.03806613	0.02356847
2.57449	52.166	0.04935167	0.02733823	2.11057	42.940	0.04915193	0.02901901	2.52330	68.669	0.03674609	0.02244199
2.70643	57.105	0.04739378	0.02611744	2.21932	46.775	0.04744637	0.02771386	2.65270	74.565	0.03557569	0.02146852
2.83072	61.964	0.04568306	0.02506109	2.32187	50.555	0.04592777	0.02657494	2.77461	80.361	0.03452694	0.02061570

Tabla 5.38: Parámetros reológicos de la sangre a diferentes temperaturas basados en el modelo de Ellis-de Haven

Fuente propia: Obtenida a partir del modelo de modelo de Ellis-de Haven

Fuente propia: Obtenida a partir de la Tabla Nº 5.38

Gráfico 5.89: Gráfico comparativo de la viscosidad aparente y velocidad de corte a diferentes condiciones, modelo de Ellis-de Haven

Fuente propia: Obtenida a partir de la Tabla Nº 5.38

Gráfico 5.90: Gráfico comparativo de la viscosidad diferencial o dinámica y velocidad de corte a diferentes condiciones, modelo de Ellis-de Haven

Fuente propia: Obtenida a partir de la Tabla Nº 5.38

VI. DISCUSION DE RESULTADOS

6.1. Contrastación de las hipótesis con los resultados

Hipótesis específica 1: Existe una relación no lineal entre el esfuerzo de corte y velocidad de corte asociado a la sangre.

Mediante los reogramas elaborados en los gráficos 5.1, 5.2, 5.3, 5.4, 5.5, 5.7, 5.8, 5.9, 5.11, 5.12, 5.13, 5.14, 5.15 y 5.16 con ayuda de los datos de las tablas 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13 y 5.14, obtenidas de 4 muestras y a diferentes temperaturas del reómetro, podemos definir que la relación existente entre el esfuerzo de corte y la velocidad de corte tiene un comportamiento no lineal y esto también se ve reflejado en las gráficas 5.18, 5.21, 5.24, 5.27, 5.30, 5.33, 5.36, 5.39, 5.42, 5.45, 5.48, 5.51, 5.54, 5.57, 5.60, 5.63, 5.66, 5.69, 5.72, 5.75, 5.78, 5.81, 5.84 y 5.87 obtenidas de las tablas 5.15, 5.16, 5.17, 5.18, 5.19, 5.20, 5.21, 5.22, 5.23, 5.24, 5.25, 5.26, 5.27, 5.28, 5.29, 5.30, 5.31, 5.32, 5.33, 5.34, 5.35, 5.36, 5.37 y 5.38 de los modelos reológicos utilizados.

Hipótesis específica 2: El tratamiento estadístico de los datos de esfuerzo de corte y velocidad de corte permite obtener los parámetros de los modelos asociados a la sangre.

Con ayuda del software POLYMATH se realizó el análisis de los valores obtenidos en el reómetro, el tratamiento estadístico se describe por muestra a continuación:

Muestra 01:

Para el modelo reológico de Herschel-Bulkley I a la temperatura de 15 ° C obtenemos los siguientes parámetros A=0.257132, B=0.2293223 y C=0.5909976; los cuales son respaldados por el índice de correlación (R²) de 0.9999955 y la varianza de 6.46x10⁻⁶. A la temperatura de 20 ° C obtenemos los siguientes parámetros A=0.4351388, B=0.2191854 y C=0.6014206; los cuales son respaldados por el índice de correlación (R²) de 0.9998451 y la varianza de 0.0002238. A la temperatura de 28 ° C obtenemos los siguientes parámetros A=0.4197392, B=0.2565153 y C=0.5707111; los cuales son respaldados por el índice de correlación (R²) de 0.999978 y la varianza de 3.18x10⁻⁵. A la temperatura de 37 ° C obtenemos los siguientes parámetros A=0.0113791, B=0.3756052 y C=0.5100339; los cuales son respaldados por el índice de correlación (R²) de 0.9999713 y la varianza de 4.15x10⁻⁵. Y a la temperatura de 45 ° C obtenemos los siguientes parámetros A=0.5114224, B=0.2128055 y C=0.6071641; los cuales son respaldados por el índice de correlación (R²) de 0.9997047 y la varianza de 0.0004267.

Para el modelo reológico de Casson - Generalizada N^o 1 a la temperatura de 15 ° C obtenemos los siguientes parámetros A=0.2952584, B=0.304568, C=0.421527 y n=1.49638; los cuales son respaldados por el índice de correlación (R²) de 0.9999986 y la varianza de 3.05×10^{-6} . A la temperatura de 20 ° C obtenemos los siguientes parámetros A=0.4748685, B=0.0419146, C=1.630014 y n=0.3137394; los cuales son

respaldados por el índice de correlación (R^2) de 0.9999928 y la varianza de 1.57x10⁻⁵. A la temperatura de 28 ° C obtenemos los siguientes parámetros A=0.4364669, B=0.2759012, C=0.4986589 y n=1.193486; los cuales son respaldados por el índice de correlación (R^2) de 0.9999789 y la varianza de 4.58x10⁻⁵. A la temperatura de 37 ° C obtenemos los siguientes parámetros A=0.0138818, B=0.4590128, C=0.4030528 y n=1.268225; los cuales son respaldados por el índice de correlación (R^2) de 0.9999714 y la varianza de 6.20x10⁻⁵. Y a la temperatura de 45 ° C obtenemos los siguientes parámetros parámetros A=0.6099531, B=0.029272, C=1.946386 y n=0.2527464; los cuales son respaldados por el índice de correlación (R^2) de 0.9999989 y la varianza de 2.32x10⁻⁶.

Para el modelo de Ostwald – de Waele-Nutting a la temperatura de 15 ° C obtenemos los siguientes parámetros A=0.3442521 y n=0.5159097; los cuales son respaldados por el índice de correlación (R^2) de 0.9993098 y la varianza de 0.000748. A la temperatura de 20 ° C obtenemos los siguientes parámetros A=0.4396446 y n=0.4700479; los cuales son respaldados por el índice de correlación (R^2) de 0.9970058 y la varianza de 0.0032451. A la temperatura de 28 ° C obtenemos los siguientes parámetros A=0.4860921 y n=0.4504292; los cuales son respaldados por el índice de correlación (R^2) de 0.002627. A la temperatura de 37 ° C obtenemos los siguientes parámetros A=0.3814041 y n=0.5072163; los cuales son respaldados por el índice de correlación (R^2) de 0.9999703 y la varianza de 3.22x10⁻⁵. Y a la temperatura de 45 °

C obtenemos los siguientes parámetros A=0.4861905 y n=0.4498491; los cuales son respaldados por el índice de correlación (R²) de 0.9950492 y la varianza de 0.0053656.

Para el modelo de Sisko a la temperaturas de 15 ° C obtenemos los siguientes parámetros A=0.0093967, B=0.3986297 y n=0.4245152; los cuales son respaldados por el índice de correlación (R²) de 0.9999925 y varianza de 1.08x10⁻⁵. A la temperatura de 20 ° C obtenemos los siguientes parámetros A=0.0137802, B=0.5423392 y n=0.3389646; los cuales son respaldados por el índice de correlación (R²) de 0.9995266 y la varianza de 0.0006841. A la temperatura de 28 ° C obtenemos los siguientes parámetros A=0.0127705, B=0.5795675 y n=0.3367683; los cuales son respaldados por el índice de correlación (R2) de 0.9999006 y la varianza de 0.0001436. A la temperatura de 37 ° C obtenemos los siguientes parámetros A=0.0008137, B=0.3845673 y n=0.5012056; los cuales son respaldados por el índice de correlación (R2) de 0.9999734 y la varianza de 3.84x10⁻⁵. Y a la temperatura de 45 ° C obtenemos los siguientes parámetros A=0.0156502, B=0.6133977 y n=0.3029452; los cuales son respaldados por el índice de correlación (R2) de 0.9991683 y la varianza de 0.0012019.

Para el modelo de Steiger-Ory a la temperatura de 15 ° C obtenemos los siguientes parámetros C=9.800658 y A=1.311038; los cuales son respaldados por el índice de correlación (R²) de 0,9931622 y la varianza de 7.960728. A la temperatura de 20 ° C obtenemos los siguientes

parámetros C=7.343554 y A=1.327264; los cuales son respaldados por el índice de correlación (R^2) de 0.9929855 y la varianza de 7.108648. A la temperatura de 28 ° C obtenemos los siguientes parámetros C=6.325358 y A=1.346822; los cuales son respaldados por el índice de correlación (R^2) de 0.9929826 y la varianza de 6.785692. A la temperatura de 37 ° C obtenemos los siguientes parámetros C=7.972374 y A=1.225965; los cuales son respaldados por el índice de correlación (R^2) de 0.9958492 y la varianza de 3.847191. Y a la temperatura de 45 ° C obtenemos los siguientes parámetros C=6.462674 y A=1.337751; los cuales son respaldados por el índice de correlación (R^2) de 0.9927385 y la varianza de 7.026647.

Para el modelo de Ellis-de Haven a la temperaturas de 15 ° C obtenemos los siguientes parámetros C=5.29059, A=4.039951 y n=2.287848; los cuales son respaldados por el índice de correlación (R^2) de 0.9981002 y la varianza de 2.949099. A la temperatura de 20 ° C obtenemos los siguientes parámetros C=3.114924, A=3.910964 y n=2.309605; los cuales son respaldados por el índice de correlación (R^2) de 0.9980385 y la varianza de 2.650466. A la temperatura de 28 ° C obtenemos los siguientes parámetros C=2.213742, A=3.864807 y n=2.324169; los cuales son respaldados por el índice de correlación (R^2) de 0.9981768 y la varianza de 2.350657. A la temperatura de 37 ° C obtenemos los siguientes parámetros C=3.778535, A=3.804791 y n=2.280532; los cuales son respaldados por el índice de correlación (R^2) de 0.9994647 y la

varianza de 0.6614892. Y a la temperatura de 45 ° C obtenemos los siguientes parámetros C=2.332569, A=3.868901 y n=2.319594; los cuales son respaldados por el índice de correlación (\mathbb{R}^2) de 0.9979238 y la varianza de 2.678701.

Muestra 02:

Para el modelo reológico de Herschel-Bulkley I a la temperatura de 32 ° C obtenemos los siguientes parámetros A=0.5205176, B=0.1827107 y C=0.6343509; los cuales son respaldados por el índice de correlación (\mathbb{R}^2) de 0.9996012 y la varianza de 0.0005762. A la temperatura de 37 ° C obtenemos los siguientes parámetros A=0.2217525, B=0.2785915 y C=0.5605952; los cuales son respaldados por el índice de correlación (\mathbb{R}^2) de 0.9999173 y la varianza de 0.0001196. Y a la temperatura de 42 ° C obtenemos los siguientes parámetros A=0.003652, B=0.36972 y C=0.5112995; los cuales son respaldados por el índice de correlación (\mathbb{R}^2) de 0.9999706 y la varianza de 4.25x10⁻⁵.

Para el modelo reológico de Casson Generalizada N⁰ 1 a la temperatura de 32 ° C obtenemos los siguientes parámetros A=0.6556898, B=0.0118016, C=2.282422 y n=0.2227516; los cuales son respaldados por el índice de correlación (R²) de 0.9999985 y la varianza de 3.4×10^{-6} . A la temperatura de 37 ° C obtenemos los siguientes parámetros A=0.2208068, B=0.0697943, C=1.322387 y n=0.395902; los cuales son respaldados por el índice de correlación (R²) de 0.9999681 y la varianza

de 6.9×10^{-5} . Y a la temperatura de 42 ° C obtenemos los siguientes parámetros A=0.0074181, B=0.1031314, C=1.168619 y n=0.4374796; los cuales son respaldados por el índice de correlación (R²) de 0.999971 y la varianza 6.28 $\times 10^{-5}$.

Para el modelo de Ostwald – de Waele-Nutting a la temperatura de 32 ° C obtenemos los siguientes parámetros A=0.4409688 y n=0.4669226; los cuales son respaldados por el índice de correlación (R^2) de 0.9946199 y la varianza de 0.0058308. A la temperatura de 37 ° C obtenemos los siguientes parámetros A=0.3870272 y n=0.4994703; los cuales son respaldados por el índice de correlación (R^2) de 0.9994068 y la varianza de 0.006429. Y a la temperatura de 42 ° C obtenemos los siguientes parámetros A=0.3715515 y n=0.5103946; los cuales son respaldados por el índice de correlación (R^2) de 0.9994068 y la varianza de 1.006429. Y a la temperatura de 42 ° C obtenemos los siguientes parámetros A=0.3715515 y n=0.5103946; los cuales son respaldados por el índice de correlación (R^2) de 0.9999705 y la varianza de 3.20x10⁻⁵.

Para el modelo de Sisko a la temperatura de 32 ° C obtenemos los siguientes parámetros A=0.0163018, B=0.580322 y n=0.3005263; los cuales son respaldados por el índice de correlación (R^2) de 0.9990307 y la varianza de 0.0014006. A la temperatura de 37 ° C obtenemos los siguientes parámetros A=0.0075962, B=0.4271871 y n=0.4342733; los cuales son respaldados por el índice de correlación (R^2) de 0.999823 y la varianza de 0.0002558. Y a la temperatura de 42 ° C obtenemos los siguientes parámetros A=0.3260273, B=0.1727677 y n=1.113126; los cuales son respaldados por el índice de correlación (R^2) de 0.9785346 y la varianza de 0.0310184.

Para el modelo de Steiger-Ory a la temperatura de 32 ° C obtenemos los siguientes parámetros C=7.566808 y A=1.343627; los cuales son respaldados por el índice de correlación (R^2) de 0.9919391 y la varianza de 8.482296. A la temperatura de 37 ° C obtenemos los siguientes parámetros C=8.170852 y A=1.273175; los cuales son respaldados por el índice de correlación (R^2) de 0.9948844 y la varianza de 5.106667. Y a la temperatura de 42 ° C obtenemos los siguientes parámetros C=8.243976 y A=1.25189; los cuales son respaldados por el índice de correlación (R^2) de 0.9963991 y la varianza de 3.49683.

Para el modelo de Ellis-de Haven a la temperatura de 32 ° C obtenemos los siguientes parámetros A=0.4823369, C=12.64843 y n=2.063374; los cuales son respaldados por el índice de correlación (R^2) de 0.9986442 y la varianza de 1.902215. A la temperatura de 37 ° C obtenemos los siguientes parámetros A=0.8794319, C=7.050957 y n=2.027931; los cuales son respaldados por el índice de correlación (R^2) de 0.9997438 y la varianza de 0.3409928. Y a la temperatura de 42 ° C obtenemos los siguientes parámetros A=1.403257, C=4.149959 y n=2.053112; los cuales son respaldados por el índice de correlación (R^2) de 0.9999523 y la varianza de 0.0617636.

Muestra 03:

Para el modelo reológico de Herschel-Bulkley I a la temperatura de 32 ° C obtenemos los siguientes parámetros A=0.2192515, B=0.3073782 y

C=0.538455; los cuales son respaldados por el índice de correlación (R^2) de 0.9999478 y la varianza de 7.5x10⁻⁵. A la temperatura de 37 ° C obtenemos los siguientes parámetros A=0.5954234, B=0.1977279 y C=0.6185575; los cuales son respaldados por el índice de correlación (R^2) de 0.9998207 y la varianza de 0.0002591.Y a la temperatura de 42 ° C obtenemos los siguientes parámetros A=0.4561721, B=0.2212639 y C=0.6009767; los cuales son respaldados por el índice de correlación (R^2) de 0.9997863 y la varianza de 0.0003088.

Para el modelo reológico de Casson Generalizada N⁰ 1 a la temperatura de 32 ° C obtenemos los siguientes parámetros A=0.2535361, B=0.0280715, C=1.906692 y n=0.2600289; los cuales son respaldados por el índice de correlación (R²) de 0.9999869 y la varianza de 2.85x10⁻⁵. A la temperatura de 37 ° C obtenemos los siguientes parámetros A=0.6195373, B=0.0915057, C=1.268934 y n=0.3971195; los cuales son respaldados por el índice de correlación (R²) de 0.9999832 y la varianza de 3.65x10⁻⁵. Y a la temperatura de 42 ° C obtenemos los siguientes parámetros A=0.5320527, B=0.0292339, C=1.889782 y n=0.2650608; los cuales son respaldados por el índice de correlación (R²) de 0. 0.999997 y la varianza de 6.49x10⁻⁶.

Para el modelo de Ostwald – de Waele-Nutting a la temperatura de 32 ° C obtenemos los siguientes parámetros A=0.4209996 y n=0.4803933; los cuales son respaldados por el índice de correlación (R²) de 0.9994562 y la varianza de 0.0005893. A la temperatura de 37 ° C obtenemos los

siguientes parámetros A=0.5307467 y n=0.4293727; los cuales son respaldados por el índice de correlación (R^2) de 0.9923818 y la varianza de 0.0082565. Y a la temperatura de 42 ° C obtenemos los siguientes parámetros A=0.4579971 y n=0.4630493; los cuales son respaldados por el índice de correlación (R^2) de 0.9965104 y la varianza de 0.003782.

Para el modelo de Sisko a la temperatura de 32 ° C obtenemos los siguientes parámetros A=0.0068731, B=0.460223 y n=0.4220025; los cuales son respaldados por el índice de correlación (R^2) de 0.9998696 y la varianza de 0.0001884. A la temperatura de 37 ° C obtenemos los siguientes parámetros A=0.0174088, B=0.6875472 y n=0.2644328; los cuales son respaldados por el índice de correlación (R^2) de 0.9992185 y la varianza de 0.0011293. Y a la temperatura de 42 ° C obtenemos los siguientes parámetros A=0.0144191, B=0.566699 y n=0.3284963; los cuales son respaldados por el índice de correlación (R^2) de 0.9994042 y la varianza de 0.000861.

Para el modelo de Steiger-Ory a la temperatura de 32 ° C obtenemos los siguientes parámetros C=7.357479 y A=1.337294; los cuales son respaldados por el índice de correlación (R^2) de 0.9952436 y la varianza de 4.829624. A la temperatura de 37 ° C obtenemos los siguientes parámetros C=5.893488 y A=1.373042; los cuales son respaldados por el índice de correlación (R^2) de 0.9917091 y la varianza de 8.073324. Y a la temperatura de 42 ° C obtenemos los siguientes parámetros C=6.928981

y A=1.316492; los cuales son respaldados por el índice de correlación (\mathbb{R}^2) de 0.9929625 y la varianza de 6.850678.

