UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA QUÍMICA ESCUELA PROFESIONAL DE INGENIERÍA QUÍMICA

"MODELOS REOLÓGICOS RELACIONADOS A LA PULPA DEL CAMU CAMU "

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE

INGENIERO QUÍMICO

CLAUDIA MELISSA ROSAS CHAVEZ MICHAEL RICARDO RODRIGUEZ ESPADA

CALLAO, DICIEMBRE 2017

PERÚ

DEDICATORIA

Esta tesis se la dedicamos con mucho amor a nuestras madres Olinda Chávez y Lis Espada por estar siempre a nuestro lado brindándonos su apoyo, paciencia y amor, además por ser el principal cimiento para la construcción de nuestras vidas profesionales.

A mi tío Jorge Chávez, In memoriam, quien por su temprana partida, nunca pudo ver mi objetivo alcanzado.

AGRADECIMIENTO

A nuestras familias por su invalorable esfuerzo en brindarnos una educación basada en valores y proyectos.

A nuestro asesor Dr. Luis Carrasco Venegas, por su gran capacidad, conocimientos y experiencia profesional.

A nuestra universidad, alma mater, formadora de excelentes personas y profesionales.

INDICE

	RESUMEN	1
	ABSTRACT	2
I.	PLANTEAMINETO DE LA INVESTIGACIÓN	3
	1.1 Identificación del problema	3
	1.2 Formulación del problema	4
	1.2.1 Problema general	4
	1.2.2 Problema especifico	4
	1.3 Objetivos de la investigación	5
	1.3.1 Objetivo general	5
	1.3.2 Objetivos Específicos	5
	1.4 Justificación	5
	1.5 Importancia	6
11.	MARCO TEÓRICO	8
	2.1 Antecedentes del estudio	8
	2.2 Reología	11
	2.3 Flujo de líquidos	11
	2.4 Fluidos Newtonianos	13
	2.5 Fluidos No Newtonianos	16
	2.5.1 Fluidos independientes del tiempo	18
	2.5.2 Fluidos dependientes del tiempo	23
	2.5.3 Fluidos viscoelásticos	27
	2.6 Modelos reológicos	28
	2.6.1 Modelo de Ostwald-de Waele	28
	2.6.2 Modelo de Herschel Buckley	30
	2.0.3 Modelo de Sisko	31
	2.0.4 Modelo de Williamson	31
	2.7 L Reómetro rotacionalea	32
	2.8 FL camu camu	33
	2.9 Definiciones teóricas básicas	34
	2.9.1 Elasticidad	40
	2.9.2 Fluido	40
	2.9.3 Fuerza	41 41
	2.9.4 Grados Brix	41
	2.9.5 Histéresis	42
		42

	2.9.6 Pulpa	43
	2.9.7 Rata	44
	2.9.8 Refractómetro	44
	2.9.10 Reología	44
	2.9.11 Reometría	45
	2.9.12 Reómetro	46
	2.9.13 Sólidos solubles totales	46
	2.9.14 Tensión	46
	2.9.15 Tixotropía	47
	2.9.16 Viscosidad	47
	2.9.17 Viscosidad aparente	49
	2.9.18 Viscosidad cinemática	49
	2.9.19 Viscosidad dinámica	50
111.	VARIABLES E HIPÓTESIS	51
	3.1 Variables de la investigación	51
	3.2 Operacionalización de variables	51
	3.3 Hipótesis general y especificas	52
	3.3.1 Hipótesis general	52
	3.3.2 Hipótesis especificas	52
IV.	METODOLOGÍA	53
	4.1 Tipo de investigación	53
	4.2 Diseño de la investigación	53
	4.3 Población y muestra	55
	4.4 Procesamiento estadístico y análisis de datos	55
V		
۰.	RESULTADUS	57
VI.	DISCUSIÓN DE RESULTADOS	85
	6.1 Contrastación de hipótesis con los resultados.	85
	6.2 Contrastación de resultados con otros estudios similares	86
VII.	CONCLUSIONES	88
VIII.	RECOMENDACIONES	89
IX. ANE	REFERENCIAS BIBLIOGRÁFICAS KOS	90

•

INDICE DE TABLAS

TABLA Nº 2.1	POBLACIONES DE CAMU CAMU EN LAS REGIONES DE LORETO Y UCAYALI.	36	
TABLA Nº 2.2	2.2 COMPOSICIÓN QUÍMICA DE CAMU CAMU DE LA ESPECIE MYRCIARIA DUBIA.		
TABLA Nº 2.3	COMPOSICIÓN QUÍMICA DE MYRCIARIA DUBIA Y MYRCIARIA SP. EN 100 G. DE PULPA FRESCA.		
TABLA Nº 3.1	OPERACIONALIZACIÓN DE VARIABLES.	51	
TABLA Nº 5.1	PARAMETROS FISICOQUIMICOS	57	
TABLA Nº 5.2	DATOS REOLÓGICOS DE PULPA SIMPLE DEL CAMU CAMU A 20 °C	58	
TABLA Nº 5.3	DATOS REOLÓGICOS DE PULPA SIMPLE DEL CAMU CAMU A 40 ºC	59	
TABLA Nº 5.4	DATOS REOLÓGICOS DE PULPA SIMPLE DEL CAMU CAMU A 60 ºC	60	
TABLA Nº 5.5	DATOS REOLÓGICOS DE PULPA REFINADA DEL CAMU CAMU A 20 ºC	61	
TABLA № 5.6	DATOS REOLÓGICOS DE PULPA REFINADA DEL CAMU CAMU A 40 ºC	62	
TABLA Nº 5.7	DATOS REOLÓGICOS DE PULPA REFINADA DEL CAMU CAMU A 60 ºC	63	
TABLA Nº 5.8	PARAMETROS REOLOGICOS DEL MODELO DE OSTWALD	65	
TABLA Nº 5.9	PARAMETROS REOLOGICOS DEL MODELO DE HERSCHEL	65	
TABLA Nº 5.10	PARAMETROS REOLOGICOS DEL MODELO DE SISKO	66	

.

- TABLA Nº 5.11PARAMETROSREOLOGICOSDELMODELO66DE WILLIAMSON
- TABLA Nº 5.12VALORES CALCULADOS DE ESFUERZO DE 67CORTE Y VISCOSIDAD APARENTE PARAPULPA SIMPLE DE CAMU CAMU A 20 °C
- TABLA Nº 5.13VALORES CALCULADOS DE ESFUERZO DE 70CORTE Y VISCOSIDAD APARENTE PARAPULPA REFINADA DE CAMU CAMU A 20 °C
- TABLA Nº 5.14VALORES CALCULADOS DE ESFUERZO DE 73CORTE Y VISCOSIDAD APARENTE PARAPULPA SIMPLE DE CAMU CAMU A 40 °C
- TABLA Nº 5.15VALORES CALCULADOS DE ESFUERZO DE75CORTE Y VISCOSIDAD APARENTE PARAPULPA REFINADA DE CAMU CAMU A 40 °C
- TABLA Nº 5.16VALORES CALCULADOS DE ESFUERZO DE 79CORTE Y VISCOSIDAD APARENTE PARA
PULPA SIMPLE DE CAMU CAMU A 60 °C
- TABLA Nº 5.17VALORES CALCULADOS DE ESFUERZO DE 82CORTE Y VISCOSIDAD APARENTE PARAPULPA REFINADA DE CAMU CAMU A 60 °C

INDICE DE FIGURAS

_. . .