Para el modelo de Ellis-de Haven la temperatura de 32 ° C obtenemos los siguientes parámetros A=0.7805481, C=7.266704 y n=2.10198; los cuales son respaldados por el índice de correlación (R^2) de 0.9997559 y la varianza de 0.3304174. A la temperatura de 37 ° C obtenemos los siguientes parámetros A=0.5706665, C=8.437277 y n=2.203563; los cuales son respaldados por el índice de correlación (R^2) de 0.9981433 y la varianza de 2.41063. Y a la temperatura de 42 ° C obtenemos los siguientes parámetros A=0.4818619, C=11.6023 y n=2.099741; los cuales son respaldados por el índice de correlación (R^2) de 0.9990458 y la varianza de 1.238439.

Muestra 04:

El modelo reológico de Herschel-Bulkley I a la temperatura de 32 ° C obtenemos los siguientes parámetros A=0.0285139, B=0.3610825 y C=0.5169318; los cuales son respaldados por el índice de correlación (R²) de 0.9999761 y la varianza de 3.46×10^{-5} . A la temperatura de 37 ° C obtenemos los siguientes parámetros A=0.5184949, B=0.2362336 y C=0.5851797; los cuales son respaldados por el índice de correlación (R²) de 0.99994 y la varianza de 8.67×10^{-5} . Y a la temperatura de 42 ° C obtenemos los siguientes parámetros A=0.5426857, B=0.2446666 y

C=0.5807204; los cuales son respaldados por el índice de correlación (R²) de 0.9998057 y la varianza de 0.0002808.

Para el modelo reológico de Casson Generalizada N⁰ 1 a la temperatura de 32 ° C obtenemos los siguientes parámetros A=0.2535361, B=0.0280715, C=1.906692 y n=0.2600289; los cuales son respaldados por el índice de correlación (R²) de 0.9999767 y la varianza de 5.05x10⁻⁵. A la temperatura de 37 ° C obtenemos los siguientes parámetros A=0.5070807, B=0.2183903, C=0.6710458 y n=0.8320127; los cuales son respaldados por el índice de correlación (R²) de 0.9999423 y la varianza de 0.000125. Y a la temperatura de 42 ° C obtenemos los siguientes parámetros A=0.5821829, B=0.098533, C=1.385649 y n=0.3430051; los cuales son respaldados por el índice de correlación (R²) de 0.9999866 y la varianza de 2.91x10⁻⁵.

Para el modelo de Ostwald – de Waele-Nutting a la temperatura de 32 ° C obtenemos los siguientes parámetros A=0.3754 y n=0.5097759; los cuales son respaldados por el índice de correlación (R²) de 0.9999698 y la varianza de 3.27×10^{-5} . A la temperatura de 37 ° C obtenemos los siguientes parámetros A=0.5319402 y n=0.4309517; los cuales son respaldados por el índice de correlación (R²) de 0.9954571 y la varianza de 0.0049293. Y a la temperatura de 42 ° C obtenemos los siguientes parámetros A=0.5663103 y n=0.4202334; los cuales son respaldados por el índice de correlación (R²) de 0.0061796.

Para el modelo de Sisko a la temperatura de 32 ° C obtenemos los siguientes parámetros A=0.000906, B=0.3789276 y n=0.5030111; los cuales son respaldados por el índice de correlación (R^2) de 0.9999736 y la varianza de 3.81x10⁻⁵. A la temperatura de 37 ° C obtenemos los siguientes parámetros A=0.0151148, B=0.6544077 y n=0.295863; los cuales son respaldados por el índice de correlación (R^2) de 0.999732 y la varianza de 0.0003872. Y a la temperatura de 42 ° C obtenemos los siguientes parámetros A=0.0157669, B=0.6928072 y n=0.2852406; los cuales son respaldados por el índice de correlación (R^2) de 0.999732 y la varianza de 0.0011123.

Para el modelo de Steiger-Ory a la temperatura de 32 ° C obtenemos los siguientes parámetros C=8.133459 y A=1.230908; los cuales son respaldados por el índice de correlación (R^2) de 0.9961326 y la varianza de 3.642554. A la temperatura de 37 ° C obtenemos los siguientes parámetros C=5.656272 y A=1.363947; los cuales son respaldados por el índice de correlación (R^2) de 0.9924024 y la varianza de 7.178091. Y a la temperatura de 42 ° C obtenemos los siguientes parámetros C=4.991865 y A=1.34729; los cuales son respaldados por el índice de correlación (R^2) de 0.9925171 y la varianza de 5.709256.

Para el modelo de Ellis-de Haven a la temperatura de 32 ° C obtenemos los siguientes parámetros C=1.265911, A=4.612615 y n=2.042553; los cuales son respaldados por el índice de correlación (R²) de 0.9999402 y la varianza de 0.075068. A la temperatura de 37 ° C obtenemos los

siguientes parámetros C=0.5314292, A=8.765822 y n=2.218998; los cuales son respaldados por el índice de correlación (R^2) de 0.9984853 y la varianza de 1.908095. Y a la temperatura de 42 ° C obtenemos los siguientes parámetros C=0.3215314, A=13.41239 y n=2.256797; los cuales son respaldados por el índice de correlación (R^2) de 0.9988019 y la varianza de 1.406793.

Estos datos nos permiten obtener la viscosidad aparente, viscosidad diferencial, el esfuerzo cortante y la velocidad de corte en cada modelo utilizado.

Hipótesis específica 3: Los reogramas de sangre tienen el comportamiento típico de un fluido no newtoniano específicamente al del fluido pseudoplástico.

Como podemos verificar en el capítulo V, se graficó el comportamiento del esfuerzo cortante en función de la velocidad de corte para los valores calculados del modelamiento reológico, los cuales confirman que los modelos reológicos de Casson Generalizada Nº 1 y Herschel-Bulkley I se comportan como un fluido pseudoplástico con punto de cedencia. Con respecto a los modelos reológicos de Ostwald – de Waele-Nutting, Sisko, Steiger-Ory y Ellis de Haven actúan como un fluido pseudoplástico.

Hipótesis general: La sangre tiene un comportamiento de un modelo reológico característico de los fluidos pseudoplástico como los de Ostwald, Waele, Herschelbulkley, Casson y otros.

En los resultados obtenidos confirmamos la convergencia con esta hipótesis.

Mediante el análisis estadístico ANOVA se calculó el índice de correlación de los valores obtenidos en el modelamiento, mediante este índice podemos confirmar lo dicho en la hipótesis; los modelos de Casson Generalizada N° 1 y Herschel-Bulkley I cuentan con índices de correlación que difiere de la unidad en >1x10^-4 mientras que los modelos de Ostwald – de Waele-Nutting, Sisko, Steiger-Ory y Ellis de Haven difieren de la unidad en >1x10^-3, estos datos se pueden verificar en el Anexo N° 2.

6.2. Contrastación de resultados con otros estudios similares

Según Leonardo Moreno (2016), el fluido de la sangre se comporta con un fluido pseudoplástico y que la viscosidad de la sangre depende de la concentración de colesterol total, según nuestros estudios el fluido de la sangre se comporta como un fluido pseudoplástico con punto de cedencia cuya variable experimental es la temperatura.

El Modelo de Carreau ha sido utilizado para describir el comportamiento reológico de la sangre para un amplio rango de tasas de corte (1000 - 2900 s-1). Estos resultados concuerdan con lo esperado a partir del estudio de modelos no newtonianos (Ortiz León 2013). El Modelo de Ley de Potencias ha sido utilizado para fluidos sanguíneos a bajas tasas de corte cercana a 0 s-1 y para fluidos sanguíneos de tasas altas (>1200 s-1) subvalora la viscosidad (Ortiz León 2013). El Modelo de Casson se adapta muy bien a los datos experimentales a pequeñas velocidades de

deformación (22.5 – 450 l/sg) (Luis Berga 2014). Todos estos estudios corresponden a fluidos no newtonianos independientes del tiempo de tipo pseudoplásticos.

Existe una divergencia entre el comportamiento reológico de los antecedentes y el fluido de la sangre, debido que en el párrafo anterior menciona que el fluido de la sangre tiene un comportamiento pseudoplástico; según lo determinado por el estudio realizado a las cuatro (4) muestras se comprueba que la sangre tiene un comportamiento de un fluido pseudoplástico con punto de cedencia.

VII. CONCLUSIONES

 Se determinó que de los 6 modelos reológicos propuestos en el presente trabajo se ajustan al fluido de la sangre; habiendo tomando 4 muestras aleatorias con características mostradas en el Anexo N°3, se puede generalizar que a la sangre humana se ajusta con mayor exactitud al modelo de Casson Generalizada N° 1, ya que cuenta con el índice de correlación más cercano a uno a cualquier temperatura y con muestras que se encuentra fuera o dentro de los parámetros de una persona saludable.

 Se obtuvo de forma experimental la relación numérica entre la velocidad de corte y el esfuerzo cortante, con ayuda del reómetro rotacional Anton Paa modelo RheolabQC.

Se obtuvo los parámetros reológicos de las diferentes muestras
 (MS – 01, MS – 02, MS – 03, MS – 04) y diferentes temperaturas
 mediante el software POLYMATH; los tratamientos estadísticos para la
 validación de los datos cálculos están presentados en el Anexo N° 2.

 Se elaboraron los diferentes reogramas que se asocian a la sangre a las diferentes temperaturas de prueba, estos reogramas corresponde a los modelos utilizados, también se obtuvo los reogramas con los datos obtenidos en el reómetro, en los se puede verificar una gran convergencia de valores.

VIII. RECOMENDACIONES

• Se recomienda hacer un estudio pero esta vez tomando como una variante el grupo sanguíneo de las personas.

• Utilizar otro tipo de reómetro para hacer la comparación con el reómetro rotacional ya utilizado y ver si el resultado presenta variantes.

 Se sugiere evaluar de manera más profunda los modelos reológicos, variando no sólo la temperatura sino la cantidad de glóbulos rojos, plaquetas o colesterol que se encuentran en la sangre.

 Antes de realizar la medición reológica se debe esperar al menos
 15 minutos luego del cambio de temperatura del reómetro para que la muestra alcance la temperatura de trabajo.

IX. REFERENCIAS BIBLIOGRÁFICAS

 Alberto Monsalve G. Reología, la Ciencia que Estudia el Movimiento de Fluidos, Académico Departamento de ingeniería Metalúrgica, Facultad de ingeniería, Universidad de Santiago de Chile.
 Año N0 30, 18 de octubre de 2016.

Apéndice A. Propiedades Reológicas De Los Fluidos, Disponible
 en:

http://www.academia.edu/29900869/AP%C3%89NDICE_A_PROPIEDAD ES_REOL%C3%93GICAS_DE_LOS_FLUIDOS. Articulo web. Revisado 10 de abril del 2016.

 3.
 Articulo
 reología.
 Disponible
 en:

 <u>https://es.wikipedia.org/wiki/Reolog%C3%ADa</u>.
 Articulo web, visitada en

 abril del 2016.

4. Berga Casafont, Luis; **Comportamiento reológico de la Sangre Humana a Pequeñas Velocidades de Deformación**; Catedra de Hidráulica e Hidrología; Revista de Obras Públicas; Febrero-Marzo 1980 págs. 207 al 2014.

5. Carrasco Venegas, Luis; **Fenómenos de Transporte**; Editorial Macro; Segunda Edición; Lima Perú; 2011.

6. Carrasco Venegas, Luis; Castañeda Pérez, Luz; Altamirano Oncoy, Karina; **Modelos de Viscosidad de Fluidos No Newtonianos**; Docente Importante de la Facultad de Ingeniería Química de la Universidad Nacional del Callao; Docente Asociado de la Facultad de Ciencias

Naturales de la Universidad Nacional Federico Villareal; Estudiante de la Facultad de Ingeniería Química de la Universidad Nacional del Callao.

7. Esteban Luis Ibarrola. Introducción a los Fluidos No Newtonianos. Cátedra de Mecánica de los Fluidos- UNCor.

José Carlos Cárdenas, Oscar Javier López H. y Karem Tatiana
 Pinto R. Estudio Reológico de los Fluidos Viscoelásticos
 Surfactantes Utilizados en Operaciones de Fracturamiento
 Hidráulico. Revista Fuentes: El Reventón Energético Vol. 9 Nº 1 de 2011
 Ene/Jun - pp 5/12.

9. Mendez-Sanchez, A; Pérez Trejo, L; Paniagua Mercado, A; Determinación de la viscosidad de fluidos newtonianos y no newtonianos (una revisión del viscosímetro de Couette); Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Centro de Asimilación Tecnológica-FESC, Universidad Nacional Autónoma de México, Cuautitlán, Edo. De México; 2010.

10. Moreno, Leonardo y Calderas, Fausto; Sánchez, Guadalupe; Medina, Luis; Sánchez, Antonio y Manero, Octavio; La Sangre Humana

Desde el Punto de Vista de la Reología; Departamento de Reología y Mecánica de Materiales, IIM-UNAM; CIATEC; Departamento de Ingeniería química, UNAM; Departamento de Reología y Mecánica de Materiales, IIM-UNAM. Noviembre 2013.

11. Mott, Robert L. Mecánica de Fluidos. México. Editorial Pearson Educación, S.A. Sexta Edición. 2006.

12. Ortiz León, G; Araya Luna, D; Vílchez Monge, M. **Revisión de Modelos Teóricos de la Dinámica de Fluidos Asociada al Flujo de Sangre**; Tecnología en Marcha. Vol. 27, NO 1. Pág. 66-76; Escuela de Ingeniería Electrónica, Instituto Tecnológico de Costa Rica. Enero-Marzo 2014.

13. Ramírez Navas, Juan; **Fundamentos de Reología de los Alimentos**; Edit. JSR e-books; Cali, Colombia; 2006.

REGALADO MENDEZ, Alejandro y NORIEGA RAMOS, Octavio Antonio. Comportamiento reológico de un Fluido. Ciencia y Mar 2008, XII (36): 35 – 42.

15. Rojas, O; Introducción a la Reología; Escuela de Ingeniería Química, Facultad de Ingeniería Química, Universidad de Mérida, Venezuela; 1999.

16. Wild Welt Control; **Métodos de control de pozos**, Well Control Killsheets Ver. 10.11.

ANEXOS

ANEXO 1:

MATRIZ DE CONSISTENCIA: **"Modelos reológicos asociados A la sangre**".

ANEXO 2:

TRATAMIENTO ESTADISTICO

ANEXO 3:

ANALISIS DE SANGRE DE LAS MUESTRAS.

ANEXO 4:

MODELOS EXPERIMENTALES PARA FLUIDOS NO NEWTONIANOS

INDEPENDIENTES DEL TIEMPO.

ANEXO 5:

OTROS MODELOS ADICIONALES.

ANEXO 6:

DECRETO SUPREMO Nº 03-95-SA.

ANEXO 7:

TIPOS DE GEOMETRIA PARA REOMETROS ROTACIONALES.

•

ANEXO 1

MATRIZ DE CONSISTENCIA: "MODELOS REOLÓGICOS RELACIONADOS A LA SANGRE"

"MODELOS REOLÓGICOS ASOCIADOS A LA SANGRE"

PROBLEMA GENERAL	OBJETIVO GENERAL	HIPOTESIS GENERAL	VARIABLE DEPENDIENTE	DIMENSIONES	INDICADORES	MÉTODO
¿Cuáles son los modelos de flujo no newtoniano relacionados a la sangre?	Determinar los modelos reológicos que se ajustan al comportamiento de la sangre.	La sangre tiene un comportamiento de un modelo reológico característico de los fluidos pseudoplasticos como los de Ostwald de Waele, Herschel Bulkley, Casson y otros.	Y = Modelos de flujo no newtoniano relacionado a la sangre	Reproducibilidad de los datos experimentales mediante los modelos reológicos relacionados al comportamiento de la sangre	Los índices de correlación múltiple y análisis de la varianza.	Correlacion ando las variables X1, X2 y X3.
SUB - PROBLEMA	OBJETIVOS ESPECÍFICOS	HIPÓTESIS ESPECÍFICAS	VARIABLES INDEPENDIENTES	DIMENSIONES	INDICADORES	MÉTODO
a. ¿Cuál es la relación numérica entre el esfuerzo de corte y velocidad de corte determinado experimentalmente para la sangre?	 a. Obtener en forma experimental la relación numérica entre la velocidad de corte y el esfuerzo de corte para las muestras de la sangre 	Existe una relación no lineal entre el esfuerzo de corte y velocidad de corte relacionado a la sangre.	X1 = La relación no lineal entre el esfuerzo de corte y velocidad de corte relacionado a la sangre	Análisis cualitativo de la relación entre la velocidad de corte y esfuerzo de corte.	Diferencias respecto a la relación lineal	Grafico
 b. ¿Cómo debe de ser la correlación no lineal de los datos experimentales conducentes a obtener los parámetros reológicos relacionados a la sangre? 	 b. Obtener los parámetros reológicos de los modelos relacionados a la sangre mediante el tratamiento estadístico de regresión no lineal. 	El tratamiento estadístico de los datos de esfuerzo de corte y velocidad de corte permite obtener los parámetros de los modelos relacionados a la sangre.	X ₂ =Tratamiento estadístico de los datos de esfuerzo de corte y velocidad de corte para obtener los parámetros de los modelos relacionados a la sangre.	Correlación cuantitativa entre los datos de esfuerzo de corte y velocidad de corte asociados a la sangre.	Índice de correlación y varianza	Regresión no líneal.
c. ¿Cómo son los reogramas relacionados a la sangre a temperaturas diversas?	c. Obtener los reogramas relacionados a la sangre a las temperaturas de prueba.	Los reogramas de la sangre tienen el comportamiento típico de un fluido no newtoniano específicamente al del fluido pseudoplastico.	X₃ = Los reogramas relacionados a la sangre.	Forma típica de los reogramas de los modelos que representan el comportamiento reológico de la sangre.	Desviación respecto al comportamiento a las propiedades del fluido newtoniano.	Grafico

ANEXO 2:

· · · · ·

TRATAMIENTO ESTADISTICO

ANEXO 2.1:

· · · .

TRATAMIENTO ESTADISTICO MUESTRA N° 1

Y TAO BY TRATAMIENTO ATISTICS HOMOGENEITY SSING ANALYSIS -STHOC=TUKEY GH ALPHA(0.05).