FIGURA Nº 2.1	CLASIFICACION DE LOS FLUIDOS	12	
FIGURA Nº 2.2	DEFINICIÓN DE FLUJO NEWTONIANO	14	
FIGURA Nº 2.3	CURVAS CARACTERÍSTICAS PARA UN FLUIDO NEWTONIANO	15	
FIGURA Nº 2.4	ESFUERZO FRENTE A VELOCIDAD DE CIZALLADURA PARA DIVERSOS TIPOS DE FLUIDOS NO NEWTONIANOS INDEPENDIENTES DEL TIEMPO		
FIGURA Nº 2.5	GRÁFICA DOBLEMENTE LOGARITMICA DE 2 LOS FLUIDOS DE LEY POTENCIAL.		
FIGURA Nº 2.6	FLUIDO TIXOTROPICO ESFORZADO EN TIEMPO DIFERENTE		
FIGURA Nº 2.7	LAZOS DE HISTÉRESIS PARA UN FLUIDO 2 TIXOTROPICO		
FIGURA Nº 2.8	8 LAZOS DE HISTÉRESIS PARA UN FLUIDO TIXOTROPICO		
	(a) PLÁSTICO BINGHAM TIXOTRÓPICO VERDADERO		
	(b) COMPORTAMIENDO DE UN CUERPO FALSO		
FIGURA Nº 2.9	REOMETRO ROTACIONAL ANTON PAAR	33	
FIGURA Nº 2.10	DIFERENTES TIPOS DE GEOMETRIA UTILIZADOS EN LOS REOMETROS ROTACIONES.	34	
FIGURA Nº 2.11	FRUTO DEL CAMU CAMU	35	
FIGURA Nº 2.12	DEFINICION DE ELASTICIDAD	41	
FIGURA Nº 2.13	HISTERESIS	43	

FIGURA Nº 2.14	EJEMPLOS DE FLUIDOS Y	45
	DEFORMACIONES	

- FIGURA Nº 2.15 DEFINICION DE VISCOSIDAD 48
- FIGURA Nº 2.16CURVA DE FLUIDEZ PARA REPRESENTAR49

LA VISCOSIDAD DINAMICA Y APARENTE

- FIGURA Nº 5.1 REOGRAMA DE PULPA SIMPLE DEL CAMU 64 CAMU
- FIGURA Nº 5.2 REOGRAMA DE PULPA REFINADA DE CAMU 64 CAMU
- FIGURA Nº 5.3 CURVAS DE FLUIDEZ ESPERIMENTAL VS 68 CALCULADO PARA PULPA SIMPLE DEL CAMU CAMU A 20°C
- FIGURA Nº 5.4 CURVAS DE VISCOSIDAD ESPERIMENTAL 69 VS CALCULADO PARA PULPA SIMPLE DEL CAMU CAMU A 20°C
- FIGURA Nº 5.5 CURVAS DE FLUIDEZ ESPERIMENTAL VS 71 CALCULADO PARA PULPA REFINADA DEL CAMU CAMU A 20°C
- FIGURA Nº 5.6 CURVAS DE VISCOSIDAD ESPERIMENTAL 72 VS CALCULADO PARA PULPA REFINADA DEL CAMU CAMU A 20°C
- FIGURA Nº 5.7 CURVAS DE FLUIDEZ ESPERIMENTAL VS 74 CALCULADO PARA PULPA SIMPLE DEL CAMU CAMU A 40°C
- FIGURA Nº 5.8 CURVAS DE FLUIDEZ ESPERIMENTAL VS 75 CALCULADO PARA PULPA SIMPLE DEL CAMU CAMU A 40°C
- FIGURA Nº 5.9 CURVAS DE FLUIDEZ ESPERIMENTAL VS 77 CALCULADO PARA PULPA REFINADA DEL CAMU CAMU A 40°C

- FIGURA Nº 5.10 CURVAS DE VISCOSIDAD ESPERIMENTAL 78 VS CALCULADO PARA PULPA REFINADA DEL CAMU CAMU A 40°C
- FIGURA Nº 5.11 CURVAS DE FLUIDEZ ESPERIMENTAL VS 80 CALCULADO PARA PULPA SIMPLE DEL CAMU CAMU A 60°C
- FIGURA Nº 5.12 CURVAS DE FLUIDEZ ESPERIMENTAL VS 81 CALCULADO PARA PULPA SIMPLE DEL CAMU CAMU A 60°C
- FIGURA Nº 5.13 CURVAS DE VISCOSIDAD ESPERIMENTAL 83 VS CALCULADO PARA PULPA REFINADA DEL CAMU CAMU A 60°C
- FIGURA Nº 5.14 CURVAS DE VISCOSIDAD ESPERIMENTAL 84 VS CALCULADO PARA PULPA REFINADA DEL CAMU CAMU A 60°C

RESUMEN

El camu camu (Myrciaria dubia) es una fruta exótica, que es utilizado en diversos tipos de industrias tanto alimentarias como farmacéuticas, cosmética, etc. En este trabajo se determinó los modelos reológicos que se relacionan a la pulpa del camu camu en un intervalo de 20°C a 60°C.

La pulpa del camu camu fue obtenida en una planta piloto de néctares de frutas en el CET (Centro Experimental y Tecnológico) de la Universidad Nacional del Callao, mediante una refinadora de malla de abertura de 200 micras para la muestra de pulpa simple y 500 micras para la muestra de pulpa simple y 500 micras para la muestra de pulpa refinada. Las medidas reológicas fueron determinadas en un reómetro rotacional Anton Paa modelo RheolabQC con geometría de paletas en el laboratorio de Investigación de la Facultada de Ingeniera Química de la universidad Nacional de callao.

En las muestras de pulpa con un contenido de solidos solubles de 4°Brix y 5°Brix y un intervalo de temperatura de 20°C a 60°C., los modelos de Ostwald (R²>0.887), Herschel Bulkley (R²>0.952), Sisko (R²>0.974) y Williamson (R²>0.986) describen adecuadamente el comportamiento reológico de la pulpa del camu camu.

ABSTRACT

The camu camu (Myrciaria dubia) is an exotic fruit that is utilized in many kinds of industries such as the food industry, pharmaceutical, cosmetics, etc. In these fields was that the rheological models use with relation to the camu camu pulp from 20°C a 60°C.

The pulp of the camu camu was obtained from a pilot plant of the fruits' nectar in the technological experimental center (CET) at the National University of Callao. Using a refiner with an opening of 200 microns for the simple pulp and an opening of 500 microns for the refined pulp, the rheological measurements were determined in a rotational rheometer Anton Paa model RheolabQC.

In a sample of the pulp with a soluble solid content of 4°Brix and 5°Brix. The models of Ostwald ($R^2>0.887$), Herschel Bulkley ($R^2>0.952$), Sisko ($R^2>0.974$) y Williamson ($R^2>0.983$) described an accurate rheologic measurement of the camu camu pulp with temperature interval of 20°C a 60°C.

I. PLANTEAMIENTO DE LA INVESTIGACIÓN

1.1 Identificación del problema

Hoy en día el camu camu es considerado como la fruta más rica en vitamina C del planeta, el interés comercial de esta especie se manifiesta en su creciente demanda a nivel mundial. Además de su consumo directo es altamente requerida para ser utilizada como pulpa para fabricar productos como jugos, helados, concentrados, néctares, mermeladas y para la obtención de ácido ascórbico natural.

La reología de los productos alimentarios no tienen una clara y permanente tendencia a desarrollarse, así como, los modelos adecuados de las propiedades reológicas de los alimentos que no permiten hacer un manejo adecuado de las diversas materias primas, sobre todo del diseño de equipos, materias para el transporte y la calidad de los productos que son necesarios para mantener la estructura y el comportamiento reológico según el estudio propuesto.

Actualmente la industria de los alimentos se enfrenta a muchas dificultades dentro del estudio reológico debido a la diversidad de alimentos existentes; ya que, además de sólidos y líquidos, existen productos con propiedades reológicas intermedias, los cuales conllevan a que estos tengan comportamientos reológicos muy complejos. Al no conocer las propiedades y comportamientos reológicos de diversos productos, puede

existir un control ineficiente en el proceso y obtener productos de mala calidad.

En tal sentido, es necesario plantearnos algunas interrogantes que permitan tender a ser respondidas en el presente trabajo como son:

¿Cuál es la caracterización de la pulpa del camu camu?

¿Qué modelos se ajustan a la pulpa de camu camu?

¿Cuál es el comportamiento reológico de la pulpa del camu camu?

Formulándose de esta manera el problema principal del trabajo a desarrollar.

1.2 Formulación del problema

1.2.1 Problema General:

¿En qué medida los modelos reológicos se relacionan con el fluido de la pulpa del camu camu?

1.2.2 Problemas Específicos

- a. ¿Cuál es la relación entre el esfuerzo de corte y velocidad de corte para el fluido de pulpa del camu camu?
- b. ¿Cuál es el comportamiento reológico del fluido de la pulpa del camu camu?

1.3 Objetivos de la investigación

1.3.1 Objetivo General:

Determinar los modelos reológicos que se relacionan con el fluido de la pulpa del camu camu.

1.3.2 Objetivos Específicos:

- a. Determinar la relación entre el esfuerzo de corte y la velocidad de corte para el fluido de pulpa de camu camu.
- b. Determinar el comportamiento reológico del fluido de la pulpa del camu camu.

1.4 Justificación

Las razones que justifican la investigación propuesta son las siguientes:

Tecnológico: Los resultados obtenidos permitirán un aporte significativo sobre el conocimiento de la relación entre los modelos reológicos y el camu camu, el cual nos permitirá el desarrollo de nuevas tecnologías y métodos para tener una producción de buena calidad y así, poder satisfacer las necesidades de los consumidores.

Teórico: debido a que no se cuenta con mucha investigación reciente sobre el tema de los modelos reológicos relacionados a la pulpa de camu camu. En ese sentido el desarrollo de la investigación va a significar un aporte desde el punto de vista teórico.

Social económico: El trabajo va a permitir brindar la determinación de sus características fisicoquímicas y puedan ser utilizadas en otros trabajos de investigación, así como para el beneficio económico de la población.

1.5 Importancia

Existen varios campos en los que se observa la importancia del conocimiento reológico, entre ellos se pueden citar los siguientes:

- Cálculos en Ingeniería de Procesos, donde se involucren diversos equipos. Por ejemplo: Bombas, extrusores, mezcladores, homogeneizadores, intercambiadores de calor, tuberías, etc.
- Formulación para el desarrollo de productos.
- Control de calidad en productos intermedios y finales: este control se realiza en la propia línea de producción. Es determinante para la aceptación de productos como yogures, dulces, cremas, etc.
- Estudio de vida en anaquel.
- Evaluación de la textura del alimento mediante la correlación con datos sensoriales.

- Estudio de la textura y consistencia de productos alimenticios: dichas propiedades son muy importantes a la hora de que un producto sea del agrado del consumidor.
- Producción de productos cosméticos, la forma de cómo se esparce una crema.
- Producción de medicamentos: se estudia su estabilidad química, su tiempo de caducidad y su facilidad de extrusión, entre otras.

II. MARCO TEORICO

2.1 Antecedentes del Estudio

Se han revisado artículos científicos relacionados al tema, encontrándose las siguientes publicaciones.

El estudio reológico se hizo bajo condiciones de acidez de la pulpa pH 2.5 y 5.46 °Brix. La pulpa del Camu Camu se ajusta al modelo matemático $\tau = k Dr^n$ llamado ley de potencia con parámetro reológicos K (índice de consistencia) y n (índice de flujo). Los valores de n son menores que 1, esto indica la seudoplasticidad de la pulpa de camu camu. (Estudio reológico de la pulpa del camu camu con el viscosímetro rehotest N° 2, Diaz Cordova Zoila Margarita, Universidad Nacional del Callao, Perú, 2004)

El comportamiento reológico de diferentes frutas (frambuesa, fresa, durazno y ciruela se determinó utilizando un viscosímetro rotacional en un rango de temperatura de 20 °C a 40 °C. Los resultados fueron analizados utilizando los modelos reológicos de Ostwald Waele y Herschel–Bulkley los cuales se Ajustaron razonablemente bien los datos experimentales en todas las temperaturas (R²> 0,998). Los valores del índice de flujo menores que 1 indica el comportamiento seudoplástico para los purés de las frutas estudiadas. (Rheological properties of fruit purees: Effect of cooking, R. Maceiras, University of vigo, Spain, 2006) El comportamiento de la pulpa de níspero en el intervalo de temperatura de 10°C a 70°C está representado por la ley de potencia, presentando un comportamiento seudoplástico debido a la disminución de la viscosidad aparente a medida que aumenta el gradiente de cizalla. La temperatura no ejerce una influencia estadísticamente significativa sobre el índice de comportamiento al flujo (n), mientras que en el índice de consistencia (k) si ejerce una influencia. (Efecto de la temperatura en el comportamiento reológico de la pulpa de níspero (Achras sapota L). Andrade. Rev. Fac. Agron. (LUZ). 2009, 26: 599-612 Colombia).

La pulpa de manzana en el rango de temperaturas y concentraciones estudiadas muestra un comportamiento pseudoplástico, que es descrito adecuadamente por el modelo de la ley de la potencia:

$$\sigma = k \ (\dot{\gamma})^n$$

El efecto de la temperatura sobre la variación del índice de consistencia se describe adecuadamente mediante la ecuación de tipo Arrhenius (Caracterización del comportamiento al flujo de pulpa simple y concentrada de manzana (Phyrus malus L) variedad San Antonio, Damián Manayay Sánchez, Williams Castillo Martínez, Soledad Quezada Berru, Lenin Palacios Ambrocio, Santos López Rivera, Universidad Nacional de Trujillo, Perú, 2013). Los datos experimentales fueron ajustados a dos modelos, el de Ostwald y el de Sisko, respondiendo satisfactoriamente a ambos a pesar de la sencillez de estos modelos. Además de esto se confirma la clasificación anterior de fluido no newtoniano pseudoplástico, mediante el ajuste de los datos a la ecuación de Ostwald, en la cual el indice de comportamiento siempre tuvo valores inferiores a 1. (Reologia de Productos alimentarios, Lourdes Consuelo Quintans Riveiro, Universidad de Santiago de Campostela. España.)

Los datos experimentales se ajustaron a los modelos reológicos de Power Law, Herschel-Bulkley, Mizrahi-Berk y Sisko. El jugo de manzana malayo (pulpa y piel) mostró un comportamiento pseudoplástico para todas las temperaturas y concentraciones con índices de comportamiento de flujo inferiores a 1. (Influence of temperature, concentration and shear rate on the rheological behavior of malay apple (Syzygium malaccense) juice, Pedro Enrique Santos, Universidade Federal de Santa Catarina (UFSC), Brasil, 2016)

2.2 Reología

El primer uso de la palabra reología fue acreditado por Eugene C. Bingham en 1928, a partir de los trabajos de Heráclito (filósofo pre Socrático), dándole el significado de "cada cosa fluye". En este momento, la reología se ha establecido como la ciencia de la deformación y el flujo de la materia. Todos los materiales tienen propiedades reológicas y el área que ocupa la reología es muy relevante en numerosos campos como la geología, mecánica de suelos, procesado de polímeros y composites, dispersión de pinturas y pigmentos, bioingeniería, procesos interfaciales, cosmética, etc. Una gran atención debe ser presentada a la importancia de la reología en la tecnología y procesada en alimentos (Weipert, y otros, 1993).

2.3 Flujo de líquidos:

Muchos alimentos presentan propiedades de líquidos, en el sentido de que no resisten esfuerzos de corte: Leche, miel, aceites, zumos, incluso mantequilla, etc. Estos productos se transportan a menudo mediante bombeo y es necesario, en consecuencia, conocer su viscosidad. Además, la viscosidad es una componente importante de las características sensoriales y en consecuencia de la textura del producto (Alain-Claude, 2004).

Se ha encontrado que Ramírez Navas (2006), clasifica los fluidos en 3 tipos: Newtonianos (proporcionalidad entre el esfuerzo de corte y la

velocidad de corte); No Newtonianos (no hay proporcionalidad entre el esfuerzo de corte y la velocidad de corte) y Viscoelásticos (se comportan como líquidos y sólidos, presentando propiedades de ambos). Para el presente trabajo se clasificarán los fluidos en 2 tipos: Newtonianos y No Newtonianos, considerando los fluidos Viscoelásticos como un fluido No Newtoniano tal como lo indica Hughes (1970) por ser más didáctico, conciso y ha sido una base para la elaborar el siguiente esquema (véase figura N° 2.1)

Fuente propia

2.4 Fluidos Newtonianos

La viscosidad de los fluidos fue estudiada por primera vez por Newton, y de ahí el nombre de fluido newtoniano dado a algunos de ellos.