VA de un factor

	Notas		
ados creados		18-FEB-2018 20:48:17	
atarios			
	Conjunto de datos activo	Conjunto_de_datos0	
	Filtro	<ninguno></ninguno>	
a	Peso	<ninguno></ninguno>	
	Dividir archivo	<ninguno></ninguno>	
	Núm. de filas del archivo de trabajo	72	
		Los valores perdidos definidos por el	
	Definición de los valores perdidos	usuario serán tratados como	
		perdidos.	
eiento de los valores perdidos		Los estadísticos de cada análisis se	
	Casos utilizados	basan en los casos sin datos	
		perdidos para cualquier variable en el	
		análisis.	
		ONEWAY TAO BY TRATAMIENTO	
		STATISTICS HOMOGENEITY	
6		/MISSING ANALYSIS	
		/POSTHOC=TUKEY GH	
		ALPHA(0.05).	
20	Tiempo de procesador	00:00:08	
-00	Tiempo transcurrido	00:00:00.06	

into_de_datos0]

Prueba de homogeneidad de varianzas

o Cortante

·

adístico de Levene	gl1	gl2	Sig.	
,802	6	65	. ,572	

rueba de >Homogeneidad de Levence indica que se cumple el supuesto adistico: .802; gl1:6 y gl2:65; p>.05).

. .

zo Cortante

	Suma de cuadrados	gl	Media cuadrática	F	Sig.
rupos	13,677	6	2,279	2,711	,021
-rupos	54,660	65	,841		
	68,336	71			

NOVA unifactorial indica que la sangre si tiene un comportamiento reologico tipo pseudoplastico con umbral, por lo cual el comporatamiento arrojado \ge l reometro si tiene semejanza con los comporatamientos calculados con los metros de los modelos usados (F:2.711; p<0.021).

pas post hoc

e dependiente: Esfuerzo Cortante

uerdo con la prueba post-hoc de tukey, se observa que no se encuentra diferencias

Comparaciones múltiples

	(I) Tratamientos Realizados a	(J) Tratamientos Realizados a	Diferencia de	Error típico	Sig.
	las muestras	las muestras	medias (I-J)		
		HERSCHEL - BULKLEY I	-,6314991521212	,4654042667890	,822
		CASSON GENERALIZADO Nº 1	-,5752168284848	,4654042667890	,877
	REOMETRO	OSTWALD DE WAELE - NUTTING	-,574937409393 9	,4654042667890	,878
		SISKO	-,5761680984848	,4654042667890	,877
		STEIGER - ORY	-,538393939393939	,4654042667890	,907
		ELLIS DE HAVEN	,6035696969697	,4654042667890	,851
		REOMETRO	,6314991521212	,4654042667890	,822
		CASSON GENERALIZADO N° 1	,0562823236364	,3910177954837	1,000
e Tukey	HERSCHEL - BULKLEY I	OSTWALD DE WAELE - NUTTING	,0565617427273	,3910177954837	1,000
		SISKO	,0553310536364	,3910177954837	1,000
		STEIGER - ORY	,0931052127273	,3910177954837	1,000
		ELLIS DE HAVEN	1,2350688490909 •	,3910177954837	,037
		REOMETRO	,5752168284848	,4654042667890	,877
		HERSCHEL - BULKLEY I	-,0562823236364	,3910177954837	1,000
	CASSON GENERALIZADO Nº 1	OSTWALD DE WAELE - NUTTING	,0002794190909	,3910177954837	1,000
		SISKO	-,0009512700000	,3910177954837	1,000

STEIGER - ORY

,0368228890909 ,3910177954837

1,000

		•	1	
	ELLIS DE HAVEN	1,1787865254545	,3910177954837	,054
	REOMETRO	,5749374093939	,4654042667890	,878
	HERSCHEL - BULKLEY I	-,0565617427273	,3910177954837	1,000
OSTWALD DE WAELE -	CASSON GENERALIZADO N° 1	-,0002794190909	,3910177954837	1,000
NUTTING	SISKO	-,0012306890909	,3910177954837	1,000
	STEIGER - ORY	,0365434700000	,3910177954837	1,000
	ELLIS DE HAVEN	1,1785071063636	,3910177954837	,054
	REOMETRO	,5761680984848	,4654042667890	,877
	HERSCHEL - BULKLEY I	-,0553310536364	,3910177954837	1,000
	CASSON GENERALIZADO Nº 1	,0009512700000	,3910177954837	1,000
SIGNU	OSTWALD DE WAELE - NUTTING	,0012306890909	,3910177954837	1,000
	STEIGER - ORY	,0377741590909	,3910177954837	1,000
	ELLIS DE HAVEN	1,1797377954545	,3910177954837	,053
	REOMETRO	,538393939393939	,4654042667890	,907
STEIGER - ORY	HERSCHEL - BULKLEY I	-,0931052127273	,3910177954837	1,000
	CASSON GENERALIZADO N°	-,0368228890909	,3910177954837	1,000

Comparaciones múltiples

e dependiente: Esfuerzo Cortante

	(I) Tratamientos Realizados a las	(J) Tratamientos Realizados a las	Intervalo de co	Intervalo de confianza al 95%		
	muestras	muestras	Límite inferior	Límite superior		
		HERSCHEL - BULKLEY I	-2,047519770687	,784521466444		
		CASSON GENERALIZADO Nº 1	-1,991237447050	,840803790080		
	PEOMETRO	OSTWALD DE WAELE - NUTTING	-1,990958027959	,841083209171		
	NEOMETRO	SISKO	-1,992188717050	,839852520080		
		STEIGER - ORY	-1,954414557959	,877626679171		
		ELLIS DE HAVEN	-,812450921596	2,019590315535		
		REOMETRO	-,784521466444	2,047519770687		
	HERSCHEL - BULKLEY I	CASSON GENERALIZADO Nº 1	-1,133412958814	1,245977606086		
		OSTWALD DE WAELE - NUTTING	-1,133133539723	1,246257025177		
		SISKO	-1,134364228814	1,245026336086		
Tukey		STEIGER - ORY	-1,096590069723	1,282800495177		
		ELLIS DE HAVEN	,045373566641*	2,424764131541		
		REOMETRO	-,840803790080	1,991237447050		
		HERSCHEL - BULKLEY I	-1,245977606086	1,133412958814		
		OSTWALD DE WAELE - NUTTING	-1,189415863359	1,189974701541		
		SISKO	-1,190646552450	1,188744012450		
		STEIGER - ORY	-1,152872393359	1,226518171541		
		ELLIS DE HAVEN	-,010908756995	2,368481807905		
		REOMETRO	-,841083209171	1,990958027959		
	OSTWALD DE WAELE - NUTTING	HERSCHEL - BULKLEY I	-1,246257025177	1,133133539723		
		CASSON GENERALIZADO Nº 1	-1,189974701541	1,189415863359		

	SISKO	1 100025071541	1 100/6/500050
	SIGKO	-1,190920971041	1,100404090009
	STEIGER - ORY	-1,153151812450	1,226238752450
	ELLIS DE HAVEN	-,011188176086	2,368202388814
	REOMETRO	-,839852520080	1,992188717050
	HERSCHEL - BULKLEY I	-1,245026336086	1,134364228814
sisko	CASSON GENERALIZADO Nº 1	-1,188744012450	1,190646552450
3670	OSTWALD DE WAELE - NUTTING	-1,188464593359	1,190925971541
	STEIGER - ORY	-1,151921123359	1,227469441541
	ELLIS DE HAVEN	-,009957486995	2,369433077905
	REOMETRO	-,877626679171	1,954414557959
STEIGER - ORY	HERSCHEL - BULKLEY I	-1,282800495177	1,096590069723
	CASSON GENERALIZADO Nº 1	-1,226518171541	1,152872393359

њ

Comparaciones múltiples

e dependiente: Esfuerzo Cortante

	(I) Tratamientos Realizados a	(J) Tratamientos Realizados a	Diferencia de	Error típico	Síg.
·	las muestras	las muestras	medias (I-J)		
e Tukey	STEIGER - ORY	OSTWALD DE WAELE - NUTTING	-,0365434700000	,3910177954837	1,000
		SISKO	0377741590909	,3910177954837	1,000
		ELLIS DE HAVEN	1,141963636363636	,3910177954837	,068
		REOMETRO	-,6035696969697	,4654042667890	,851
,		HERSCHEL - BULKLEY I	-1,235068849090 9	,3910177954837	,037
		CASSON GENERALIZADO Nº 1	-1,178786525454 5	,3910177954837	,054
	ELLIS DE HAVEN	OSTWALD DE WAELE - NUTTING	-1,178507106363 6	,3910177954837	,054
		SISKO	-1,179737795454 5	,3910177954837	,053
		STEIGER - ORY	-1,141963636363 6	,3910177954837	,068
		HERSCHEL - BULKLEY I	-,6314991521212	,4736333721011	,823
		CASSON GENERALIZADO Nº 1	-,5752168284848	,4812212362449	,882
	REOMETRO	OSTWALD DE WAELE - NUTTING	-,5749374093939*	,4811157673435	,882
		SISKO	-,5761680984848	,4814186012227	,882
		STEIGER - ORY	-,538393939393939	,4837384284160	,911
		ELLIS DE HAVEN	,6035696969697	,4139846303794	,760
-Howell		REOMETRO	,6314991521212	,4736333721011	,823
		CASSON GENERALIZADO N°	,0562823236364	,4085260830009	1,000
	HERSCHEL - BULKLEY I	OSTWALD DE WAELE - NUTTING	,0565617427273	,4084018411632	1,000
		SISKO	,0553310536364	,4087585496136	1,000
		STEIGER - ORY	,0931052127273	,4114882129605	1,000
		ELLIS DE HAVEN	1,2350688490909	,3266541848337	,022
	CASSON GENERALIZADO Nº	REOMETRO	,5752168284848	,4812212362449	,882

	•		1	•
` 1	HERSCHEL - BULKLEY I	-,0562823236364	,4085260830009	1,000
	OSTWALD DE WAELE -	,0002794190909	,4171778648379	1,000
	DNH HOL			
	SISKO	-,0009512700000	,4175270756818	1,000
	STEIGER - ORY	,0368228890909	,4201997815928	1,000
	ELLIS DE HAVEN	1,1787865254545	,3375622365055	,039
	REOMETRO	,5749374093939	,4811157673435	,882
	HERSCHEL - BULKLEY I	-,0565617427273	,4084018411632	1,000
OSTWALD DE WAELE -	CASSON GENERALIZADO Nº	- 0002794190909	4171778648379	1,000
	1	,0002104100000	,	.,500
NUTTING	SISKO	-,0012306890909	,4174055130216	1,000
	STEIGER - ORY	,0365434700000	,4200789923622	1,000
	ELLIS DE HAVEN	1,1785071063636	,3374118653634	,039

Comparaciones múltiples

~

dependien	te: Esfuerzo Cortante			
	(I) Tratamientos Realizados a las	(J) Tratamientos Realízados a las	Intervalo de co	nfianza al 95%
	muestras	muestras	Límite inferior	Límite superior
Tukey	STEIGER - ORY	OSTWALD DE WAELE - NUTTING	-1,226238752450	1,153151812450
		SISKO	-1,227469441541	1,151921123359
		ELLIS DE HAVEN	-,047731646086	2,331658918814
		REOMETRO	-2,019590315535	,812450921596
		HERSCHEL - BULKLEY I	-2,424764131541	045373566641
		CASSON GENERALIZADO Nº 1	-2.368481807905	.010908756995
	ELLIS DE HAVEN	OSTWALD DE WAELE - NUTTING	-2 368202388814	.011188176086
		SISKO	-2 369433077905	000057486005
			-2,000-00077900	,003337406333
			-2,331658918814	,047731046086
		HERSCHEL - BULKLEY I	-2,332156758131	1,069158453889
		CASSON GENERALIZADO Nº 1	-2,290093161406	1,139659504436
	REOMETRO	OSTWALD DE WAELE - NUTTING	-2,289608153522*	1,139733334734
		SISKO	-2,291429732451	1,139093535481
		STEIGER - ORY	-2,258240460346	1,181452581558
		ELLIS DE HAVEN	-1,043599891674	2,250739285614
		REOMETRO	-1,069158453889	2,332156758131
		CASSON GENERALIZADO Nº 1	-1,278536939410	1,391101586683
		OSTWALD DE WAELE - NUTTING	-1,277844669683	1,390968155137
	HERSCHEL - BULKLEY I	SISKO	-1,280260931052	1,390923038324
		STEIGER - ORY	-1,251583680745	1,437794106200
Howell		ELLIS DE HAVEN	,140514188530	2,329623509652
		REOMETRO	-1,139659504436	2,290093161406
		HERSCHEL - BULKLEY I	-1,391101586683	1,278536939410
		OSTWALD DE WAELE - NUTTING	-1,362544078620	1,363102916802
	CASSON GENERALIZADO Nº 1	SISKO	-1.364915677813	1.363013137813
		STEIGER - ORY	-1.335899229295	1.409545007476
			043839758600	2 313733202300
		REOMETRO	-1 139733334734	2 289608153522
			-1 300068155137	1 2778//660683
			-1,000000100107	1 2625//02003
		SISKO	-1,303102310002	1 260226007007
			-1,007/902001/0	1,0020002/99/
		STEIGER - UKT	-1,335/863666/3]	1,408873306673

Comparaciones múltiples

	(I) Tratamientos Realizados a	(J) Tratamientos Realizados a	Diferencia de	Error típico	Sig.
	las muestras	las muestras	medias (I-J)		
-s-Howell	SISKO	REOMETRO	,5761680984848	,4814186012227	,882
		HERSCHEL - BULKLEY I	-,0553310536364	,4087585496136	1,000
		CASSON GENERALIZADO Nº 1	,0009512700000	,4175270756818	1,000
		OSTWALD DE WAELE - NUTTING	,0012306890909	,4174055130216	1,000
		STEIGER - ORY	,0377741590909	,4204257935008	1,000
		ELLIS DE HAVEN	1,1797377954545	,3378435361298	,039
·		REOMETRO	,538393939393939	,4837384284160	,911
		HERSCHEL - BULKLEY I	-,0931052127273	,4114882129605	1,000
	STEIGER - ORY	CASSON GENERALIZADO Nº 1	-,0368228890909	,4201997815928	1,000
		OSTWALD DE WAELE - NUTTING	-,0365434700000	,420078 9 923622	1,000
		SISKO	-,0377741590909	,4204257935008	1,000
		ELLIS DE HAVEN	1,1419636363636	,3411411033985	,052
	ELLIS DE HAVEN	REOMETRO	-,6035696969697	,4139846303794	,760
		HERSCHEL - BULKLEY I	-1,235068849090 9	,3266541848337	,022
		CASSON GENERALIZADO Nº 1	-1,178786525454 5	,3375622365055	,039
		OSTWALD DE WAELE -	-1,178507106363 6	,3374118653634	,039
		SISKO	-1,179737795454 5	,3378435361298	,039
		STEIGER - ORY	-1,141963636363 6	,3411411033985	,052

Comparaciones múltiples

e dependiente: Esfuerzo Cortante

...

	(I) Tratamientos Realizados a las	(J) Tratamientos Realizados a las	Intervalo de confianza al 95%		
	muestras	muestras	Límite inferior	Límite superior	
s-Howell	II SISKO STEIGER - ORY	REOMETRO	-1,139093535481	2,291429732451	
		HERSCHEL - BULKLEY I	-1,390923038324	1,280260931052	
		CASSON GENERALIZADO Nº 1	-1,363013137813	1,364915677813	
		OSTWALD DE WAELE - NUTTING	-1,362336827997	1,364798206178	
		STEIGER - ORY	-1,335682227666	1,411230545848	
		ELLIS DE HAVEN	,043747794184	2,315727796725	
		REOMETRO	-1,181452581558	2,258240460346	
		HERSCHEL - BULKLEY I	-1,437794106200	1,251583680745	
		CASSON GENERALIZADO Nº 1	-1,409545007476	1.335899229295	

·. *

• •

			1
	OSTWALD DE WAELE - NUTTING	-1,408873306673	1,335786366673
	SISKO	-1,411230545848	1,335682227666
	ELLIS DE HAVEN	-,006261072034*	2,290188344762
	REOMETRO	-2,250739285614	1,043599891674
	HERSCHEL - BULKLEY I	-2,329623509652	-,140514188530
	CASSON GENERALIZADO Nº 1	-2,313733292309	-,043839758600
ELLIS DE MAVEN	OSTWALD DE WAELE - NUTTING	-2,312896233186	-,044117979541
	SISKO	-2,315727796725	-,0437477 <mark>94</mark> 184
	STEIGER - ORY	-2,290188344762	,006261072034

iferencía de medias es significativa al nivel 0.05.

cuerdo con la post-hoc de Tukey, se observa que no se encuentra diferencias se los comportamientos de los modelos escogidos frente al comportamiento Reometro (p>0.05).

conjuntos homogéneos

	Esfuerzo Cortante		
	Tratamientos Realizados a las muestras	Ν	Subconjunto para alfa = 0.05 1
	ELLIS DE HAVEN	· 11	1,639763636364
	REOMETRO	6	2,2433333333333
	STEIGER - ORY	11	2,781727272727
1 T 1 ah	OSTWALD DE WAELE - NUTTING	11	2,818270742727
ne lukey ^{a,o}	CASSON GENERALIZADO Nº 1	. 11	2,818550161818
	SISKO	11	2,819501431818
	HERSCHEL - BULKLEY I	11	2,874832485455
	Sig.		,058

estran las medias para los grupos en los subconjuntos homogéneos.

el tamaño muestral de la media armónica = 9,830.

tamaños de los grupos no son iguales. Se utilizará la media armónica de los tamaños de los s. Los niveles de error de tipo I no están garantizados.
ANEXO 2.2:

TRATAMIENTO ESTADISTICO MUESTRA N° 2

' TAO BY TRATAMIENTO ATISTICS HOMOGENEITY SSING ANALYSIS THOC=TUKEY GH ALPHA(0.05).

/A de un factor

· .