Cuando se somete un fluido a una fuerza de corte, fluye y se deforma con una velocidad que crece al mismo tiempo que la fuerza de corte. El modelo newtoniano representa este fenómeno del modo más sencillo y, en la mayoría de las ocasiones, basta para dar una buena evaluación del fenómeno real.

Sea la hipótesis siguiente: un fluido está situado entre dos paredes infinitas de las cuales la inferior está fijada y la superior animada de movimiento con velocidad V. Si se supone que el fluido está perfectamente adherido a las paredes, fluye con la velocidad V cerca de la pared superior y no se mueve cerca de la pared inferior. La velocidad del fluido crece linealmente al acercarse a la pared superior (véase figura N° 2.2, en la página 14).

El aumento de velocidad es uniforme e igual a la derivada de Vy respecto a y. En el caso de un fluido newtoniano, el esfuerzo de corte es proporcional al ritmo de deformación:

$$\tau_{yz} = \eta \, \frac{dV_Y}{dy} \qquad 2.1$$

Fuente: Reología y Análisis de la textura de los alimentos

El coeficiente de proporcionalidad μ se llama viscosidad dinámica del fluido. Se expresan en Poiseuilles (PI). Se define también el coeficiente de viscosidad cinemática como el coeficiente entre la viscosidad dinámica y de la densidad del producto: $v = \mu/\rho$.

El orden de magnitud de la viscosidad dinámica que es de 10⁻³ Pl para la leche o de 10⁻² para el zumo de frutas. Sin embargo, debido a la sensibilidad de la viscosidad a múltiples factores (temperatura, concentración de azucares o de materias grasas), estos valores no se deben considerar más que como órdenes de magnitud (Alain-Claude, 2004). Hay que tener en cuenta también que la viscosidad de un fluido newtoniano no depende del tiempo de aplicación del esfuerzo, aunque sí puede depender tanto de la temperatura como de la presión a la que se encuentre.

Para una mejor comprensión de este tipo de fluido se representan dos tipos de gráficas, la "Curva de Fluidez" y la "Curva de Viscosidad" (véase figura N° 2.3). En la curva de Fluidez de grafica el esfuerzo cortante frete a la velocidad de corte ($\tau vs \gamma$), mientras que en la Curva de Viscosidad se representa la viscosidad en función de la velocidad de corte ($\mu vs \gamma$) (Ramírez Navas, 2006).

Fuente: Introducción a la Reología de los Alimentos

2.5 Fluidos No Newtonianos:

En fluidos no newtonianos, la relación entre esfuerzo de corte y velocidad de corte no es lineal, es decir, la viscosidad µ no permanece constante, sino que está en función de la velocidad cortante. Algunos líquidos no obedecen esta ley simple de Newton, como pastas, lechadas, altos polímeros y emulsiones.

Fuente: Introducción a la Reología de los Alimentos

Los fluidos provocan y circulan sometidos a esfuerzos. Los fluidos newtonianos son los más sencillos y se caracterizan por la propiedad de que el gradiente de velocidad en un punto proporcional al esfuerzo cortante en dicho punto. El resto de los fluidos constituidos por moléculas sencillas son newtonianos. Las suspensiones densas, lodos, emulsiones, soluciones de polímeros de cadena larga, fluidos biológicos, alimentos líquidos, pinturas, suspensiones de arcillas y mezclas de hormigón son, en general, no newtonianos.

La relación entre esfuerzo de corte y la velocidad de corte para fluidos No Newtonianos no es lineal (Ramírez Navas, 2006).

En lo que sigue, los fluidos no newtonianos se clasifican en tres categorías generales tal como se aprecia en el esquema anterior (véase Figura 2.1, en la página 12):

- a. El más importante de estos es el fluido no newtoniano independiente del tiempo, en el cual la rata secante es una función única pero no lineal del esfuerzo secante.
- b. Fluidos no newtonianos dependientes del tiempo tienen una relación más compleja de velocidad de corte y esfuerzo de corte. En estos fluidos la velocidad de corte no es una función de valor único del esfuerzo de corte. La velocidad de corte depende del tiempo y de la historia previa de esfuerzo de corte aplicada al fluido.
- c. En fluidos viscoelásticos, la velocidad de corte se relaciona de alguna manera con el esfuerzo de corte. A diferencia de los fluidos verdaderamente viscosos en los que toda la energía de deformación

se disipa, en los fluidos visco-elásticos parte de la energía de deformación en sólidos elásticos.

2.5.1 Fluidos independientes del tiempo

Para los fluidos no newtonianos independientes del tiempo,

$$\dot{\gamma} = f(\tau) \tag{2.2}$$

Un fluido newtoniano es simplemente un caso especial de los anteriores donde la función f(x) es lineal, y esta forma puede catalogarse dentro de los fluidos no newtonianos puramente viscosos. La mayoría de los fluidos no newtonianos con que hay que tratar caen probablemente dentro de estas categorías; y en algunos casos, como el de fluidos dependientes del tiempo, pueden aproximarse a esta categoría para casos simples como los de flujo permanente en tuberías, o flujos de couette. (Hughes., y otros, 1970)

Los fluidos newtonianos independientes del tiempo comúnmente se representan en tres tipos diferentes (véase figura Nº 2.4, en la página 16) Estos son:

- (1) Fluidos plásticos
- (2) Fluidos seudoplásticos
- (3) Fluidos dilatantes

Los fluidos newtonianos se indican por líneas rectas

(1) Fluidos Plásticos

Este tipo de fluido se comporta como un sólido hasta que sobrepasa un esfuerzo cortante mínimo (esfuerzo umbral) y a partir de dicho valor se comporta como un Líquido. La razón por la que se comportan así los fluidos plásticos es la gran interacción existente entra las partículas suspendidas en su interior, formando una capa llamada de solvatación. Están formados por dos fases, con una fase dispersa formada por sólidos y burbujas distribuidos en la fase continua.

En estos fluidos, las fuerzas de Van der Waals y los puentes de hidrogeno, producen una atracción mutua entre partículas. También aparecen fuerzas de repulsión debido a las potenciales de la misma polaridad.

Los fluidos plásticos, a su vez, se diferencian en la existencia de proporcionalidad entre el esfuerzo cortante y la velocidad de deformación, a partir de su esfuerzo umbral. Si existe proporcionalidad, se denominan fluidos plásticos de Bingham y si no hay se denominan solo plásticos. Algunos ejemplos de comportamiento plástico son el chocolate, la arcilla, la mantequilla, la mayonesa, la pasta de dientes, las emulsiones, las espumas, etc. (Ramírez Navas, 2006).

Según H.G. Muller (1973), En términos reológicos, un producto plástico fluye cuando la tensión excede un valor límite. A este valor límite se denomina tensión de deformación plástica, τ_0 . El producto plástico ideal

es el modelo de Bingham (E. C. Bingham 1878 - 1945, científico americano).

Los plásticos Binghan exhiben un esfuerzo para una delocidad de corte nula, seguida por una relación lineal entre esfuerzo y velocidad de corte. Dos constantes definen las características de estos fluidos: el esfuerzo de cesión τ_y que es el esfuerzo que tiene que ser excedido para que comience el flujo, y la viscosidad plástica μ_p que es la pendiente de la porción recta de la curva A (véase figura 2.1, en la página 12) La ecuación de un plástico Bingham es, entonces,

$$\tau = \tau_y + \mu_p \dot{\gamma} \qquad 2.3$$

El concepto de plástico Bingham aproxima bastante bien el comportamiento de muchos fluidos reales tales como plásticos, emulsiones como las pinturas, soluciones de sólidos finamente pulverizados en líquidos; un ejemplo importante de este último es el de la arcilla o lodo de perforación, que es una suspensión de arcilla en agua básicamente.