	Notas	
dos creados		18-FEB-2018 21:40:22
arios		
	Conjunto de datos activo	Conjunto_de_datos0
	Filtro	<ninguno></ninguno>
	Peso	<ninguno></ninguno>
	Dividir archivo	<ninguno></ninguno>
	Núm. de filas del archivo de trabajo	72
		Los valores perdidos definidos por el
	Definición de los valores perdidos	usuario serán tratados como
		perdidos.
ento de los valores perdidos		Los estadísticos de cada análisis se
	Coros utilizados	basan en los casos sin datos
	00505 011120005	perdidos para cualquier variable en el
		análisis.
		ONEWAY TAO BY TRATAMIENTO
		STATISTICS HOMOGENEITY
		/MISSING ANALYSIS
		/POSTHOC=TUKEY GH
		ALPHA(0.05).
Ś	Tiempo de procesador	00:00:00
	Tiempo transcurrido	00:00:08

. -

nto_de_datos0]

Prueba de homogeneldad de varianzas

Cortante

dístico de	gi1	gi2	Sig.
evene			
,203	6	65	,975

ueba de Homogeneidad de Levence indica que se cumple el supuesto distico: .203; gl1:6 y gl2:65; p>.05).

ANOVA de un factor

zo Cortante

•	Suma de cuadrados	gl	Media cuadrática	F	Sig.
rupos	9,502	6	1,584	1,756	,012
rupos	58,624	65	,902		
	68,126	71			х

NOVA unifactorial indica que la sangre si tiene un comportamiento reologico tipo pseudoplastico con umbral, por lo cual el comporatamiento arrojado el reometro si tiene semejanza con los comporatamientos calculados con los metros de los modelos usados (F:1.756; p<0.012).

bas post hoc

Comparaciones múltiples

le dependiente: Esfuerzo Cortante

	(I) Tratamientos Realizados a las muestras	(J) Tratamientos Realízados a las muestras	Diferencia de medias (I-J)	Error típico	Sig.
•••••		HERSCHEL - BULKLEY I	-,5368709921212	,4819850278910	,922
		CASSON GENERALIZADO Nº 1	-,5348253875758	,4819850278910	,923
	REOMETRO	OSTWALD DE WAELE - NUTTING	-,5279346630303	,4819850278910	,927
		SISKO	-,5392744421212	,4819850278910	,920
		STEIGER - ORY	-,4965743030303	,4819850278910	,945
		ELLIS DE HAVEN	,4504115151515	,4819850278910	,965
		REOMETRO	,5368709921212	, 4819850278 910	,922
		CASSON GENERALIZADO Nº 1	,0020456045455	,4049484212133	1,000
	HERSCHEL - BULKLEY I	OSTWALD DE WAELE - NUTTING	,0089363290909	,4049484212133	1,000
e Tukey		SISKO	-,0024034500000	,4049484212133	1,000
		STEIGER - ORY	,0402966890909	,4049484212133	1,000
		ELLIS DE HAVEN	,9872825072727	,4049484212133	,200
		REOMETRO	,5348253875758	,4819850278910	,923
		HERSCHEL - BULKLEY I	-,0020456045455	,4049484212133	1,000
	CASSON GENERALIZADO Nº	OSTWALD DE WAELE - NUTTING	,0068907245455	,4049484212133	1,000
	1	SISKO	-,0044490545455	,4049484212133	1,000
		STEIGER - ORY	,0382510845455	,4049484212133	1,000
		ELLIS DE HAVEN	,9852369027273	,4049484212133	,202
		REOMETRO	,5279346630303	,4819850278910	,927
	OSTWALD DE WAELE -	HERSCHEL - BULKLEY I	-,0089363290909	,4049484212133	1,000
	NUTTING	CASSON GENERALIZADO Nº	-,0068907245455	,4049484212133	1,000

		•		
	SISKO	-,0113397790909	4049484212133	1,000
	STEIGER - ORY	,0313603600000	,4049484212133	1,000
	ELLIS DE HAVEN	, 9783461781 818	,4049484212133	,209
	REOMETRO	, 53927444 21212	,4819850278910	,920
	HERSCHEL - BULKLEY I	,0024034500000	,4049484212133	1,000
SIGKO	CASSON GENERALIZADO N°	,0044490545455	,4049484212133	1,000
SISKO	OSTWALD DE WAELE - NUTTING	,0113397790909	,4049484212133	1,000
	STEIGER - ORY	,0427001390909	,4049484212133	1,000
	ELLIS DE HAVEN	,9896859572727	,4049484212133	,198
	REOMETRO	,4965743030303	,4819850278910	,945
	HERSCHEL - BULKLEY I	-,0402966890909	,4049484212133	1,000
	CASSON GENERALIZADO Nº 1	-,0382510845455	,4049484212133	1,000

le dependiente: Esfuerzo Cortante

	(I) Tratamientos Realizados a las	(J) Tratamientos Realizados a las	Intervalo de confianza al 95%		
_	muestras	muestras	Límite inferior	Límite superior	
		HERSCHEL - BULKLEY I	-2,003339578760	,929597594517	
		CASSON GENERALIZADO Nº 1	-2,001293974214	,931643199063	
		OSTWALD DE WAELE - NUTTING	-1,994403249669	,938533923608	
	REOMETRO	SISKO	-2,005743028760	,927194144517	
		STEIGER - ORY	-1,963042889669	,969894283608	
		ELLIS DE HAVEN	-1,016057071487	1,916880101790	
		REOMETRO	-,929597594517	2,003339578760	
		CASSON GENERALIZADO Nº 1	-1,230034448888	1,234125657979	
		OSTWALD DE WAELE - NUTTING	-1,223143724343	1,241016382524	
	HERSCHEL - BULKLEY I	SISKO	-1,234483503433	1,229676603433	
		STEIGER - ORY	-1,191783364343	1,272376742524	
		ELLIS DE HAVEN	-,244797546161	2,219362560706	
In Talana		REOMETRO	-,931643199063	2,001293974214	
ne rukey		HERSCHEL - BULKLEY I	-1,234125657979	1,230034448888	
		OSTWALD DE WAELE - NUTTING	-1,225189328888	1,238970777 9 79	
	CASSON GENERALIZADU Nº 1	SISKO	-1,236529107979	1,227630998888	
		STEIGER - ORY	-1,193828968888	1,270331137979	
		ELLIS DE HAVEN	-,246843150706	2,217316956161	
		REOMETRO	-,938533923608	1,994403249669	
		HERSCHEL - BULKLEY I	-1,241016382524	1,223143724343	
		CASSON GENERALIZADO Nº 1	-1,238970777979	1,225189328888	
	USTWALD DE WAELE - NUTTING	SISKO	-1,243419832524	1,220740274343	
		STEIGER - ORY	-1,200719693433	1,263440413433	
		ELLIS DE HAVEN	-,253733875252	2,210426231615	
	SISKO	REOMETRO	-,927194144517	2,005743028760	
		HERSCHEL - BULKLEY I	-1,229676603433	1,234483503433	

	CASSON GENERALIZADO Nº 1	-1,227630998888	1,236529107979
	OSTWALD DE WAELE - NUTTING	-1,220740274343	1,243419832524
	STEIGER - ORY	-1,189379914343	1,274780192524
	ELLIS DE HAVEN	-,242394096161	2,221766010706
	REOMETRO	-,969894283608	1,963042889669
STEIGER - ORY	HERSCHEL - BULKLEY I	-1,272376742524	1,191783364343
	CASSON GENERALIZADO Nº 1	-1,270331137979	1,193828968888

e dependiente: Esfuerzo Cortante

	(I) Tratamientos Realizados a	(J) Tratamientos Realizados a	Diferencia de	Error típico	Sig.
	las muestras	las muestras	medias (I-J)		
■e Tukey	STEIGER - ORY	OSTWALD DE WAELE - NUTTING	-,0313603600000	,4049484212133	1,000
		SISKO	-,0427001390909	,4049484212133	1,000
		ELLIS DE HAVEN	,9469858181818	,4049484212133	,242
		REOMETRO	-,4504115151515	,4819850278910	,965
		HERSCHEL - BULKLEY I	-,9872825072727	,4049484212133	,200
		CASSON GENERALIZADO Nº	-,9852369027273	,4049484212133	,202
	ELLIS DE HAVEN	OSTWALD DE WAELE - NUTTING	-,9783461781818	,4049484212133	,209
	· · · · · · · · · · · · · · · · · · ·	SISKO	9896859572727	.4049484212133	,198
		STEIGER - ORY	9469858181818	4049484212133	,242
		HERSCHEL - BULKLEY I	-,5368709921212	,4782780017854	,908
		CASSON GENERALIZADO Nº 1	-,5348253875758	,4778636877529	,909
	REOMETRO	OSTWALD DE WAELE - NUTTING	-,5279346630303	,4759297353967	,912
		SISKO	-,5392744421212	,4788501062864	,907
		STEIGER - ORY	-,4965743030303	,4815776321594	,936
		ELLIS DE HAVEN	,4504115151515	,4644725362607	,950
		REOMETRO	,5368709921212	,4782780017854	,908
		CASSON GENERALIZADO Nº 1	,0020456045455	,4099934904066	1,000
s-Howell	HERSCHEL - BULKLEY I	OSTWALD DE WAELE - NUTTING	,0089363290909	,4077377479921	1,000
		SISKO	~,0024034500000	,4111427761660	1,000
		STEIGER - ORY	,0402966890909	,4143162727907	1,000
		ELLIS DE HAVEN	,9872825072727	,3943040641985	,210
		REOMETRO	,5348253875758	,4778636877529	,909
		HERSCHEL - BULKLEY I	-,0020456045455	,4099934904066	1,000
	CASSON GENERALIZADO Nº	OSTWALD DE WAELE - NUTTING	,0068907245455	,4072516767536	1,000
	I	SISKO	-,0044490545455	,4106607352480	1,000
		STEIGER - ORY	,0382510845455	,4138379283972	1,000
		ELLIS DE HAVEN	,9852369027273	,3938014120396	,211
	OSTWALD DE WAELE -	REOMETRO	,5279346630303	,47592973 5 3967	,912
	NUTTING	HERSCHEL - BULKLEY I	-,0089363290909	,4077377479921	1,000

CASSON GENERALIZADO Nº 1	-,0068907245455	,4072516767536	1,000
SISKO	-,0113 3977 90909	, 40840867 82089	1,000
STEIGER - ORY	,0313603600000	,4116032555047	1,000
ELLIS DE HAVEN	,9783461781818	,3914523739695	,212

	(I) Tratamientos Realizados a las	(J) Tratamientos Realizados a las	Intervalo de confianza al 95%	
	muestras	muestras	Límite inferior	Límite superior
e Tukey	STEIGER - ORY	OSTWALD DE WAELE - NUTTING	-1,263440413433	1,200719693433
		SISKO	-1,274780192524	1,189379914343
		ELLIS DE HAVEN	-,285094235252	2,179065871615
		REOMETRO	-1,916880101790	1,016057071487
		HERSCHEL - BULKLEY I	-2,219362560706	,244797546161
		CASSON GENERALIZADO Nº 1	-2,217316956161	,246843150706
	ELLIS DE HAVEN	OSTWALD DE WAELE - NUTTING	-2,210426231615	,253733875252
		SISKO	-2,221766010706	.242394096161
		STEIGER - ORY	-2.179065871615	285094235252
		HERSCHEL - BULKLEY I	-2.246092472669	1.172350488427
		CASSON GENERALIZADO Nº 1	-2,243264768101	1,173613992950
		OSTWALD DE WAELE - NUTTING	-2,232769916831	1,176900590770
	REOMETRO	SISKO	-2,249581594559	1,171032710316
		STEIGER - ORY	-2,212146950869	1,218998344809
		ELLIS DE HAVEN	-1,234754257532	2,135577287835
		REOMETRO	-1,172350488427	2,246092472669
		CASSON GENERALIZADO Nº 1	-1,337308924753	1,341400133844
		OSTWALD DE WAELE - NUTTING	-1,323073377057	1,340946035239
	NERSCHEL - BULKLET I	SISKO	-1,345513115382	1,340706215382
		STEIGER - ORY	-1,313226076551	1,393819454732
s-Howell		ELLIS DE HAVEN	-,301747946432	2,276312960977
5-1 IOWCII		REOMETRO	-1,173613992950	2,243264768101
		HERSCHEL - BULKLEY I	-1,341400133844	1,337308924753
	CASSON GENERALIZADO Nº 1	OSTWALD DE WAELE - NUTTING	-1,323523123938	1,337304573029
		SISKO	-1,345986880265	1,337088771175
		STEIGER - ORY	-1,313721868319	1,390224037410
		ELLIS DE HAVEN	-,302099060870	2,272572866325
		REOMETRO	-1,176900590770	2,232769916831
		HERSCHEL - BULKLEY I	-1,340946035239	1,323073377057
		CASSON GENERALIZADO Nº 1	-1,337304573029	1,323523123938
	OUTWALD DE WAELE - NUTTING	SISKO	-1,345554743063	1,322875184881
		STEIGER - ORY	-1,313393304316	1,376114024316
		ELLIS DE HAVEN	301089635825	2.257781992188

Comparaciones múltiples

e dependiente: Esfuerzo Cortante

le dependiente: Esfuerzo Cortante

	(I) Tratamientos Realizados a las muestras	(J) Tratamientos Realizados a las muestras	Diferencia de medias (I-J)	Error típico	Sig.
s-Howell	SISKO	REOMETRO	,5392744421212	,4788501062864	,907
		HERSCHEL - BULKLEY I	,0024034500000	,4111427761660	1,000
		· · · · · · · · · · · · · · · · · · ·			

cuerdo con la post-hoc de Tukey, se observa que no se encuentra diferencias ce los comportamientos de los modelos escogidos frente al comportamiento Reometro (p>0.05).

conjuntos homogéneos

Esfuerzo Cortante				
	Tratamientos Realizados a las muestras	N	Subconjunto para alfa = 0.05	
			1	
	ELLIS DE HAVEN	11	1,792921818182	
	REOMETRO	6	2,2433333333333	
	STEIGER - ORY	11	2,739907636364	
le Tukey ^{a,b}	OSTWALD DE WAELE - NUTTING	11	2,771267996364	
	CASSON GENERALIZADO Nº 1	11	2,778158720909	
	HERSCHEL - BULKLEY I	11	2,780204325455	
	SISKO	11	2,782607775455	
	Sig.		,255	

estran las medias para los grupos en los subconjuntos homogéneos.

el tamaño muestral de la media armónica = 9,830.

tamaños de los grupos no son iguales. Se utilizará la media armónica de los tamaños de los

. Los niveles de error de tipo I no están garantizados.

ANEXO 2.3:

TRATAMIENTO ESTADISTICO MUESTRA N° 3

Y TAO BY TRATAMIENTO 'ATISTICS HOMÓGENEITY SSING ANALYSIS 'STHOC=TUKEY GH ALPHA(0.05). .

VA de un factor

.

	Notas		
-ados creados		18-FEB-2018 22:36:53	
ntarios			
	Conjunto de datos activo	Conjunto_de_datos0	
	Filtro	<ninguno></ninguno>	
la	Peso	<ninguno></ninguno>	
	Dividir archivo	<ninguno></ninguno>	
	Núm. de filas del archivo de trabajo	72	
		Los valores perdidos definidos por el	
	Definición de los valores perdidos	usuario serán tratados como	
		perdidos.	
niento de los valores perdidos		Los estadísticos de cada análisis se	
		basan en los casos sin datos	
		perdidos para cualquier variable en el	
		análisis.	
		ONEWAY TAO BY TRATAMIENTO	
		STATISTICS HOMOGENEITY	
is		/MISSING ANALYSIS	
		/POSTHOC=TUKEY GH	
		ALPHA(0.05).	
-05	Tiempo de procesador	00:00:00.06	
-909	Tiempo transcurrido	00:00:00.06	

unto_de_datos0]

Prueba de homogeneidad de varianzas

zo Cortante

.

tadístico de Levene	gl1	gl2	Sig.
,766	6	65	,600

.

rueba de Homogeneidad de Levence indica que se cumple el supuesto adístico: .766; gl1:6 y gl2:65; p>.05).

. .

.

ANOVA de un factor

zo Cortante

• •	Suma de cuadrados	gi	Media cuadrática	F	Sig.
urupos	14,916	6	2,486	3,166	,009
-rupos	51,034	65	,785		
	65,950	71			

NOVA unifactorial indica que la sangre si tiene un comportamiento reológico tipo pseudoplástico con umbral, por lo cual el comportamiento arrojado por 'eómetro si tiene semejanza con los comportamientos calculados con los metros de los modelos usados (F:3.166; p<0.009).

bas post hoc

le dependiente: Esfuerzo Cortante					
	(I) Tratamientos Realizados a las muestras	(J) Tratamientos Realizados a las muestras	Diferencia de medias (I-J)	Error típico	Sig.
		HERSCHEL - BULKLEY I	-,65418080666667	,4497042484370	,770
		CASSON GENERALIZADO Nº 1	-,6441355021212	,4497042484370	,782
	REOMETRO	OSTWALD DE WAELE - NUTTING	-,6187875566667	,4497042484370	,812
		SISKO	-,6679880184848	,4497042484370	,752
		STEIGER - ORY	-,538393939393939	,4497042484370	,893
		ELLIS DE HAVEN	,6035696969697	,4497042484370	,829
		REOMETRO	,6541808066667	,4497042484370	,770
		CASSON GENERALIZADO Nº 1	0100453045455	,3778271416735	1,000
· •	HERSCHEL - BULKLEY I	OSTWALD DE WAELE -	,0353932500000	,3778271416735	1,000
етикеу		SISKO	-,0138072118182	,3778271416735	1,000
		STEIGER - ORY	,1157868672727	,3778271416735	1,000
		ELLIS DE HAVEN	1,2577505036364	,3778271416735	,023
		REOMETRO	,6441355021212	,4497042484370	,782
		HERSCHEL - BULKLEY I	-,0100453045455	,3778271416735	1,000
	CASSON GENERALIZADO N°	OSTWALD DE WAELE - NUTTING	,0253479454545	,3778271416735	1,000
	1	SISKO	-,0238525163636	,3778271416735	1,000
		STEIGER - ORY	,1057415627273	,3778271416735	1,000
		ELLIS DE HAVEN	1,2477051990909 •	,3778271416735	,025
	OSTWALD DE WAELE -	REOMETRO	,6187875566667	,4497042484370	,812

Comparaciones múltiples

	•				
_	NUTTING	HERSCHEL - BULKLEY I	-,0353932500000	,3778271416735	1,000
		CASSON GENERALIZADO Nº 1	-,0253479454545	,3778271416735	1,000
		SISKO	-,0 4920046 18182	,3778271416735	1,000
		STEIGER - ORY	,0803936172727	,3778271416735	1,000
		ELLIS DE HAVEN	1,2223572536364	,3778271416735	,030
		REOMETRO	,6679880184848	,4497042484370	,752
		HERSCHEL - BULKLEY I	,0138072118182	,3778271416735	1,000
		CASSON GENERALIZADO Nº 1	,0238525163636	,3778271416735.	1,000
	SISKO	OSTWALD DE WAELE - NUTTING	,0492004618182	,3778271416735	1,000
		STEIGER - ORY	,1295940790909	,3778271416735	1,000
		ELLIS DE HAVEN	1,2715577154545	,3778271416735	,021
		REOMETRO	,538393939393939	,4497042484370	,893
		HERSCHEL - BULKLEY I	-,1157868672727	,3778271416735	1,000
_		CASSON GENERALIZADO Nº 1	-,1057415627273	,3778271416735	1,000

le dependient	te: Esfuerzo Cortante			
	(I) Tratamientos Realizados a las	(J) Tratamientos Realizados a las	Intervalo de co	nfianza al 95%
	muestras	muestras	Límite inferior	Límite superior
		HERSCHEL - BULKLEY I	-2,022433170223	,714071556890
	CASSON GENERALIZADO Nº 1	-2,012387865678	,724116861435	
	DEALETRA	OSTWALD DE WAELE - NUTTING	-1,987039920223	,749464806890
REOMETRO	REUMETRU	SISKO	-2,036240382041	,700264345071
		STEIGER - ORY	-1,906646302950	,829858424162
		ELLIS DE HAVEN	-,764682666587	1,971822060526
		REOMETRO	-,714071556890	2,022433170223
		CASSON GENERALIZADO Nº 1	-1,139516616222	1,159607225313
		OSTWALD DE WAELE - NUTTING	-1,114168670767	1,184955170767
	HEROCHEL - BULKLETT	SISKO	-1,163369132585	1,135754708949
te Tukey		STEIGER - ORY	-1,033775053495	1,265348788040
		ELLIS DE HAVEN	,108188582869*	2,407312424404
		REOMETRO	-,724116861435	2,012387865678
		HERSCHEL - BULKLEY I	-1,159607225313	1,139516616222
		OSTWALD DE WAELE - NUTTING	-1,124213975313	1,174909866222
	CASSON GENERALIZADU Nº T	SISKO	-1,173414437131	1,125709404404
		STEIGER - ORY	-1,043820358040	1,255303483495
		ELLIS DE HAVEN	,098143278324*	2,397267119858
		REOMETRO	-,749464806890	1,987039920223
	OSTWALD DE WAELE - NUTTING	HERSCHEL - BULKLEY I	-1,184955170767	1,114168670767
		CASSON GENERALIZADO Nº 1	-1,174909866222	1,124213975313

 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10			
_	SISKO	-1,198762382585	1,100361458949
	STEIGER - ORY	-1,069168303495	1,229955538040
	ELLIS DE HAVEN	,072795332869*	2,371919174404
	REOMETRO	-,700264345071	2,036240382041
	HERSCHEL - BULKLEY I	-1,135754708949	1,163369132585
SIGKU	CASSON GENERALIZADO Nº 1	-1,125709404404	1,173414437131
Jako	OSTWALD DE WAELE - NUTTING	-1,100361458949	1,198762382585
	STEIGER - ORY	-1,019967841676	1,279155999858
	ELLIS DE HAVEN	,121995794687'	2,421119636222
	REOMETRO	-,829858424162	1,906646302950
STEIGER - ORY	HERSCHEL - BULKLEY I	-1,265348788040	1,033775053495
 _	CASSON GENERALIZADO Nº 1	-1,255303483495	1,043820358040

Comparaciones múltiples

te dependiente: Esfuerzo Cortante						
	(I) Tratamientos Realizados a las muestras	(J) Tratamientos Realizados a las muestras	Diferencia de medias (I-J)	Error típico	Síg.	
- ■e Tukey	STEIGER - ORY	OSTWALD DE WAELE - NUTTING	-,0803936172727	,3778271416735	1,000	
		SISKO	-,1295940790909	,3778271416735	1,000	
		ELLIS DE HAVEN	1,141963636363636	,3778271416735	,053	
		REOMETRO	-,6035696969697	,4497042484370	,829	
	,	HERSCHEL - BULKLEY I	-1,257750503636 4	,3778271416735	,023	
		CASSON GENERALIZADO Nº 1	-1,247705199090 9	,3778271416735	,025	
	ELLIS DE HAVEN	OSTWALD DE WAELE - NUTTING	-1,222357253636 4	,3778271416735	,030	
		SISKO	-1,271557715454 5	,3778271416735	,021	
		STEIGER - ORY	-1,141963636363 6	,3778271416735	,053	
		HERSCHEL - BULKLEY I	-,6541808066667	,4735206729423	,800	
		CASSON GENERALIZADO Nº	-,6441355021212	,4719069694897	,808,	
	REOMETRO	OSTWALD DE WAELE - NUTTING	-,6187875566667*	,4610747313081	,818	
		SISKO	-,6679880184848	,4760994466639	,790	
		STEIGER - ORY	-,538393939393939	,4837384284160	,911	
		ELLIS DE HAVEN	6035696969697	,4139846303794	,760	
s-Howell		REOMETRO	,6541808066667	,4735206729423	,800	
		CASSON GENERALIZADO Nº 1	,0100453045455	,3973778135072	1,000	
	HERSCHEL - BULKLEY I	OSTWALD DE WAELE - NUTTING	,0353932500000*	,3844513579970	1,000	
		SISKO	-,0138072118182	,4023476381546	1,000	
-		STEIGER - ORY	,1157868672727	,4113584883545	1,000	
		ELLIS DE HAVEN	1,2577505036364	,3264907548542	,019	
	CASSON GENERALIZADO Nº	REOMETRO	,6441355021212	,4719069694897	,808,	

. .

.

, ;

1	HERSCHEL - BULKLEY I	-,0100453045455	,3973778135072	1,000
	OSTWALD DE WAELE - NUTTING	,0253479454545*	,3824620331678	1,000
	SISKO	-,0238525163636	,4004472275815	1,000
	STEIGER - ORY	,1057415627273	,4094998975463	1,000
	ELLIS DE HAVEN	1,2477051990909	,3241459133699	,019
	REOMETRO	,6187875566667	,4610747313081	,818
	HERSCHEL - BULKLEY I	-,0353932500000	,3844513579970	1,000
OSTWALD DE WAELE -	CASSON GENERALIZADO Nº 1	-,0253479454545*	,3824620331678	1,000
NUTTING	SISKO	-,0492004618182	,3876231444015	1,000
	STEIGER - ORY	,0803936172727	,3969683691283	1,000
	ELLIS DE HAVEN	1,2223572536364	,3081627705489	,014

e dependiente: Esfuerzo Cortante (I) Tratamientos Realizados a las (J) Tratamientos Realízados a las Intervalo de confianza al 95% muestras muestras Límite inferior Límite superior STEIGER - ORY Tukey **OSTWALD DE WAELE - NUTTING** -1,229955538040 1,069168303495 SISKO -1,279155999858 1,019967841676 **ELLIS DE HAVEN** -,007598284404 2,291525557131 REOMETRO -1,971822060526 ,764682666587 HERSCHEL - BULKLEY I -2,407312424404 -,108188582869 CASSON GENERALIZADO Nº 1 -2,397267119858 -,098143278324 ELLIS DE HAVEN **OSTWALD DE WAELE - NUTTING** -2,371919174404 -,072795332869 SISKO -2,421119636222 -,121995794687 **STEIGER - ORY** -2,291525557131 ,007598284404 HERSCHEL - BULKLEY I -2,354636291327 1,046274677994 CASSON GENERALIZADO Nº 1 -2,341727270622 1,053456266380 **OSTWALD DE WAELE - NUTTING** -2,298720408022* 1,061145294688 REOMETRO SISKO -2,373136444021 1,037160407051 STEIGER - ORY -2,258240460346 1,181452581558 **ELLIS DE HAVEN** -1,043599891674 2,250739285614 REOMETRO -1,046274677994 2,354636291327 CASSON GENERALIZADO Nº 1 -1,288108449409 1,308199058499 **OSTWALD DE WAELE - NUTTING** -1,221322019964* 1,292108519964 **HERSCHEL - BULKLEY I** SISKO -1,328214736981 1,300600313345 **STEIGER - ORY** -1,228488719778 1,460062454324 Howell **ELLIS DE HAVEN** ,163800011995 2,351700995278 REOMETRO -1,053456266380 2,341727270622 HERSCHEL - BULKLEY I -1,308199058499 1,288108449409 **OSTWALD DE WAELE - NUTTING** -1,224681585766 1,275377476675 CASSON GENERALIZADO Nº 1 SISKO -1,332103652591 1,284398619863 STEIGER - ORY -1,232626536148 1,444109661603 **ELLIS DE HAVEN** ,162419486388 2,332990911793 REOMETRO -1,061145294688 2,298720408022 **HERSCHEL - BULKLEY I** -1,292108519964 1,221322019964 **OSTWALD DE WAELE - NUTTING** CASSON GENERALIZADO Nº 1 -1,275377476675 1,224681585766 SISKO -1,316621898685 1,218220975049

STEIGER - ORY

1

-1,218879768371

1,379667002917

,195921629038

I

2,248792878234

Comparaciones múltiples

e dependiente: Esfuerzo Cortante					
	(I) Tratamientos Realizados a	(J) Tratamientos Realizados a	Diferencía de	Error típico	Sig.
	las muestras	las muestras	medias (I-J)		
;-Howell		REOMETRO	,6679880184848	,4760994466639	,790
		HERSCHEL - BULKLEY I	,0138072118182	,4023476381546	1,000
	SISKO	CASSON GENERALIZADO Nº 1	,0238525163636	,4004472275815	1,000
		OSTWALD DE WAELE - NUTTING	,0492004618182	,3876231444015	1,000
		STEIGER - ORY	,1295940790909	,4143243431796	1,0 00
		ELLIS DE HAVEN	1,2715577154545	,3302197274773	,019
		REOMETRO	,538393939393939	,4837384284160	,91 1
		HERSCHEL - BULKLEY I	-,1157868672727	,4113584883545	1,000
		CASSON GENERALIZADO Nº 1	-,1057415627273	,4094998975463	1,000
	STEIGER - ORY	OSTWALD DE WAELE - NUTTING	-,0803936172727	,3969683691283	1,000
		SISKO	- 1295940790909	,4143243431796	1,000
		ELLIS DE HAVEN	1,1419636363636	, 3 411411033985	,052
		REOMETRO	-,6035696969697	,4139846303794	,760
		HERSCHEL - BULKLEY I	-1,257750503636 - 4	,3264907548542	,019
		CASSON GENERALIZADO Nº 1	-1,247705199090 9	,3241459133699	,019
	ELLIS DE HAVEN	OSTWALD DE WAELE - NUTTING	-1,222357253636 4	,3081627705489	,014
		SISKO	-1,271557715454 5	,3302197274773	,019
		STEIGER - ORY	-1,141963636363 6*	,3411411033985	,052

Comparaciones múltiples

e dependiente: Esfuerzo Cortante					
	(I) Tratamientos Realizados a las	(J) Tratamientos Realizados a las	Intervalo de cor	ifianza al 95%	
<u></u>	muestras	muestras	Límite inferior	Límite superior	
Howell		REOMETRO	-1,037160407051	2,373136444021	
SISKO		HERSCHEL - BULKLEY I	-1,300600313345	1,328214736981	
	SISKO	CASSON GENERALIZADO Nº 1	-1,284398619863	1,332103652591	
		OSTWALD DE WAELE - NUTTING	-1,218220975049	1,316621898685	
		STEIGER - ORY	-1,224162020228	1,48335017 840 9	
		ELLIS DE HAVEN	,163814093659	2,379301337250	
		REOMETRO	-1,181452581558	2,258240460346	
	STEIGER - ORY	HERSCHEL - BULKLEY I	-1,460062454324	1,228488719778	
		CASSON GENERALIZADO Nº 1	-1,444109661603	1,232626536148	

. .

	OSTWALD DE WAELE - NUTTING	-1,379667002917	1,218879768371
	SISKO	-1,483350178409	1,224162020228
	ELLIS DE HAVEN	-,006261072034*	2,290188344762
	REOMETRO	-2,250739285614	1,043599891674
	HERSCHEL - BULKLEY I	-2,351700995278	-,163800011995
	CASSON GENERALIZADO Nº 1	-2,332990911793	-,162419486388
	OSTWALD DE WAELE - NUTTING	-2,248792878234	-,195921629038
	SISKO	-2,379301337250	-,163814093659
 -	STEIGER - ORY	-2,290188344762*	,006261072034

≡iferencia de medías es significativa al nivel 0.05.

cuerdo con la post-hoc de Tukey, se observa que no se encuentra diferencias te los comportamientos de los modelos escogidos frente al comportamiento Reómetro (p>0.05).

⇔onjuntos homogéneos

	Esfuerzo Co	rtante		
	Tratamientos Realizados a las	N	Subconjunto par	a alfa = 0.05
	muestras		. 1	2
-	ELLIS DE HAVEN	11	1,639763636364	
REOMETRO62,243333333STEIGER - ORY112,781727272OSTWALD DE WAELE - NUTTING11	REOMETRO	6	2,2433333333333	2,2433333333333
	STEIGER - ORY	11	2,781727272727	2,781727272727
		2,862120890000		
	CASSON GENERALIZADO Nº 1	11		2,887468835455
	HERSCHEL - BULKLEY I	11		2,897514140000
	SISKO	11		2,911321351818
	Sig.	e	,079	,637

estran las medias para los grupos en los subconjuntos homogéneos.

el tamaño muestral de la media armónica = 9,830,

tamaños de los grupos no son iguales. Se utilizará la media armónica de los tamaños de los grupos. Los niveles de error I no están garantizados.

ANEXO 2.4:

• .

TRATAMIENTO ESTADISTICO MUESTRA Nº 4

Y TAO BY TRATAMIENTO ATISTICS HOMOGENEITY SSING ANALYSIS STHOC=TUKEY GH ALPHA(0.05).

VA de un factor

	Notas		
idos creados		18-FEB-2018 22:54:00	
tarios			
	Conjunto de datos activo	Conjunto_de_datos0	
	Filtro	<ninguno></ninguno>	
3	Peso	<ninguno></ninguno>	
	Dividir archivo	<ninguno></ninguno>	
	Núm. de filas del archivo de trabajo	72	
		Los valores perdidos definidos por el	
	Definición de los valores perdidos	usuario serán tratados como	
		perdidos.	
iento de los valores perdidos		Los estadísticos de cada análisis se	
·		basan en los casos sin datos	
		perdidos para cualquier variable en el	
		análisis.	
		ONEWAY TAO BY TRATAMIENTO	
		STATISTICS HOMOGENEITY	
;		/MISSING ANALYSIS	
		/POSTHOC=TUKEY GH	
		ALPHA(0.05).	
ar	Tiempo de procesador	00:00:00.06	
	Tiempo transcurrido	00:00:00.07	

• . •

into_de_datos0]

Prueba de homogeneidad de varianzas

o Cortante

84	gl2	Sig.
6	65	,607
	6	6 65

. . .

:ueba de Homogeneidad de Levence indica que se cumple el supuesto dístico: .755; gl1:6 y gl2:65; p>.05).

.

.

.

ANOVA de un factor

_zo Cortante

	Suma de cuadrados	gi	Media cuadrática	F	Sig.
rupos	15,450	6	2,575	3,269	,007
rupos	51,208	65	,788		
	66,658	71			

NOVA unifactorial indica que la sangre si tiene un comportamiento reológico tipo pseudoplástico con umbral, por lo cual el comportamiento arrojado por eómetro si tiene semejanza con los comportamientos calculados con los metros de los modelos usados (F:3.269; p<0.007).