El concepto de plástico Bingham es conveniente para el análisis debido a la simple relación lineal entre esfuerzo y velocidad de corte. (Hughes., y otros, 1970)

(2) Fluidos Seudoplásticos

Los fluidos seudoplásticos (véase figura Nº 2.4, en la página 16), así como los fluidos dilatantes (véase figura Nº 2.4, en la página 16) no tienen un esfuerzo de cesión; el seudoplástico se caracteriza también por la

disminución progresiva de la pendiente de la relación esfuerzo de corte – velocidad de corte; está pendiente se define como la viscosidad aparente,

$$\eta = \frac{\tau}{i}$$
 2.4

A muy altas ratas secantes en fluidos reales la viscosidad aparente se hace constante e igual a η_{∞} , y la relación de esfuerzo a velocidad de corte se hace lineal. La más simple de las relaciones empíricas que describen los fluidos seudoplásticos es la ley de potencia de Ostwald, que puede escribirse como:

$$\tau = k \dot{\gamma}^n$$
 en donde n < 1 2.5

K y n son constantes para un fluido particular. K es una medida de la consistencia del fluido y n, el exponente, es una medida de la desviación del fluido de los newtonianos.

Definiendo la viscosidad aparente como

$$\eta = \frac{\tau}{\dot{\gamma}}$$
 2.6

La ecuación 2.5 da
$$\eta = k \dot{\gamma}^{(n-1)}$$
 2.7

Z potencial, son:

Prandtl:
$$\tau = A \, sen^{-1}(\frac{\gamma}{c})$$
 2.8

Eyring:
$$\tau = \frac{\dot{\gamma}}{B} + Csen(\frac{\tau}{A})$$
 2.9

Powell- Eyring:
$$\tau = A\dot{\gamma} + Bsenh^{-1}C\dot{\gamma}$$
 2.10

Williamson:
$$\tau = A \dot{\gamma} / (B + \dot{\gamma}) + \eta_{\omega} \dot{\gamma}$$
 2.11

Donde A, B y C representan constantes (diferentes para cada modelo). (Hughes., y otros, 1970).

(3) Fluidos Dilatantes:

Los fluidos dilatantes se asemejan a los seudoplásticos en que la viscosidad aparente crece con el aumento de la velocidad de corte. Los dilatantes son mucho menos comunes que los fluidos seudoplásticos; lo mismo que en estos últimos, los dilatantes pueden representarse por el modelo de la ley de potencia, donde el exponente *n* es mayor que la unidad.

Los fluidos de ley de potencias pueden representarse gráficamente en forma más sencilla tomando logaritmos, tanto para el esfuerzo como para la velocidad de corte (véase figura Nº 2.5, en la página 23). Tomando logaritmos en la ecuación 2.12,

$$\log \tau = \log k + n \log \dot{\gamma} \qquad 2.12$$

Que es la ecuación de una línea recta con pendiente *n*, y donde la intercepción de las curvas con $\log \dot{\gamma} = 0$ o $\dot{\gamma} = 1$ da el valor *logk*, la constante de consistencia. Un fluido newtoniano n = 1, es justamente un caso especial de la ley de potenciais (Hughes., y otros, 1970)

Fuente: Dinámica de Fluidos

2.5.2 Fluidos dependientes del tiempo

Algunos fluidos son más complejos que los que acabamos de considerar y cuya viscosidad aparente depende no sólo de la velocidad de corte sino también del tiempo durante el cual se aplica el esfuerzo de corte. Hay dos tipos generales de tales fluidos:

- (1) Fluidos tixotrópicos
- (2) Fluidos reopécticos

El esfuerzo de corte decrece con el tiempo a medida que el fluido se esfuerza para el fluido tixotrópico, e incrementa con el tiempo para los reopécticos. Un ejemplo común de fluido tixotrópico es la tinta de impresión que generalmente se trabaja en rollos antes de aplicarla a una placa.

(1) Fluidos Tixotrópicos

La consistencia o viscosidad aparente de los fluidos tixotrópicos depende del tiempo de esfuerzo, así como también de la velocidad de corte. Al esforzar el fluido desde el estado de reposo, se fracciona (a escala molecular), pero luego la reformación estructural se incrementa con el tiempo. Eventualmente, se logra una situación de equilibrio en donde la rata de fraccionamiento iguala la reagrupación. Al permitir el reposo, de nuevo, el fluido se recupera lentamente y fortuitamente logra la consistencia original. La tixotropía es, pues, un proceso reversible.

La figura (que tiene el Nº 2.6, en la página 25) muestra una gráfica del esfuerzo contra la velocidad de corte de un fluido tixotrópico inmediatamente después de esforzado y luego de que el fluido reposa durante tiempos variables. La curva inicial que se muestra (véase figura Nº 2.6, en la página 25) como newtoniana, pero podría ser no-newtoniana.

Si un fluido tixotrópico se esfuerza a una velocidad constante creciente, entonces al crecer constantemente la velocidad, se genera una curva similar a un lazo de histéresis; se muestra la curva para un tipo seudoplástico de fluido tixotrópico (véase figura Nº 2.6, en la página 25). A medida que disminuye el esfuerzo, la viscosidad aparente es menor que la correspondiente a esfuerzo creciente.

Algunos materiales plásticos Bingham manifiestan un comportamiento como líquidos verdaderos mientras se reconstruye la estructura. (Véase

figura N° 2.8 (a)) muestra este comportamiento. Sin embargo, algunos materiales, conocidos como cuerpos falsos, muestran un esfuerzo de fluencia disminuye (véase figura N° 2.8 (b)). Generalmente un cuerpo falso toma bastante tiempo para recuperar su resistencia de influencia original.

FIGURA Nº 2.8 LAZOS DE HISTÉRESIS PARA UN FLUIDO TIXOTROPICO (a) PLÁSTICO BINGHAM TIXOTRÓPICO VERDADERO, (b) COMPORTAMIENDO DE UN CUERPO FALSO

Fuente: Dinámica de Fluidos

(2) Fluidos reopécticos

En los fluidos reopécticos la estructura molecular se forma por efecto secante y su comportamiento es opuesto a los tixotrópicos. Un ejemplo de la formación de la estructura por efecto secante es la agitación y espesamiento de la clara de huevo, aunque la clara de huevo no es probablemente un verdadero reopéctico. Muchas sustancias pierden su
propiedad reopéctica a ratas extremadamente altas de esfuerzo de corte y pueden aun comportarse como fluidos tixotrópicos.

2.5.3 Fluidos Viscoelásticos:

Un material viscoelástico exhibe propiedades viscosas y elásticas; el tipo más simple de estos es aquel que en cuanto a viscosidad es newtoniano y en cuanto a elasticidad cumple con la ley de Hooke. Podemos escribir

$$\dot{\gamma} = \frac{\tau}{\mu_0} + \frac{\dot{\tau}}{\lambda}$$
 2.13

Siendo λ el módulo de rigidez. Para flujo permanente, $\dot{\gamma} = \frac{\dot{\tau}}{\mu_0}$ y el flujo se comporta como un fluido newtoniano simple. Sin embargo, al variar el esfuerzo secante, se manifiesta el efecto elástico.

Maxwell propuso inicialmente la ecuación (2.14) como

$$\tau + \left(\frac{\dot{\tau}}{\mu_0}\right) \dot{\tau} = \mu_0 \dot{\gamma}$$
 2.14

y Si el movimiento se define, el esfuerzo se relaja por el factor $e^{-\tau\lambda/\mu_0}$.

Se han desarrollado modelos algo complejos de materiales viscoelásticos en los que aparecen derivadas respecto al tiempo de orden superior en τ y λ . Para proceso de tiempo variable, las constantes elásticas

pueden ser funciones complejas de frecuencia. Wilkinson proporciona una inducción fácil al estudio de estos modelos. (Hughes., y otros, 1970)

2.6 Modelos Reológicos

Existe una gran cantidad de modelos reológicos para expresar el comportamiento reológico de fluidos no newtonianos, de las cuales se ha seleccionado cuatro: modelo de Otswald– de Waele, modelo de Herschel – Buckley, modelo de Sisko y modelo de Williamson, para la selección de estos modelos se ha tenido en cuenta los siguientes factores: los modelos utilizados para las pulpas y el tipo de fluido.

A continuación, se describen los modelos seleccionados:

2.6.1 Modelo de Ostwald - de Waele

Muchos de los alimentos y suspenciones pueden encontrarce en la catergoria de fluidos no newtonianos de tipo seudoplástico o dilatante. Puede ser conveniente representar los valores reologicos (relación entre velocidad y esfuerzo de corte) por un modelo de dos parametros, el cual es conocido como el modelo de la ley de potencia.

$$\tau = k \gamma^n \qquad 2.15$$

Donde n es el indice de comportamiento de flujo y k es el indice de consistencia.