Comparaciones múltiples

Ibas post hoc

e dependiente: Esfuerzo Cortante					
	(I) Tratamientos Realizados a	(J) Tratamientos Realizados a	Diferencia de	Error típico	Sig.
	las muestras	las muestras	medias (I-J)		
		HERSCHEL - BULKLEY I	-,6739504703030	,4504691839707	,746
		CASSON GENERALIZADO Nº 1	-,6725728457576	, 450469 1839707	,748
	REOMETRO	OSTWALD DE WAELE - NUTTING	-,6435378357576	,4504691839707	,784
		SISKO	-,6869191093939	,4504691839707	,729
		STEIGER - ORY	-,538393939393939	,4504691839707	,893
		ELLIS DE HAVEN	,6035696969697	,4504691839707	,831
		REOMETRO	,6739504703030	,4504691839707	,746
		CASSON GENERALIZADO Nº 1	,0013776245455	,3784698160695	1,000
	HERSCHEL - BULKLEY I	OSTWALD DE WAELE - NUTTING	,0304126345455	,3784698160695	1,000
е тикеу		SISKO	-,0129686390909	,3784698160695	1,000
		STEIGER - ORY	,1355565309091	,3784698160695	1,000
		ELLIS DE HAVEN	1,2775201672727 •	,3784698160695	,020
		REOMETRO	,6725728457576	,4504691839707	,748
		HERSCHEL - BULKLEY I	-,0013776245455	,3784698160695	1,000
	CASSON GENERALIZADO Nº	OSTWALD DE WAELE - NUTTING	,0290350100000	,3784698160695	1,000
	1	SISKO	-,0143462636364	,3784698160695	1,000
		STEIGER - ORY	,1341789063636	,3784698160695	1,000
		ELLIS DE HAVEN	1,2761425427273	,3784698160695	,020
	OSTWALD DE WAELE -	REOMETRO	,6435378357576	,4504691839707	,784

	- NUTTING	HERSCHEL - BULKLEY I	-,0304126345455	,3784698160695	1,000
		CASSON GENERALIZADO Nº	-,0290350100000	,3784698160695	1,000
		SISKO	-,0433812736364	,3784698160695	1,000
		STEIGER - ORY	,1051438963636	,3784698160695	1,000
		ELLIS DE HAVEN	1,2471075327273	,3784698160695	,025
		REOMETRO	,6869191093939	,4504691839707	,729
		HERSCHEL - BULKLEY I	,0129686390909	,3784698160695	1,000
	SISKO	CASSON GENERALIZADO Nº 1	,0143462636364	,3784698160695	1,000
		OSTWALD DE WAELE - NUTTING	,0433812736364	,3784698160695	1,000
		STEIGER - ORY	,1485251700000	,3784698160695	1,000
		ELLIS DE HAVEN	1,2904888063636	,3784698160695	,018
		REOMETRO	,538393939393939	,4504691839707	,893
		HERSCHEL - BULKLEY I	-,1355565309091	,3784698160695	1,000
	STEIGER - ORY	CASSON GENERALIZADO Nº 1	-,1341789063636	,3784698160695	1,000

le dependier	te: Esfuerzo Cortante			
	(I) Tratamientos Realizados a las	(J) Tratamientos Realizados a las	Intervalo de co	nfianza at 95%
	muestras	muestras	Límite inferior	Límite superior
		HERSCHEL - BULKLEY I	-2,044530196466	,696629255860
		CASSON GENERALIZADO Nº 1	-2,043152571921	,698006880406
	DEANICTOA	OSTWALD DE WAELE - NUTTING	-2,014117561921	,727041890406
	KEUMEIKU	SISKO	-2,0574988355557	,683660616769
		STEIGER - ORY	-1,908973665557 -,767010029193 -,696629255860 -1,150139671926 -1,121104661926 -1,164485935562	,832185786769
		ELLIS DE HAVEN	-,767010029193	1,974149423133
		REOMETRO	-,696629255860	2,044530196466
		CASSON GENERALIZADO Nº 1	-1,150139671926	1, 152894921017
le Tukey		OSTWALD DE WAELE - NUTTING	-1,121104661926	1,181929931017
	FICROUTEL - DULKLETT	SISKO	-1,164485935562	1,138548657380
		STEIGER - ORY	-1,015960765562	1,287073827380
		ELLIS DE HAVEN	,126002870801*	2,429037463744
		REOMETRO	~,698006880406	2,043152571921
		HERSCHEL - BULKLEY I	-1,152894921017	1,150139671926
		OSTWALD DE WAELE - NUTTING	-1,122482286471	1,180552306471
		SISKO	-1,165863560108	1,137171032835
		STEIGER - ORY	-1,017338390108	1,285696202835
		ELLIS DE HAVEN	,124625246256*	2,427659839199
		REOMETRO	-,727041890406	2,014117561921
	OSTWALD DE WAELE - NUTTING	HERSCHEL - BULKLEY I	-1,181929931017	1,121104661926
		CASSON GENERALIZADO Nº 1	-1,180552306471	1,122482286471

	SISKO	-1,194898570108	1,108136022835
	STEIGER - ORY	-1,046373400108	1,256661192835
	ELLIS DE HAVEN	,095590236256*	2,398624829199
	REOMETRO	-,683660616769	2,057498835557
	HERSCHEL - BULKLEY I	-1,138548657380	1,164485935562
SISKO	CASSON GENERALIZADO Nº 1	-1,137171032835	1,165863560108
SIGNU	OSTWALD DE WAELE - NUTTING	-1,108136022835	1,194898570108
	STEIGER - ORY	-1,002992126471	1,300042466471
	ELLIS DE HAVEN	,138971509892*	2,442006102835
	REOMETRO	-,832185786769	1,908973665557
STEIGER - ORY	HERSCHEL - BULKLEY I	-1,287073827380	1,015960765562
	CASSON GENERALIZADO Nº 1	-1,285696202835	1,017338390108

· · ·

Comparaciones múltiples

le dependiente: Esfuerzo Cortante

_	(I) Tratamientos Realizados a	(J) Tratamientos Realizados a	Diferencia de	Error típico	Síg.
	las muestras	las muestras	medias (I-J)		
de Tukey	STEIGER - ORY	OSTWALD DE WAELE - NUTTING	-,1051438963636	,3784698160695	1,000
		SISKO	-,1485251700000	,3784698160695	1,000
		ELLIS DE HAVEN	1,141963636363636	,3784698160695	,053
		REOMETRO	-,6035696969697	,4504691839707	,831
		HERSCHEL - BULKLEY I	-1,277520167272 7	,3784698160695	,020
		CASSON GENERALIZADO Nº	-1,276142542727	3784698160695	020
		1	3	,	1
	ELLIS DE HAVEN	OSTWALD DE WAELE -	-1,247107532727	3784698160695	025
		NUTTING	3	,570-1060-1000-50	,020
		SISKO	-1,290488806363	,3784698160695	,018
			6		
		STEIGER - ORY	-1,141963636363 6	,3784698160695	,053
		HERSCHEL - BULKLEY I	-,6739504703030	,4730805481834	,779
		CASSON GENERALIZADO Nº 1	-,6725728457576	,4728258081916	,780
	REOMETRO	OSTWALD DE WAELE - NUTTING	-,6435378357576*	,4628178261478	,795
•		SISKO	-,6869191093939	,4755927749701	,769
		STEIGER - ORY	-,538393939393939	,4837384284160	,911
		ELLIS DE HAVEN	,6035696969697	,4139846303794	,760
s-Howell		REOMETRO	,6739504703030	,4730805481834	,779
		CASSON GENERALIZADO Nº	,0013776245455	,3979454247415	1,000
HE	HERSCHEL - BULKLEY I	OSTWALD DE WAELE - NUTTING	,0304126345455	,3860008502333	1,000
		SISKO	-,0129686390909	,4012291163218	1,000
		STEIGER - ORY	,1355565309091	,4108517777825	1,000
		ELLIS DE HAVEN	1,2775201672727	,3258520989207	,017
	CASSON GENERALIZADO Nº	REOMETRO	,6725728457576	4728258081916	,780
	· . ·				

		-	-	
1	HERSCHEL - BULKLEY I	-,0013776245455	, 397945 4247415	1,000
	OSTWALD DE WAELE -	,0290350100000*	, 385688 6000433	1,000
	SISKO	0143462636364	.4009287263429	1 000
	STEIGER - ORY	,1341789063636	,4105584283992	1,000
	ELLIS DE HAVEN	1,2761425427273	,3254821503456	,017
	REOMETRO	,6435378357576	,4628178261478	,795
	HERSCHEL - BULKLEY I	-,0304126345455	,3860008502333	1,000
OSTWALD DE WAEL	E - CASSON GENERALIZADO N° 1	-,0290350100000*	,3856886000433	1,000
	SISKO	-,0433812736364	,3890757495849	1,000
	STEIGER - ORY	,1051438963636	,3989916270271	1,000
	ELLIS DE HAVEN	1,2471075327273	,3107647430159	.013

.

le dependiente: Esfuerzo Cortante

•

.

	(I) Tratamientos Realizados a las	(J) Tratamientos Realizados a las	Intervalo de co	nfianza al 95%
- · · · · · · · · · · · · · · · · · · ·	muestras	muestras	Límite inferior	Límite superior
e Tukey=	STEIGER - ORY	OSTWALD DE WAELE - NUTTING	-1,256661192835	1,046373400108
		SISKO	-1,300042466471	1,002992126471
		ELLIS DE HAVEN	-,009553660108	2,293480932835
		REOMETRO	-1,974149423133	,767010029193
		HERSCHEL - BULKLEY I	-2,429037463744	126002870801
		CASSON GENERALIZADO Nº 1	-2.427659839199	- 124625246256
	ELLIS DE HAVEN	OSTWALD DE WAELE - NUTTING	-2.398624829199	095590236256
		SISKO	-2.442006102835	- 138971509892
		STEIGER - ORY	-2 293480932835	009553660108
		HERSCHEL - BULKLEY I	-2.373619248896	1 025718308290
		CASSON GENERALIZADO Nº 1	-2.371788214260	1.026642522745
		OSTWALD DE WAELE - NUTTING	-2.326118653185*	1.039042981669
	REOMETRO	SISKO	-2,391134351645	1.017296132858
		STEIGER - ORY	-2,258240460346	1,181452581558
		ELLIS DE HAVEN	-1,043599891674	2,250739285614
		REOMETRO	-1,025718308290	2,373619248896
		CASSON GENERALIZADO Nº 1	-1,298618208702	1,301373457793
		OSTWALD DE WAELE - NUTTING	-1,231102764544*	1,291928033635
,		SISKO	-1,323720821231	1,297783543049
		STEIGER - ORY	-1,207105878199	1,478218940017
;-Howell		ELLIS DE HAVEN	,185930349625	2,369109984921
		REOMETRO	-1,026642522745	2,371788214260
		HERSCHEL - BULKLEY I	-1,301373457793	1,298618208702
	CASSON GENERALIZADO Nº 1	OSTWALD DE WAELE - NUTTING	-1,231434825968*	1,289504845968
		SISKO	-1,324123509906	1,295430982633
		STEIGER - ORY	-1,207550477077	1,475908289804
		ELLIS DE HAVEN	,185919941604	2,366365143851
		REOMETRO	-1,039042981669	2,326118653185
		HERSCHEL - BULKLEY I	-1,291928033635	1,231102764544
	OSTWALD DE WAELE - NUTTING	CASSON GENERALIZADO Nº 1	-1,289504845968*	1,231434825968
		SISKO	-1,315223216044	1, 228460668771
		STEIGER - ORY	-1,200349172190	1,410636964918

.

1,410636964918

			1		1
	(I) Tratamientos Realizados a	(J) Tratamientos Realizados a	Diferencia de	Error típico	Sig.
	las muestras	las muestras	medias (I-J)		
s-Howell		REOMETRO	,6869191093939	,4755 9 27749701	,769
		HERSCHEL - BULKLEY I	,0129686390909	,4012291163218	1,000
	SISKO	CASSON GENERALIZADO Nº 1	,0143462636364	,4009287263429	1,000
	GIGKO	OSTWALD DE WAELE - NUTTING	,0433812736364	,3890757495849	1,000
		STEIGER - ORY	,1485251700000	,4137420281302	1,000
		ELLIS DE HAVEN	1,2904888063636	,3294888054324	,017
		REOMETRO	,538393939393939	,4837384284160	,911
		HERSCHEL - BULKLEY I	-,1355565309091	,4108517777825	1,000
		CASSON GENERALIZADO Nº 1	-,1341789063636	,4105584283992	1,000
	STEIGER - ORY	OSTWALD DE WAELE - NUTTING	-,1051438963636	,3989916270271	1,000
		SISKO	-,1485251700000	,4137420281302	1,000
		ELLIS DE HAVEN	1,1419636363636	,3411411033985	,052
		REOMETRO	-,6035696969697	,4139846303794	,7 6 0
		HERSCHEL - BULKLEY I	-1,277520167272 7	,3258520989207	,017
		CASSON GENERALIZADO Nº 1	-1,276142542727 3	,3254821503456	,017
	ELLIS DE HAVEN	OSTWALD DE WAELE - NUTTING	-1,247107532727 3	,3107647430159	,013
		SISKO	-1,290488806363 6	,3294888054324	,017
		STEIGER - ORY	-1,141963636363 6*	,3411411033985	,052

Comparaciones múltiples

le dependiente: Esfuerzo Cortante

- ____ ·

•

	(I) Tratamientos Realizados a las	(J) Tratamientos Realizados a las	Intervalo de confianza al 95%		
	muestras	muestras	Límite inferior	Límite superior	
s-Howell		REOMETRO	-1,017296132858	2,391134351645	
		HERSCHEL - BULKLEY I	-1,297783543049	1,323720821231	
	SIGNO	CASSON GENERALIZADO Nº 1	-1,295430982633	1,324123509906	
	313NU	OSTWALD DE WAELE - NUTTING	-1,228460668771	1,315223216044	
		STEIGER - ORY	-1,203364434239	1,500414774239	
		ELLIS DE HAVEN	,185450061368	2,395527551359	
		REOMETRO	-1,181452581558	2,258240460346	
	STEIGER - ORY	HERSCHEL - BULKLEY I	-1,478218940017	1,207105878199	
	_	CASSON GENERALIZADO Nº 1	-1,475908289804	1,207550477077	

ANEXO N° 2.5:

-

1 - Carlos -

GRAFICO DE BANDERAS

• . .

·

.

Muestra 01:

	(Herschel-Buikley)	(Casson) - Generalizada Nro.1	Ostwald = de Waele-Nutting	Sisko	Steiger-Ory	Ellis de Haven
E G	0.9999955	0.9999986	0.9993098	0.9999925	0.9931622	0.9981002
20°C	0.9998451	0.9999928	0.9970058	0.9995266	0.9929855	0.9980385
280	0.999978	0.9999789	0.9975761	0.9999006	0.9929826	0.9981768
97G	0.9999713	0.9999714	0.9999703	0.9999734	0.9958492	0.9994647
450	0.9997047	0.9999989	0.9950492	0.9991683	0.9927385	0.9979238

Muestra 02:

	(Herschel-Buikley))	Casson - Generalizada Nro:1	Ostwald = de Waele- Nutting	<u>GERO</u>	Steiger Ory	Ellis-de Raven
526	0.9996012	0.9999985	0.9946199	0.9990307	0.9919391	0.9986442
670	0.9999173	0.9999681	0.9994068	0. 99 9823	0.9948844	0.9997438
420	0.9999706	0.999971	0.9999705	0.9785346	0.9963991	0.9999523

Muestra 03

:-		(Herschel-Bulkley)	(Casson o Generalizada Nro.1)	Ostwald de Waele Nutting	Sisko	Steiger-Ory	Ellis-de Haven
E	627G	0.9999478	0.9999869	0.9994562	0.9998696	0.9952436	0.9997559
L	87C	0.9998207	0.9999832	0.9923818	0.9992185	0.9917091	0.9981433
L	42303	0.9997863	0.999997	0.9965104	0.9994042	0.9929625	0.9990458

Muestra 04

	Herschel Buikley ()	Cassonia Generalizada Nro.1	Ostwald = de Waeles Nutting	Sero.	StegerOry	(Ellis-de Haven)
3270	0.9999761	0.9999767	0.9999698	0.9999736	0.9961326	0.9999402
57C	0.99994	0.9999423	0.9954517	0.999732	0.9924024	0.9984853
42°C	0.9998057	0.9999866	0.9942981	0.9992302	0.9935171	0.9988019

ANEXO 3:

ANALISIS DE LABORATORIO DE LAS MUESTRAS DE SANGRE

ANEXO 3.1:

ANALISIS DE LABORATORIO MUESTRA N° 1

					.
				9	
aciente	e :	MOLINA RODRIG	UEZ EDUARDO DANIEL	Prioridad : Urgencias	
INO	:	45962547	Historia :	Nro. Guía : 62400	
exo		Masculino	Edad : 27 Años	Cliente :	
Direcció	in :	PSJ. PRIMAVERA	116 STA. ROSA		

lédico :,

ervicio

Localidad : APTUS CENTRAL

Fecha de Toma de Muestra: 08/09/2016 13:31:42 .

Examenes Realizados	Resultado Actual	Valor Referencial	Unidades
MOGRAMA			
Mélodo: Citometría de Flujo Fluorescente - XE 2100			
noglobina	15.3	13.50 - 17.50	g/dL
matocrito	46.2	41.00 - 53.00	%
naties	5.11	4.50 - 5.50	*10^6/uL
umen Corpuscular Medio	90.4	80.00 - 100.00	fŁ
moglobina Corpuscular Media	29.9	26.00 - 34.00	pg
ncentración de la Hemoglobina Corpuscular	33.1	31.00 - 37.00	g/dL
licontoninial citeals (FIDH) (%;		11.9014.00	96
lice de Anisocitosis (RDW) (SD)	42.1	35.10 - 43.90	fL
ucocitos Totales	5.75	4.50 - 11.00	* 10 ^3/ul
sinófilos (%)	2.6	0.00 - 3.00	%
sófilos (%)	0.5	0.00 - 1.00	%
nfocitos (%)	31	24.00 - 44.00	%
nocitos (%)	5.9	3.00 - 6.00	%
utrófilos Segmentados (%)	60	35.00 - 66.00	%
stones (%)	0.0	0.00 - 5.00	%
sinófilos (10^3/UL)	0.15	0.00 - 0.70	* 10 ^3
sófilos (10^3/UL)	0.03	0.00 - 0.20	* 10 ^3/ul
nfocitos (10^3/UL)	1.78	1.00 - 4.80	* 10 ^3/ul
pnocitos (10^3/UL)	0.34	0.00 - 0.90	* 10 ^3/ul
utrófilos Segmentados (10^3/UL)	3.45	1.80 - 7.70	* 10 ^3/ul
stones (10^3/UL)	0.0	0.00 - 0.50	* 10 ^3/ul
cuento de Plaquetas	294	150.00 ~ 350.00	* 10 ^3/a
lumen Plaquetario Medio	10	7.50 - 11.50	fL
utrófilos Totales (ANC)	3 45	1.80 - 8.20	*10 ^3/al

· ..

بير.

÷ .

1.

÷

;

Paciente : MOLINA RODRI	GUEZ EDUARDO DANIEL	Prioridad : Urgencias	
DNI : 45962547	Historia:	Nro. Guía : 62400	
Sexo : Masculino	Edad : 27 Años	Cliente :	
Dirección : PSJ. PRIMAVER/	A 116 STA. ROSA		
Médico :,		Localidad : APTUS CENTRAL	
Servicio :		Fecha de Toma de Muestra: 08/09/2016 13:31:42	
Examenes Realizados	Resultado Actual	Valor Ur Referencial	nidade
RUPO SANGUINEO		· · ·	
Método: AGLUTINACION	_		
ctor RH	U Positivo	s	5/U
	r obitivo	2	5/U
		a Bar	EI .
		Dr. JULIO BELTRAN CMP: 46441 RNE: 17	667
'R	No Reactivo	s	S/U
létodo: Aglutinación			
		Dr. ALEJANDRO COLICI DIRECTOR MEDICO CMP: 3634 RNE: 12471	ion y.

v

Sede Central Av. Santa Cruz 367 Miraflores, Lima 18 - Perú T (511) 203 5900 F (511) 203 5908 www.medlab.com.pe

ANEXO 3.2:

ANALISIS DE LABORATORIO MUESTRA Nº 2

AZOJUJA

:1831

(*) : Examenes realizados en Laboratorio da Derivación.