La ecuación 2.15 representa comportamientos de flujos no Newtoniano, seudoplástico y dilatantes basados en los valores de n.

Para n > 1 representa a un fluido dilatante, n < 1 representa un fluido seudoplástico, y n = 1 para un fluido newtoniano.

Obviamente para fluidos no newtonianos, la viscosidad cambia con el esfuerzo de corte, y por lo tanto, no hay un solo valor de viscosidad. En la ecuación 2.16 se define un termino conocido como viscosidad aparente y representada por η .

$$\eta = \frac{\tau}{\gamma} = k \gamma^{n-1}$$
 2.16

Para fluidos seudoplasticos, n < 1. Por lo tanto n-1 puede llegar a ser negativo; cuando el valor de γ incrementa el valor de η disminuye. Pulpas de frutas, crema de leche y pure de frutas y verduras son tipicos fluidos seudoplásticos. Para fluidos dilatantes, n > 1; por lo tanto, n-1 es positivo. Cuando el valor de γ incrementa el valor de η tambie aumenta. Pocas veces nos encontramos con fluidos dilatante. Soluciones de almidon cocido, mieles obtenidas de diferentes fuentes son algunos de los alimentos que tienen un comportan de un fluido dilatante. (Rao, 1986)

2.6.2 Modelo de Herschel – Buckley

La ecuación de Herschel – Buckley se encontró efectivo en la determinación del comportamiento reológico de fluidos como lodo, arcilla y aceite. La ecuación de Herschel – Buckley es la siguiente

$$\tau = \tau_0 + K_{\rm s} \gamma^{\rm n} \qquad 2.17$$

$$\eta = \frac{\tau_0}{\gamma} + k\gamma^{n-1}$$
 2.18

La ecuación 2.18 es usada para calcular la viscosidad aparente η de suspensiones o de fluidos. Donde τ representa el esfuerzo de corte, τ_o el esfuerzo límite o umbral, γ la velocidad de corte, k el índice de consistencia y n índice de comportamiento de flujo y los valores dependen el tipo de fluido. Cuando n > 1, el fluido muestra un comportamiento de tipo seudoplastico, para n = 1, representa a un comportamiento de tipo Plástico de Bingham y para n < 1 el fluido muestra un comportamiento de tipo dilatante. El modelo de reduce al modelo de la ley de potencia cuando τ_0 es cero. (Rakesh K., y otros, 2010)

2.6.3 Modelo de Sisko

El modelo desarrollado por Sisko adopta una expresión como la que se muestra en la ecuación 2.19.

$$\tau = \eta_{\infty} \gamma + k \gamma^n \qquad 2.19$$

$$\eta = \eta_{\infty} + k\gamma^{n-1}$$
 2.20

La ecuación 2.20 es usada para calcular la viscosidad aparente n.

Donde τ es el esfuerzo de corte, γ la velocidad de corte, k índice de consistencia, n índice de flujo y η_{∞} la viscosidad a gradiente infinito.

Estas ecuaciones también son representadas como:

$$\tau = A\gamma + B\gamma^n \qquad 2.21$$

$$n = A + B\gamma^n \qquad 2.22$$

2.6.4 Modelo de Williamson

El modelo de Williamson es una ecuación empírica de 4 parámetros característica de fluidos no newtonianos de tipo seudoplástico que toma la forma mostrada en la ecuación 2.23

$$\tau = \frac{A\gamma}{B+\gamma} + \eta_{\infty}\gamma \qquad 2.23$$

Donde τ es el esfuerzo de corte, γ la velocidad de corte, A y B son constantes y η_{∞} la viscosidad a gradiente infinito.

La ecuación 2.24 es usada para calcular la viscosidad aparente n.

$$\eta = \frac{A}{B+\gamma} + \eta_{\infty}$$
 2.24

2.7 Equipos de Medición

La elección adecuada del equipo de medición depende del tipo de material a analizar. Los reómetros son equipos que permiten obtener los datos de esfuerzo y velocidad de corte del fluido a analizar y con estos valores nos permite la elaboración de reogramas. Existen dos tipos de reómetros más utilizados, reómetros de flujo de arrastre y reómetro de flujo por presión.

- a) Reómetro de flujo de arrastre, que incluyen a los reómetros rotacional que son los que se detallaran en este trabajo.
- b) Reómetro de flujo por presión que incluye al de tipo por capilaridad, que está basado en el flujo laminar (régimen de Poiseuille) a lo largo de un conducto de pequeño diámetro.

(Vliet, 2013)

2.7.1 Reómetros Rotacional

Las mediciones reológicas se realizan a menudo en reómetros rotacionales en donde el material de ensayo es deformado entre dos

cilindros coaxiales, conos, platos, o cono y plato, plato paralelo y paleta. Este grupo de instrumentos tienen una gran ventaja frente a los viscosímetros capilares. Primero, para una geometría apropiada, el esfuerzo de corte y velocidad de corte son casi uniformes sobre el material de ensayo. Segundo la muestra puede ser cortada lo que se desee, dejar que el tiempo depende del comportamiento. (Vliet, 2013)

FIGURA Nº 2.9 REOMETRO ROTACIONAL ANTON PAAR

Fuente: Ficha técnica del reómetro rotacional para control de calidad Anton Paar

FIGURA Nº 2.10 DIFERENTES TIPOS DE GEOMETRIA UTILIZADOS EN LOS REOMETROS ROTACIONES (a) Cilindro concéntrico, (b) plato y cono, (c) plato paralelo, y (d) paleta

Fuente: Food Emulsions

Véase ANEXO 2

2.8 El Camu Camu

El camu camu, es un fruto que parece estar distribuido en la cuenca occidental del río Amazonas, a partir de la cual se halla en zonas de la Amazonia peruana, colombiana, brasilera, venezolana y que su hábitat natural es el bosque aluvial inundable. Además, siendo una especie ribereña, puede quedar sumergida totalmente durante 4 a 5 meses al año. Sin embargo, se conoce que también se adaptan fácilmente a suelos con buen drenaje y regímenes hídricos con sequía de hasta 02 meses. (Villachica, 1998).

Según Mendoza, en el año de 1989., existían 300 Has. de poblaciones naturales distribuidos en las siguientes cuencas: Marañón: El tigre Ucayali: Supay cocha, Iricahua, Manantay. Amazonas: Napo, Nanay, Itaya, Manniti, Ampiyacu Ampayacu, Oroza. Las poblaciones de Camu Camu en las regiones de Loreto y Ucayali a mayo del 2000 (véase tabla Nº 2.1, en la página 36).

FIGURA Nº 2.11 FRUTO DEL CAMU CAMU

Fuente propia

TABLA Nº 2.1 POBLACIONES DE CAMU CAMU EN LAS REGIONES DE LORETO Y UCAYALI

		Áreas Cultivada (Ha.)			a.)
Departamento	Áreas Naturales				
	(Ha.)	1997	1998	1999	2000*
Loreto	1100	332.5	860.1	591.6	281.6
Ucayali	300	50.0	434.5	250.9	124.0
Sub. Total (por Año)		382.5	1294.6	842.5	405.6
Superficie Total (1997 – 2000)	1400	382.5	1677.1	2519.6	2925.2

Fuente: Unidad de Desarrollo de la Amazonia (2000)

Actualmente, una gran parte de la producción proviene de los rodales naturales puesto que la mayoría de las plantaciones recién comenzaron a instalarse en 1997. El Camu-Camu es un fruto producido naturalmente en la Amazonía Peruana, en Loreto en su forma arbustiva Myrciaria dubia H.B.K.) y arbórea (Myrciaria floribunda) y en Ucayali en su forma arbórea. Está ampliamente distribuida como poblaciones naturales en rios y quebradas de la cuenca del Ucayali, del Amazonas y en lagunas y caños de la cuenca del Napo, donde las precipitaciones varían entre 1700 a 4000 mm/año y las temperaturas promedio bordean los 25°C aproximadamente, por tal motivo, se considera que es una planta netamente peruana, sin embrago, el Ministerio de Salud- 4 Centro Nacional de Nutrición, no considera al Camu camu como un alimento autóctono del Perú (1996). Según Riva y González (1996), las poblaciones naturales más densas se

ubican en la Cuenca del Ucayali (Quebrada Supay) y el rio Nanay, también ha sido encontrado camu camu del tipo arbóreo en la cuenca del Marañón. Villachica et al., 1998; (pg 62-69) menciona que en la region Ucayali, la especie arborea ha desarrollado a orillas de los ríos Calleria, Caco Macaya, zonas de San Juan, Nuevo Nazareth, entrada del Abujao y entrada de Iparia; sin embargo, la especie arbustiva sembrada en zonas de restinga y suelos de altura, ya está en producción, generando cantidades como 3 t/ha de frutos de camu camu. (Vega,2002)

TAXONOMIA

Según	Imán (2000)	Según	Picon y Acosta (2000)
TIPO SUB TIPO CLASE ORDEN FAMILIA GENERO ESPECIE	: FANEROGAMAS : ANGIOSPERMAS : DICOTILEDÓNEAS : MYRTALES : MYRTACEAE :Myrciaria :dubia HBK Mc Vaugh	REINO DIVISIÓN SUB DIVISIÓN CLASE SUB CLASE SECCION ORDEN FAMILIA GENERO ESPECIE	: VEGETAL : FANEROGAMA : ANGIOSPERMA : DICOTILEDÓNEA : ELEUTEROPETALAS : CALCIFLORA : MYRTIFLORIAEA : MYRTACEAE : Myrciaria : dubia (H.B.K.) Mc Vaugh

NOMBRE COMUN : Camu camu

(Vega, 2002)

COMPOSICIÓN QUÍMICA

Estos estudios indican que el camu-camu se caracteriza por su alto contenido de ácido ascórbico, habiendo sido determinados valores que varían entre 2780 mg. (Instituto Nacional de Nutrición del Perú, 1996), 2994

mg (Villachica et all., 1996), 2780 mg (Villachica, 1996), en comparación con su más cercano competidor, la acerola con 1300 mg (Villachica et all. 1998) y 1790 mg. (Instituto Nacional de Nutrición del Perú, 1996; Instituto Nacional de Nutrición de Buenos Aires, en Riva y Gonzales, 1996) en pulpa fresca, superando también a frutos cítricos como el limón, naranja y otros. Este alto contenido de ácido ascórbico lo hace muy importante en la industria farmacéutica y la Agroindustria, generando un interés creciente. (Vega,2002)

TABLA N° 2.2	
COMPOSICIÓN QUÍMICA DE CAMU CAMU DE LA E	ESPECIE
MYRCIARIA DUBIA.	

Componente	U. de medida	Cantidad.	Villachica*
Λαμο		02.00	04.40
Ayua	70	93,00	94,40
Calorías	calorías	24,00	17,00
Proteínas	g	0,50	0,50
Carbohidratos	g	5,00	4,70
Grasa	g	0,10	-
Ceniza	g	0,20	-
Fibra	g	0,40	0,60
Calcio	mg	28,00	27,00
Fósforo	mg	15,00	17,00
Hierro	mg	0,50	0,50
Tiamina	mg	0,01	0,01
Riboflavina	mg	0,04	0,04
Niacina	mg	0,061	0,062
Ácido Ascórbico	mg	2780,00	2780,00
Reducido			
Ácido Ascórbico Total	mg	-	2994,00

Fuente: Instituto Nacional de Salud del Perú, 1996.

• COMPOSICIÓN QUÍMICA DE LA PULPA CAMU CAMU:

Estudios posteriores indican que la especie *Myrciaria dubia* tiene un contenido de ácido ascórbico mayor (2780 mg) que la especie *Myrciaria sp.* (1526 mg) por cada 100 g. de pulpa fresca (véase tabla N 2.3)

TABLA N° 2.3	
COMPOSICIÓN QUÍMICA DE MYRCIARIA DUBIA Y MYRCIARIA SF	2
EN 100 G. DE PULPA FRESCA.	

Componentes (g)		Myrciaria dubia	Myrciaria sp.
Calorías (cal)		26,86	36,98
Humedad		91,95	89,58
Proteínas		0,92	0,59
Carbohidratos		5,23	7.93
Fibra		0,78	0.60
Cenizas		0,53	0.53
Extracto Etéreo		0,59	0.77
Calcio	(mg)	50,00	103.00
Fósforo	(mg)	28,00	10.00
Hierro	(mg)	1,13	0.24
Magnesio	(mg)	46,00	72.00
Sodio	(mg)	9,80	14.70
Potasio	(mg)	16,30	6.85
Cobre	(mg)	0,98	0,07
Zinc	(mg)	2,90	0.34
Manganeso	(mg)	1,54	4,34
Acido Ascórbico	(mg)	2780,0	1526.0

Fuente: Ninahuanca y Tejeda, 1995.

(Vega, 2002)

2.9 Definiciones Teóricas Básicas

2.9.1 Elasticidad

Es identificable fácilmente como el comportamiento de un muelle. Cuando se suprime la fuerza que lo comprime, el muelle vuelve a su posición inicial.

Es también el caso de todo cuerpo elástico. Si la curva de carga (es decir de compresión) se corresponde con la curva de descarga (es decir de compresión), y esto para toda velocidad de deformación, se habla de elasticidad ideal (o perfecta); es, clásicamente, el caso del muelle. En el caso más general, donde las curvas de carga y descarga son distintas, la elasticidad se llama imperfecta (véase figura N° 2.12, en la página 41).

El modelo utilizado para representar el comportamiento elástico es el muelle. En mecánica, a menudo, se prefiere hablar en términos de esfuerzo y deformación relativa mejor que en términos de fuerza y desplazamiento.

En estas condiciones el esfuerzo se define como $\sigma = F/S$ y la deformación por $\varepsilon = \Delta h/h$, con F: fuerza, S: superficie de aplicación de esta fuerza, h: longitud inicial y Δh deformación absoluta. (Roudot, 2004)

Fuente: Reología y análisis de la textura de los alimentos

2.9.2 Fluido

Un fluido se define como una sustancia que se deforma continuamente bajo la acción de un esfuerzo de corte (cizalla), por lo tanto, en ausencia de este, no habrá deformación. Los fluidos pueden clasificarse de manera general de acuerdo con la relación entre esfuerzo de corte aplicado y la relación de deformación.

La relación entre el esfuerzo de cizalla requerido para inducir una determinada velocidad de deformación de cizalla, caracteriza el comportamiento reológico de un fluido. (Alvarado, 1996)

2.9.3 Fuerza

Es cualquier acción, esfuerzo o influencia que puede alterar el estado de movimiento o de reposo de cualquier cuerpo. Esto quiere decir que la fuerza puede dar aceleración a un objeto, modificando su velocidad, su dirección o el sentido de su movimiento. El primer físico en describir el concepto de fuerza fue Arquímedes, aunque sólo lo hizo en términos estáticos. Galileo Galilei le otorgó la definición dinámica, mientras que Isaac Newton fue quien pudo formular en forma matemática la definición moderna de fuerza. (RAE)

2.9.4 Grados Brix

Por definición, los grados Brix son una medida de densidad. Un grado Brix es la densidad que tiene, a 20° C, una solución de sacarosa al 1%. Los grados °Brix miden la cantidad de sólidos solubles presentes en un jugo o pulpa, refrescos entre otros, expresados en porcentaje de sacarosa. Los sólidos solubles están compuestos por los azúcares, ácidos, sales y demás compuestos solubles en agua presentes en los jugos de las células de una fruta, o en las bebidas gaseosas. Se determinan empleando un refractómetro calibrado y a 20 °C. Si las muestras se hallan a diferente temperatura se podrá realizar un ajuste en °Brix, según la temperatura en que se realice la lectura. (Gupta, 2002)

2.9.5 Histéresis

Se dice que hay histéresis cuando las curvas de carga y descarga no coinciden (véase figura N° 2.13, en la página 43). Esto se debe bien a la viscosidad bien a plasticidad del material testado. Consideremos una fuerza periódica oscilante entre dos valores opuestos. Al cabo de cierto tiempo, estos valores no son muy elevados (para evitar una determinación del

material por fatiga), se constata que la deformación oscila también entre dos valores opuestos. Se dice entonces que hay acoplamiento. (Alain-Claude, 2004)

Fuente: Reología y análisis de la textura de los alimentos, 2004

2.9.6 Pulpa

Parte blanda y carnosa, generalmente comestible, de la fruta. pulpa de melón; pulpa de manzana; pulpa de sandía; en la naranja, se distinguen la piel, la pulpa y las semillas.