SERVICIO DE LABORATORIO

52 / 09 / 2017	:	FECHA
POLICLINICO MUNICIPAL RIMAC	:	PROCEDENCIA
RARTICULAR	:	WEDICO
20ña 43	:	0A03
MOLINA GARCIA RAQUEL	:	PACIENTE
333	:	Nª DE O&DEN

SISIJANA 30 ODATJUS39

:ODATJU239

AJIMIUDOI8

,	[P/6m 0]) - 0L	p/6w	6 <i>L</i>
ergnea	na ezoanlo eb adiasailimeua el		
	ab ooinzongeib la eneq ebezu za		
	ab omzilodetam lab zanabrozab		
	• • • •	1	•

RANGO REFERENCIAL:

Kike peramás

	Metodo: מנסבסאואבדאוכס	courceungro en cunentanue catavir cu e levenge bebizado el e nayudronco picrenentan el corcare de normanaria e corcare el corcare dibrezato el corcare el el corcare dibrezato el corcare e
: אופרוכנעוסס	lb\gm 03	.65 - 160 mg/di. 36 - 160 mg/di. 26 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190 - 190
COFEZLEVOL :	COLORIMETRICO Matado : 155 mg/dl	.40 – 200 mg/dJ. Se emplea para diagnosticar y tratar enternadades con niveles elevados de colesterol o trastornos en el colesterol o trastornos en el
	Método Colorimetrico	es usada para et diagrostico de desordenes del metabolismo de carbohidratos tales como hiperglicemia, glicemia neonatal.

2CP

Alejandro Tiburcio Gonzales MEDICO PATOLOGO CLINICO C.M.P. 14331 R.N.E. 20900

. zeselq sh isinatus otizogah is obidab

mo.seministisqisinumasinilsiloq.www Central Telefonica: (01) 342-7123 Celle Restauración N* 235 Rimac Urb. Ciudad y Campo

Este se un exemen auxiliar, los resultados deben ser complementados con la interpretación de un médico tratante.

ANEXO 3.4:

ANALISIS DE LABORATORIO MUESTRA N° 4

na n	n mini harre Tire An					
Denominación/	Función r	eológica	Viscosidad aparente	Viscosidad diferencial	Nro: parámetros	Función alterna
Newton	$\tau = \mu \frac{du}{dy}$		• · · · · · · · · · · · · · · · · · · ·	···· μ	π.1: μ	$\frac{du}{dy} = \frac{1}{\mu}\tau$
Bingham	$\tau = \tau_0 + \mu \frac{du}{dy}$		μ	μ	$2:\tau_0,\mu$	$\frac{du}{dy} = \frac{1}{\mu} (\tau - \tau_0)$
Casson	$ au^{1/2} = au_0^{1/2} + \mu_c igg($	$\left(\frac{\partial u}{\partial y}\right)^{1/2}$	μ_c^2	μ_c^2	$2:\tau_0,\mu_c$	$\frac{du}{dy} = \frac{1}{\mu_c^2} \left(\sqrt{\tau} - \sqrt{\tau_0}\right)^2$
Casson- generalizada Nro.1	$\tau^{1/n} = \tau_0^{1/n} + \mu_c \left(n > 1 m > 1 \right)$	$\left(\frac{du}{dy}\right)^{1/m}$			$4:\tau_{0,} \mu_{c},n,m$	$\frac{du}{dy} = \frac{1}{\mu_c^m} \left(\tau^{1/n} - \tau_0^{1/n} \right)^m$
Casson- generalizada Nro.2	$\tau^{2/n} = \tau_0^{2/n} + \mu_c$ $n > 2 m > 1$	$\left(\frac{du}{dy}\right)^{1/m}$			$4: \tau_{0,} \mu_{c}, n, m$	$\frac{du}{dy} = \frac{1}{\mu_c^m} \left(\tau^{2/n} - \tau_0^{2/n}\right)^m$
Casson generalizada Nro.3 modificado	$\sqrt{ au} = \sqrt{ au_0} + \mu_c$ μ_{ap} fase contin	$\frac{\mu_{ap}}{\mu_{ap_0}} \frac{du}{dy}$ nua	$\mu_{c}^{2}\frac{\mu_{ap}}{\mu_{ap_{0}}}$	r.	$4:\tau_{0,} \ \mu_{c}, \mu_{ap}, \mu_{ap_{0}}$	$\frac{du}{dy} = \frac{\mu_{ap_0}}{\mu_{ap} \cdot \mu_c^2} \left(\sqrt{\tau} - \sqrt{\tau_0}\right)^2$
	$\mu_{ap_{o}}$ fase extra	polada				

Herschel-
Bulkley Nro.1
$$\tau = \tau_0 + \mu \left(\frac{du}{dy}\right)^{1/m}$$
. $\mu^{1/m} \left(\frac{du}{dy}\right)^{\frac{1-m}{m}}$
Herschel-
Bulkley Nro.2 $\tau = \tau_0 + \frac{\mu(du/dy)}{1 + c(\tau - \tau_0)^n}$
 $\mu^{1/m} \left(\frac{du}{dy}\right)^{\frac{1-m}{m}}$
 $\mu^{1/m} \left(\frac{du}{dy}\right)^{n-1}$
 $\mu^{1/m} \left(\frac{d$

.

Ferrys

.

$$\tau = \frac{\mu}{1 + \frac{\tau}{G}} \cdot \frac{du}{dy}$$

Reiner- Philipoff

El exponente 2 se generaliza a n.

$$\frac{du}{dy} = \frac{1}{\mu} \left(\tau + \frac{\tau^2}{G} \right)$$

Briant

 $3: \mu_{\infty}, \tau_{0}, n \qquad \qquad \frac{du}{dy} = \frac{\tau}{\mu_{\infty} \left[1 + \frac{\tau_{0}}{n \cdot \mu_{\infty} \cdot \frac{du}{dy}}\right]^{n}}$ $\tau = \mu_{\infty} \left| 1 + \frac{\tau_0}{n \cdot \mu_{\infty} \cdot \frac{du}{dy}} \right| \cdot \frac{du}{dy} \qquad \mu_{\infty} \left| 1 + \frac{\tau_0}{n \cdot \mu_{\infty} \cdot \frac{du}{dy}} \right|$ 0 <n< 1 **Bellet Nro 1** $\tau = \left[\mu_{\infty} + \frac{\mu_0 - \mu_{\infty}}{1 + c\tau^{\alpha - 1}} \right] \frac{du}{dv} \qquad \qquad \mu_{\infty} + \frac{\mu_0 - \mu_{\infty}}{1 + c\tau^{\alpha - 1}}$ $4: \mu_{\infty}, \mu_{0}, \alpha, c \qquad \frac{du}{dy} = \left[\frac{1 + c\tau^{\alpha - 1}}{\mu_{-}c\tau^{\alpha - 1} + \mu_{0}}\right]\tau$ $\alpha > 1$

Bellet Nro 2

Fuente: Soler, M; 1976; López Chalarca, Liliana; Miranda Galvis; Lisbeth; (2009).

 $3: \mu_{\infty}, B, n$
ANEXO 5:

OTROS MODELOS ADICIONALES

-

DENOMINACION	MODELO	PARAMETROS
Casson Modificado (Mizrahi and Berk, 1972)	$\tau^{0.5} = \tau_0^{0.5} + K_1 \times \dot{\gamma}^{n_1}$	3: τ ₀ , K ₁ , n ₁
Herschel-Bulkley Generalizado (Ofoli et. al. 1987)	$\tau^{n_1} = \tau_0^{n_1} + K_1 \times \dot{\gamma}^{n_2}$	4 :τ ₀ ,Κ ₁ ,n ₁ ,n ₂
V°Cadlo (Parzonka and V°Cadlo, 1968)	$\tau = (\tau_0^{1/n_1} + K_1 \times \dot{\gamma})^{n_1}$	3 :τ ₀ ,Κ ₁ ,η
Power Series (Whorlow, 1992)	$\dot{\gamma} = \mathbf{K}_{1} \times \tau + \mathbf{K}_{2} \times \tau^{3} + \mathbf{K}_{3} \times \tau^{5} \dots$ $\tau = \mathbf{K}_{1} \times \dot{\gamma} + \mathbf{K}_{2} \times \dot{\gamma}^{3} + \mathbf{K}_{3} \times \dot{\gamma}^{5} \dots$	3:K ₁ ,K ₂ ,K ₃
Carreu (Carreu, 1968)	$\eta = \eta_{\infty} + (\eta_0 - \eta_{\infty}) \left[1 + (\mathbf{K}_1 \times \dot{\gamma})^2 \right]^{(n-1)/2}$	4: $\eta_0, \eta_\infty, K_1, n$
Cross (Cross,1965)	$\eta = \eta_{\infty} + \frac{(\eta_0 - \eta_{\infty})}{1 + K_1 \times \dot{\gamma}^{n_1}}$	4:η ₀ ,η _∞ ,Κ ₁ ,η ₁
Van Wazer (Van Wazer, 1963)	$\eta = \frac{(\eta_0 - \eta_{\infty})}{1 + K_1 \times \dot{\gamma} + K_2 \times \dot{\gamma}^{n_1}} + \eta_{\infty}$	5:η₀,η∞,Κ₁,Κ₂,η
Carreu-Yasuda	$\eta = \eta_{\infty} + (\eta_0 - \eta_{\infty}) \left[1 + (K_1 \times \dot{\gamma})^a \right]^{(n-1)/a}$	$5:\eta_0,\eta_\infty,K_1,a,n_1$
Tscheuschner	$\mu = \mu_{\infty} + \frac{\tau_0}{\dot{\gamma}} + \frac{\mu_0}{\left(\dot{\gamma}/\gamma_b\right)^n}$	$5:\mu_0,\mu_\infty,\tau_0,\gamma_b,n_1$
Papir-Krieger	$\mu = \mu_{\infty} + \frac{(\mu_0 - \mu_{\infty})}{1 + \left(\frac{\tau}{\tau_m}\right)^m}$	4:μ ₀ ,μ _∞ ,τ _m ,m
Spriggs	$\tau = \mu_0 \times \dot{\gamma}, \dot{\gamma} < \dot{\gamma}_0; \tau = \mu_0 \times \dot{\gamma} (\dot{\gamma} / \dot{\gamma}_0)$	ີ3:μ _៰ ,γ _៰ ,n
Metzner	$\tau = \mu_0 \times \dot{\gamma} \left[\frac{1 + \frac{\mu_{\infty}}{\mu_0} (1 + (\tau / \tau_m)^{\alpha - 1})}{1 + (\tau / \tau_m)^{\alpha - 1}} \right]$	4:μ ₀ ,μ _∞ ,τ _m ,α
Skelland	$\tau = \tau_0 + \mu_0 \times \dot{\gamma} (1 + c(\tau - \tau_0))^{-1}$	4:τ ₀ ,μ ₀ ,c,m
Crowley-Kitzes	$\tau = \left[\frac{1.2 + \alpha (1 + (c_1 \tau)^{-0.2})^3}{1.2 - \alpha (1 + (c_1 \tau)^{-0.2})^3}\right] \times \mu_L \dot{\gamma}$	3:α,c ₁ ,μ

•

. .

$$\mu_{a} = \frac{\mu_{0}}{1 + \frac{\mu_{0}}{K} \dot{\gamma}^{1-n}} \quad n < 1$$
Power Law
pseudoplástico
$$\mu_{a} = \mu_{0} \left[1 + \frac{K}{\mu_{0}} \dot{\gamma}^{1-n} \right] \quad n > 1 \text{ dilatante}$$
Roberston - Stiff
$$\tau = k \times (\dot{\gamma}_{0} + \dot{\gamma})^{n} \qquad 3: k, \dot{\gamma}_{0}, n$$
Williams
$$\tau = \left[\eta_{\infty} + \frac{(\eta_{0} - \eta_{\infty})}{1 + \tau_{1}^{2} \times \dot{\gamma}^{2}} \right] \times \dot{\gamma} \qquad 3: \eta_{0}, \eta_{\infty}, \tau_{1}$$

Fuente: Ramírez Navas, J. (2006); López Chalarca, Liliana; Miranda Galvis; Lisbeth; (2009).

.

ANEXO 6:

.

DECRETO SUPREMO Nº 03-95-SA

Aprueban el Reglamento de la Ley No 26454, que declaró de orden público la obtención, donación, transfusión y suministro de sangre humana

DECRETO SUPREMO Nº 03-95-SA

CONCORDANCIAS: R.M.Nº 283-99-SA-DM

EL PRESIDENTE DE LA REPUBLICA

CONSIDERANDO:

Que por Ley Nº 26454 se ha declarado de orden público y de interés nacional la obtención, donación, conservación procesamiento, transfusión y suministro de sangre humana, sus componentes y derivados;

Que es necesario establecer la relación de dependencia del Programa Nacional de Hemoterapia y Bancos de Sangre;

De conformidad con lo previsto en el Artículo 118 inciso 8) de la Constitución Política del Perú;

DECRETA:

Artículo 1.- Apruébase el Reglamento de la Ley Nº 26454, cuyo texto consta de cincuenta y dos artículos y forma parte del presente Decreto Supremo.

Artículo 2 .- El Programa Nacional de Hemoterapia y Bancos de Sangre, cuyas siglas serán "PRONAHEBAS", a que se refiere el Artículo 4 de la Ley Nº 26454, dependerá de la Dirección General de Salud de las Personas del Ministerio de Salud.

Artículo 3.- Facúltase al Ministro de Salud para que dicte las disposiciones modificatorias y complementarias, al Reglamento materia del presente Decreto Supremo.

Artículo 4.- Derógase el Decreto Supremo Nº 004-90-SA, y toda otra disposición que se oponga al presente Decreto Supremo.

Artículo 5.- El presente Decreto Supremo será refrendado por el Ministro de Salud.

Dado en la Casa de Gobierno, en Lima, a los veintisiete días del mes de julio de mil novecientos noventa y cinco.

ALBERTO FUJIMORI FUJIMORI Presidente Constitucional de la República

EDUARDO YONG MOTA Ministro de Salud

REGLAMENTO DE LA LEY Nº 26454

CAPITULO I

DISPOSICIONES GENERALES

Artículo 1.- Toda mención que se haga en este Reglamento a "la Ley" debe entenderse como referida a la Ley Nº 26454.

Artículo 2.- El presente, Reglamento regula las actividades de obtención, donación, conservación, transfusión y suministro de sangre humana, sus componentes y derivados, así como los aspectos de supervisión, fiscalización y monitoreo de las mencionadas actividades; con el fin de proporcionar sangre segura, en calidad y cantidad necesarias.

Artículo 3.- Las disposiciones establecidas en la Ley y en el presente reglamento son de aplicación para los establecimientos públicos o privados dedicados, total o parcialmente, la extracción procesamiento, conservación, almacenamiento, transfusión, distribución y suministro de sangre.

Artículo 4.- El control del cumplimiento de lo establecido por la Ley, el presente Reglamento y demás disposiciones afines son competencia del Ministerio de Salud, a través del Programa Nacional de Hemoterapia y Bancos de Sangre (PRONAHEBAS), sin perjuicio de las acciones que le competen al Instituto Nacional de Defensa de la Competencia y de la Protección de la Propiedad Intelectual (INDECOPI).

Artículo 5.- El PRONAHEBAS tiene como objetivo fundamental normar, coordinar y vigilar las actividades señaladas en el Artículo 2 del presente, Reglamento.

Artículo 6.- Las actividades de obtención, donación, procesamiento, conservación, transfusión y suministro de sangre humana, son inherentes y de competencia exclusiva de los Centros de Hernoterapia y Bancos de Sangre los cuales estarán sujetos a las directivas y a la supervisión y fiscalización del PRONAHEBAS.

CAPITULO II

DEL PROGRAMA NACIONAL DE HEMOTERAPIA Y BANCOS DE SANGRE

Artículo 7.- El PRONAHEBAS, es el órgano competente del manejo del tejido hemático y esta conformado por dos niveles funcionales:

a) Nivel Técnico Normativo y de Supervisión, y
b) Nivel Operativo.

Artículo 8 .- Son funciones del nivel técnico normativo y de supervisi®n del PRONAHEBAS los siguientes:

a) Técnico Normativo:

a.1. Elaborar las normas técnico-administrativas referentes a los mecanismos de obtención, donación, conservación, almacenamiento, transfusión y suministro de sangre humana sus componentes y derivados;

a.2. Fomentar el desarrollo integral, a nivel regional y nacional, de los Centros de Hemoterapia y Bancos de Sangre;

a.3. Orientar el desarrollo de las actividades de capacitación de los recursos humanos, investigación, educación de la comunidad, propaganda, promoción y fomento de la donación voluntaria. a.4. Proponer las normas para preservar la sangre y sus componentes, la salud de los receptoras la protección de los donantes y del personal que interviene en su manejo;

a.5. Absolver consultas sobre los alcances de las normas que rigen las actividades mencionadas en el Artículo 2 el presente Reglamento;

a.6. Establecer los niveles de acreditación.

b.) Supervisión:

b.1. Velar por el cumplimiento de la normatividad de las actividades establecidas en el Artículo 2 del presente Reglamento, sin perjuicio de Las acciones que le competen al INDECOPI;

b.2. Supervisar y evaluar el desempeño de los Centros de Hemoterapia, Bancos de Sangre y Plantas de Hemoderivados;

b.3. Supervisar la organización, funcionamiento e ingeniería sanitaria en los Centros de Hemoterapia y Bancos de Sangre, Servicios de Transfusión y Puestos de Extracción Hemática, a través de visitas de inspección periódicas, a fin de evaluar el real cumplimiento de la legislación vigente;

b.4. Asumir vigilancia permanente para el correcto y seguro manejo de la sangre en los Centros de hemoterapia, Bancos de Sangre y plantas de hemoderivados.

Artículo 9.- Son funciones del nivel operativo del PRONAHEBAS, coordinar, promover y vigilar la organización de la Red Nacional

Artículo 10 .- Son atribuciones del PRONAHEBAS:

a) Establecer y mantener actualizado el Registro Nacional de los Centros de Hemoterapia, Bancos de Sangre y Plantas de Hemoderivados;

 b) Establecer y mantener actualizado un sistema de informática que permita la operatividad del Programa;

c) Definir los recursos materiales humanos y técnicos necesarias para el funcionamiento de los Centros de Hernoterapia y Bancos de Sangre

 d) Coordinar y apoyarlos programas de hemoterapia, así como la atención de demanda técnica

e) Disponer Las medidas correctivas que aseguren el buen funcionamiento de los Centros de Hemoterapia, Bancos de Sangre y Plantas de Hemoderivados ante los Directores responsables de los establecimientos;

 f) Proponer Las sanciones a las infracciones por el incumplimiento de las normas establecidas en la Ley, el presente Reglamento y disposiciones Y complementarias que se dicten, ante la Dirección General de Salud de las Personas;

e) Estudiar y dictaminar las solicitudes y expedientes relacionados con el funcionamiento de Bancos de Sangre y Plantas de Hemoderivados;

h) las demás atribuciones establecidas en la Ley y aquellas que sean compatibles con los fines del PRONAHEBAS.

Artículo 11.- El PRONAHEBAS podrá solicitar cuando lo considere conveniente, la colaboración de las Direcciones Regionales o Subregionales de Salud, quienes quedarán obligadas a prestar su concurso de acuerdo a los requerimientos que reciban para el efecto, informando a la brevedad posible sobre el resultado de la diligencia practicada.

CAPITULO III

DE LOS CENTROS DE HEMOTERAPIA Y BANCOS DE SANGRE

Artículo 12.- La Hemoterapia es un acto médico, y como tal la garantía de calidad total de su ejercicio es responsabilidad de un médico cirujano con especialidad en Patología Clínica; y, en su ausencia, el médico designado o el responsable del establecimiento de salud.

Artículo 13.- Los Centros de Hemoterapia son organizaciones de salud que realizan directamente la obtención, donación, control, conservación, selección, aplicación de transfusiones de sangre y/o fracciones y preparación de hemoderivados no industrializados.

Artículo 14.- Los Bancos de Sangre son las organizaciones de salud que realizan directamente la donación, control, conservación y distribución de sangre y/o fracciones en forma oportuna y en calidad y cantidad necesarias para ser aplicadas con fines terapéuticos. En algunos casos podrá seleccionar, aplicar y preparar hemoderivados.

Artículo 15.- Todos los Centros de Hemoterapia y Bancos de Sangre, estatales y privados, deben contar con los Manuales de Organización y Funciones, de normas y Procedimientos, y de Técnicas.

CAPITULO IV

DE LA RED NACIONAL DE CENTRO DE HEMOTERAPIA Y BANCOS DE SANGRE

Artículo 16.- La Red Nacional de Centros de Hemoterapia y Bancos de Sangre (RNCHBS), constituye un sistema técnico administrativo cuyo objetivo es la integración funcional de los Centros de Hemoterapia y Bancos de Sangre del país, para el desarrollo de actividades relacionadas al uso adecuado de la sangre, al acceso de la población a la sangre y sus derivados de óptima calidad, de manera oportuna y suficiente; y, servir como medio de vigilancia epidemiológica.

Artículo 17.- La RNCHBS, estará constituida por el Centro de Referencia Nacional de Hemoterapia y Bancos de Sangre, por los Bancos de Sangre de los Hospitales del Ministerio de Salud, Instituto Peruano de Seguridad Social, Fuerzas Armadas, Fuerzas Policiales, y por los Bancos de Sangre del Sector Privado que cuenten con las condiciones necesarias para su funcionamiento.

Mediante Resolución Ministerial de Salud se designará al organismo en el cual recaerá las funciones de Centro de Referencia Nacional, así como de nivel subregional.

Artículo 18.- La Dirección Nacional de la Red, estará a cargo de un Comité Técnico integrado por:

- El Director del Centro de Referencia Nacional de Hemoterapia y Bancos de Sangre, quien lo presidirá;
- El Director General de Salud de las Personas del Ministerio de Salud o su representante;
- Un representante del Instituto Nacional de Defensa civil;
- Un representante del Instituto Nacional de Salud;
- Un representante del Instituto Peruano de Seguridad Social;
- Un representante de las Fuerzas Armadas;

- Un representante de la Sanidad de las Fuerzas Policiales;

- Un representante de la Asociación de Clínicas Privadas.

Artículo 19.- La coordinación de la Red estará a cargo del Centro de Referencia Nacional de Hemoterapia y Bancos se Sangre.

Artículo 20.- El Comité Técnico de la Red, tendrá las siguientes funciones:

a) Establecer mecanismos para la coordinación de la infraestructura operacional, que permita atender en forma adecuada y oportuna el suministro de sangre en todo el país;

b) Proponer programas de educación continua, capacitación de personal y adiestramiento en servicio para los funcionarios responsables de la Red;

c) Proponer funciones adicionales a las establecidas en el presente Reglamento de acuerdo a las necesidades de la Red;

d) Las demás que le señale el PRONAHEBAS.

Artículo 21.- Son funciones del Director del Centro de Referencia Nacional de Hemoterapia y Bancos de Sangre, las siguientes:

a) Velar por el cumplimiento de la aplicación de las directivas establecidas por el Comité Técnico de la RNCHBS y las que establezca el PRONAHEBAS;

 b) Organizar y sistematizar el recurso de información de la Red para que integre la base de datos del PRONAHEBAS;

c) Preparar el programa anual de actividades y presentarlo al Comité Técnico de la RNCHBS; y

d) Las demás que le señale el Ministerio de Salud.

CAPITULO V

DE LA DONACION Y TRANSFUSION DE SANGRE

Artículo 22.- La donación de sangre o sus componentes es un acto voluntario, solidario y altruista, por el cual una persona da a título gratuito, para fines terapéuticos, de diagnóstico o de investigación, una porción de su sangre en forma libre y consciente.

Artículo 23.- Queda prohibida la comercialización de sangre humana para fines de transfusión, así como la exportación de la sangre humana y de sus componentes.

Artículo 24.- Previo a realizar la extracción de la sangre humana, y con la finalidad de evitar causar algún daño al donador y al receptor, deberá tenerse en cuenta obligatoriamente, lo siguiente:

Primer Paso: Explicar al posible donador el procedimiento a que será sujeto, previo a su conocimiento escrito.

Segundo Paso: Evaluar al posible donador mediante un minucioso cuestionario de antecedentes patológicos, que permitan aceptarlo o excluirlo, permanente o temporalmente como donador.

Tercer Paso: Cumplido el segundo paso, y habiéndose descartado antecedentes patológicos, se procederá a evaluar al posible donador mediante un examen clínico y de

laboratorio, para lo cual se extraerá una mínima cantidad de sangre para descartar alguna enfermedad de la lista oficial reconocida.

Si del análisis se detecta alguna enfermedad, el establecimiento de salud está obligado a informar y orientar a la persona para que profundice su estudio.

Cuarto Paso: Comprobada que la sangre del posible donador es apta para transfundirla, se efectuará la extracción de sangre, para que ésta sea envasada y almacenada en el Banco de Sangre.

Quinto Paso: El donador será identificado mediante sistema numérico o alfabéticonumérico y huella digital, en la "Ficha de donador", lo que permitirá el rastreo de cualquier unidad de sangre o componentes desde la obtenci®n hasta su disposición final, así como la resolución de trámites de carácter legal.

Artículo 25.- Queda terminantemente prohibido ingresar sangre contaminada a los Bancos de Sangre.

Artículo 26.- Cuando el establecimiento de salud no cuente con la infraestructura adecuada para realizar el procesamiento de la sangre, podrá derivarse al donador a otro Centro que realice la extracción de conformidad con el Artículo 24 del presente Reglamento, para que posteriormente se envíe la sangre al establecimiento solicitante.

El establecimiento de salud brindará el apoyo que sea necesario para que se efectúe el traslado del donador.

Artículo 27.- El Personal calificado y entrenado, de los Centros de Hemoterapia y Bancos de Sangre, que realicen la extracción de sangre, son los responsables de aplicar los mecanismos de protección durante y después de la donación.

Artículo 28.- La transfusión de sangre humana, sus componentes y derivados con fines terapéuticos, constituye un acto médico que debe llevarse a cabo únicamente después de un estudio racional y específico de la patología a tratar.

Artículo 29.- El acto de transfusión de sangre y/o componentes es de responsabilidad del transfusor, quien deberá estar provisto de los mecanismos para atender las complicaciones inmediatas que surgieran.

Artículo 30.- La transfusión de sangre se efectuará bajo el control del personal médico que tenga a su cargo el tratamiento del paciente.

Artículo 31.- La transfusión de sangre, sus componentes o derivados, no podrán practicarse sin haberse efectuado previamente las pruebas de compatibilidad obligatorias entre la sangre del donante y la del receptor, salvo excepción de urgencia específicamente señaladas en las normas técnicas y médicas.

Artículo 32.- El uso de sangre proveniente de flebotomía terapéutica será determinado por el Jefe del Banco de Sangre y el médico tratante del posible receptor, previo consentimiento escrito de éste.

Artículo 33.- EL PRONAHEBAS coordinará intersectorialmente permanentes campañas de divulgación sanitaria dirigidas a la población, haciendo uso de los medios de comunicación masiva a fin de despertar el interés por la donación de sangre humana y a la vez incentivándola mediante diversas formas de reconocimiento.

CAPITULO VI

DE LA DISTRIBUCION Y TRANSPORTE DE SANGRE

Artículo 34.- La sangre y/o sus componentes deberán ser distribuidos y transportados cumpliendo todos los requisitos de bioseguridad, para mantener su calidad y ser utilizado sin ningún riesgo para el receptor. Los requisitos de bioseguridad serán precisados por el PRONAHEBAS.

Artículo 35.- La distribución de sangre y/o componentes, tienen por exclusivo objeto, el de atender las necesidades de la RNCHBS, salvo que excepcionalmente, el Gobiernos por razones de solidaridad internacional, autorice el envío de sangre y/o sus componentes a otros países que lo soliciten.

CAPITULO VII

DEL FRACCIONAMIENTO DE LA SANGRE

Artículo 36.- La extracción de sangre entera, su separación en componentes, la retención del componente deseado, la recombinación de las fracciones y la restitución al donante o paciente (hemapheresis), sólo se realizará en Centros de Hemoterapia y Bancos de Sangre.

Artículo 37.- Sólo se podrá realizar fraccionamiento de la sangre con fines terapéuticos para restaurar o mantener el volumen sanguíneo, la capacidad transportadora de oxígeno, la hemotasia o retirar componente no deseado.

CAPITULO VIII

DE LAS PLANTAS DE HEMODERIVADOS

Artículo 38.- El fraccionamiento y transformación industrial de la sangre, se efectuará en Plantas de Hemoderivados, los cuales deberán obtener para su funcionamiento la autorización sanitaria respectiva.

Artículo 39.- Las Plantas autorizadas para la elaboración de hemoderivados quedarán facultadas para celebrar convenios de provisión de plasma o sus componentes, con Bancos de Sangre públicos y privados, y para el trueque por fracciones de su producción. Tales Convenios deberán hacerse de conocimiento del PRONAHEBAS.

CAPITULO IX

DE LA SITUACIONES DE CATASTROFE Y EMERGENCIA NACIONAL

Artículo 40.- La RNCHBS deberá mantener una reserva permanente y renovable de sangre y plasma congelado para que, en coordinación con el Instituto Nacional de Defensa Civil, pueda atender una demanda inusitada en situaciones de catástrofe o emergencia nacional.

Artículo 41.- En caso de catástrofe y/o emergencia nacional, la obtención y transfusión de sangre podrá hacerse en lugares distintos de los autorizados oficialmente, siempre y cuando sean supervisados por la autoridad sanitaria del lugar o por médico cirujano con apoyo de otros profesionales de la salud calificado.

Esta calificación deberá cumplir las normas que sobre idoneidad profesional y sanitaria se establezcan al respecto. Articulo 42.- La adquisición, el mantenimiento y la, distribución de los insumos necesarios (bolsas recolectoras equipos de transfusión sanguínea y suero hemoclasificador) para el funcionamiento de los Bancos de Sangre en épocas de castástrofe y emergencia nacional, corresponde ejecutarse a través del PRONAHEBAS, en coordinación con el Instituto Nacional de Defensa Civil.

Artículo 43.- La Dirección Nacional de la RNCHBS será la responsable de establecer un cronograma de actividades permanentes de capacitación y entrenamiento del personal que directa o indirectamente interviene en el proceso de extracción, clasificación y transfusión de sangre y/o sus componentes.

CAPITULO X

DE LA ELIMINACION DE LA SANGRE Y DEL MATERIAL CONTAMINADO

Artículo 44.- La sangre y el material de trabajo utilizado, deberá ser descartado en lo posible bajo sistema de incineración. Previamente se levantará un acta donde se especificará lo que se descarta, el código del donante y el motivo de su eliminación. En los sitios donde no existiera equipos de incineración, su eliminación deberá ser por el método que señale el Manual de Bioseguridad. Durante el procedimiento de eliminación participará un miembro del Comité de SIDA del establecimiento.

El Jefe del Banco de Sangre será responsable del cumplimiento de esta disposición.

CAPITULO XI

DE LAS AUTORIZACIONES SANITARIAS

Artículo 45.- Las autorizaciones sanitarias de funcionamiento de Bancos de Sangre y Plantas de Hemoderivados serán otorgadas mediante Resolución de la Dirección General de Salud de las Personas del Ministerio de Salud previa la opinión favorable del PRONAHEBAS. En caso de denegatoria la instancia que resolverá el recurso impugnativo de apelación será el Viceministro de Salud.

CONCORDANCIAS: R.M.Nº 540-99-SA-DM

Artículo 46.- Las autorizaciones sanitarias tendrán vigencia de cuatro (4) años pudiendo ser renovadas por períodos iguales a solicitud del Director del establecimiento, previo cumplimiento de los trámites pertinentes por ante la Dirección General de Salud de las Personas. La solicitud de renovación de la autorización sanitaria de funcionamiento, deberá ser presentada antes de los 30 días calendario de la fecha de vencimiento. Concluido el plazo para solicitar la renovación, la autorización guedará cancelada automáticamente.

Artículo 47.- Los requisitos para la obtención de las autorizaciones sanitarias de funcionamiento serán elaborados por el PRONAHEBAS y aprobados mediante Resolución Ministerial de Salud.

Los Bancos de Sangre y Plantas de Hemoderivados existentes o en proceso de constitución tendrán un plazo de seis (6) meses para adecuarse a los requisitos que se establezcan para los fines de solicitar la autorización sanitaria de funcionamiento.

CAPITULO XII

DE LAS SANCIONES

Artículo 48.- Los Centros de Hemoterapia, Bancos de Sangre y Plantas de Hemoderivados, sean públicos o privados, están obligados a cumplir las disposiciones y requisitos señalados en la Ley, en el presente Reglamento y en las normas complementarías que se dicten.

Artículo 49.- La transfusión de sangre total, o de alguna de sus fracciones contaminadas con algún agente transmisible infeccioso no detectado previamente, será declarado negligencia profesional, pasible de suspensión de las labores médicas y puesto de conocimiento del Colegio Profesional respectivo, sin perjuicio de la responsabilidad civil y penal a que hubiere lugar.

Artículo 50.- Los Centros de Hemoterapia y Bancos de Sangre privados que comercialicen la sangre humana, y/o componentes, se harán acreedores a una multa de 15 Unidades Impositivas Tributarias. En caso de reincidencia se duplicará el monto de la multa y se procederá a su clausura.

Tratándose de Centros de Hemoterapia y Bancos de Sangre públicos, el personal involucrado será destituido previo proceso administrativo, sin perjuicio de las acciones judiciales a que hubiere lugar.

Artículo 51.- Los establecimientos privados que incumplan las normas contenidas en la Ley, en el presente Reglamento y en las disposiciones complementarías serán sancionados con multa de 2 a 20 Unidades Impositivas Tributarias. En caso de reincidencia se duplicará el monto de la multa.

Tratándose de establecimientos públicos, establecida la responsabilidad individual de los servidores, estos serán sancionados de conformidad con el Decreto Legislativo Nº 276 y su Reglamento.

Artículo 52.- Las multas serán impuestas mediante Resolución de la Dirección General de Salud de las Personas. La instancia que resolverá el recurso impugnativo de apelación será el Viceministro de Salud.

ANEXO 7:

ł

TIPOS DE GEOMETRIA PARA REOMETROS

ROTACIONALES.

FIGURE 8.34 Different types of measurement nell constantly used with dynamics there themisters and vecentries, (a) Concentric cylindus, (b) cone and plats, (a) painfiel plats, and (d) visor.

generated in the sample. For conventence, we will discuss only constant stress instruments in the following text albeing both types of instrument are commonly used in the food industry. In addition, with many of the modern instruments, it is possible to make a constant stress instrument operate like a constant strain instrument and vice versa.

A number of different types of measurement cell can be used to contain the sample during an experiment (Bourne 2002, Rap 2013):

- 1. Concentric cylinder: The simple is placed in the narrow gap between two concentric cylinders (Figure 8.14). Normally, the inner cylinder (the bab) is driven at a constant torque (angular force) and the resultant arrain (angular deflection) or rate of strain (speed at which the cylinder force) is measured, depending on whether one is analyzing a predominantly solid or liquid sample. For a solid, the angular deflection of the inner cylinder from its rest position is an indication of its clasticity; the larger the deflection, the smaller the shear modulos. For a liquid, the speed at which the inner cylinder rotates is governed by the viscosity of the field between the platest the faster is spins in a given torque; the lower the viscosity of the liquid being analyzed. The torque can be varied in a controlled moment viscosity of non-Newtonian liquids, the viscosity of Newtonian liquids, the apparent viscosity of solids. In some instanting, the viscosity of semisolids, and the plasticity and classifier of solids. In some instruments, the outer cylinder solates, and the lance cylinder remains fixed, but the plasticity of solids, and the plasticity and classifier of solids. In some instruments, the outer cylinder solates, and the lance cylinder remains fixed, but the platest of the measurements are the same.
- 2. Parallel plate: In this type of measurement cell, the sample is placed between two parallel plates (Figure 8.14). The lower plate is stationary, while the upper enc can mate. A constant torque is applied to the upper plate, and the resultant strain or rate of strain is measured, depending on whether one is analyzing a predominantly solid or tiquid sample. The main challenge with this type of experimental arrangement is that the shear strain varies across the sample; the shear strain in the middle of the sample being less than their state the edges. The parallel-plate arrangement is therefore usually unsuitable for analyzing nonideal liquids or solids.
- 3. Cone and plate: This is essentially the same design as the parallel-plate measurement cell, except that the upper plate is replaced by a cone (Figure 8.14). The cone has a slight angle that is designed to ensure that a more uniform shear stress acts across the sample. The cone-and-plate arrangement can therefore be used to analyze nonlideal materials.
- 4. Vote: A vane consists of a multibladed bab that is placed in a sample and then rotated around its axis (Figure S.14). This method is finding horecasing utilization for characterizing semisolid

fixed convisions because it overclones many of the publican associated with conventional measurement geometrics, such as disruption of sample structure during insertion into the device and wall slip.

 Serviced edges: The effects of well slip may also be avertoine by using measurement cells that have serviced edges pisther than being smooth).

Often, the rheological properties of samples are measured either as a function of storage time at a fixed temperature is varied in a cositralled manner.