Masa que se obtiene después de triturar un fruto, una planta o una parte de ella o de extraerle su jugo, y que tiene diversos usos industriales.

la pulpa de remolacha deshidratada se usa en la preparación de alimentos para perros; la importancia de los frutos de hueso para el comercio exterior es notable, especialmente en forma de pulpas y conservas. (OXFORD, 2017)

2.9.7 Rata

Variación de una magnitud por unidad de tiempo. (Gran diccionario de la lengua española 2016 Larousse Editorial, S.L)

2.9.8 Refractómetro

El refractómetro es un equipo que mide el índice de refracción con indicadores, el cual indica cuanto se refractara un haz de luz cuando este pase atreves del jugo de fruta es cual es correlacionado con los SST como ° Brix. (Verma, 2000)

2.9.9 Reología

Un concepto formal del término Reología (παντα ρει: "todo fluye) sería: "Parte de la mecánica que estudia la elasticidad, plasticidad y viscosidad de la materia".

El Termino "Reología" fue inventado por E.C. Bingham en 1928, palabra que se aceptó y adoptó en la ciencia un año más tarde, en la creación de la sociedad americana de Reología.

Fuente: Introducción a la reología de alimentos, 2006

La reología, es decir, << la ciencia del flujo y deformación>>, estudia las propiedades mecánicas de los gases, líquidos, plásticos, sustancias asfálticas, materiales cristalinos y otros. Por lo tanto, el campo de la reología se extiende, desde la, mecánica de fluidos newtonianos, por una parte, hasta la elasticidad de Hooke por otra. La región comprendida entre ellas corresponde a la deformación y flujo de todos los tipos de materiales pastosos y suspensiones. (Bird, 1998)

Merece destacarse el trabajo del profesor Prentice, relacionado con la Reología de productos alimentarios y su medida. (Alvarado, 1996)

2.9.10 Reometría

La reometría (del griego rheos) es la ciencia que describe tanto los métodos de medida como los instrumentos que permiten obtener datos reológicos de un material. Determina las relaciones cuantitativas y cualitativas entre la deformación y la tensión mecánica y sus derivadas.

Una aplicación típica de la reometría sería la medida de la viscosidad. (Ramírez, 2006)

2.9.11 Reómetro

El reómetro es un instrumento que mide tanto la historia del esfuerzo como la deformación de un material de cual no se conoce su relación constitutiva. (Ramírez, 2006)

2.9.12 Solidos solubles totales (SST)

El mayor porcentaje de los sólidos solubles en los jugos de frutas es el azúcar, por lo tanto, los sólidos solubles totales pueden ser usado para estimar la concentración de azúcar. Ácidos orgánicos, aminoácidos y pectinas solubles también contribuyen a la cantidad de los SST. El contenido de solidos solubles puede de jugo de frutas puede ser medido utilizando un refractómetro de mano. (Verma, 2000)

2.9.13 Tensión

Imaginémonos un cilindro, de un material sólido, que está siendo estirado en la dirección de su eje por la fuerza que tracciona; si lo cortamos transversalmente al eje, se separan dos partes y para que las superficies de corte vuelvan a cortar será preciso aplicar un esfuerzo igual al original, esta misión. El cilindro se encontraba en tensión o (compresión). Estaba en un estado de tensión: se estrecha o cambia de forma.

El estado de tensión es un fenómeno tridimensional; su descripción más simple es la anterior, pero puede demostrarse la existencia de componentes de tensión en todas las direcciones. Eligiendo cuidadosamente las condiciones experimentales (fuerza aplicada, geometría de las muestras, deformaciones pequeñas) se puede simplificar la compleja situación de manera que permitirá estudiar aisladamente un componente. En el experimento anterior la tracción aplicada equivale al componente longitudinal. (Ramírez, 2006)

2.9.14 Tixotropía

Se trata de una noción que no se aplica más que a los cuerpos fluidificantes. Se dice que hay trixotropia si, después de un largo reposo, al aplicar bruscamente un esfuerzo, que después se mantiene fijo, la viscosidad es función decreciente de la duración de la deformación. El cuerpo vuelve a recuperar su estado inicial cuando se suprime el esfuerzo, se puede concluir que se trata de un producto tixotrópico. Los geles pueden considerarse como tixotrópicos, en la mayoría de las ocasiones. (Alain-Claude, 2004).

2.9.15 Viscosidad

Se trata del principal comportamiento encontrado en los fluidos. Por otro lado, es el dominio donde este comportamiento es el más sencillo de comprender. Sea un fluido colocado entre dos paredes infinitas, una de las

cuales es móvil y otra esta animada de un desplazamiento con velocidad V (véase figura Nº 2.12, en la página 49): las capas de fluido próximas a la pared inmóvil también están inmóviles, mientras que las que están cercanas a la pared móvil, se desplazan a la misma velocidad que esta pared, la velocidad de las capas intermedias varía continuamente entre dos valores. Se puede clasificar este fenómeno de la viscosidad como la "pegajosidad" del fluido. Se expresa entonces como:

$$\sigma = \eta \frac{dv}{dy}$$
 2.25

El coeficiente η se llama coeficiente de viscosidad dinámica, en el caso de una viscosidad newtoniana. En caso general esta relación no es lineal: el fluido no es newtoniano.

$$\sigma = f(\frac{dv}{dy})$$
 2.26

(Roudot, 2004)

2.9.16 Viscosidad aparente

"n" se define como el cociente entre el esfuerzo cortante y la velocidad de deformación. Este término es el que se utiliza al hablar de "viscosidad" para fluidos no newtonianos.

$$\eta = \frac{\dot{\gamma}}{\tau}$$
 2.27

(Ramírez, 2006)

2.9.17 Viscosidad cinemática

Representa esta característica desechando las fuerzas que generan el movimiento. Es decir, basta con dividir la viscosidad dinámica con la densidad del fluido y se obtiene una unidad simple de movimiento: cm²/s (stoke), sin importar sus características propias de densidad. (Roudot, 2004)

$$v = \frac{\mu}{\rho}$$
 2.28

2.9.18 viscosidad dinámica

Es conocida también como absoluta. Viscosidad es la resistencia interna al flujo de un fluido, originado por el roce de las moléculas *que se deslizan unas sobre otras. Analiza esto: en un sólido, existe una estructura cristalina donde unas moléculas se enlazan de forma rígida y su estructura no cambia; en cambio, en un fluido las moléculas no permanecen en el mismo lugar dentro de la masa, sino *que se mueven, pero a la vez tratan de mantenerse unidas: ese esfuerzo por permanecer en un lugar fijo es la resistencia al flujo y determina la viscosidad. La viscosidad dinámica se toma del tiempo *que tarda en fluir un líquido a través de un tubo capilar a una determinada temperatura y se mide en "poises" (gr.cm⁻¹. s⁻¹). Es decir, es inherente a cada líquido en particular pues depende de su masa.

III. VARIABLES E HIPOTESIS

3.1 Variables de la investigación

Variable Dependiente:

X = Modelos Reológicos

Variables Independientes:

Y = Fluido de la pulpa de camu camu

Z = Relación esfuerzo y velocidad de corte.

W = Comportamiento reológico

3.2 Operacionalización de las variables

VARIABLE DEPENDIENTE	DIMENSIONES	INDICADORES	MÉTODO
X = Modelos Reológicos	- Coeficiente de determinación	-R²≈1	Analítico Cuantitativo
VARIABLES INDEPENDIENTE	DIMENSIONES	INDICADORES	MÉTODO
Y = El fluido de la pulpa de camu camu	-Concentración -Temperatura -Acidez	-° Brix -° centígrados -pH	Analítico Cuantitativo
Z = Relación Esfuerzo y velocidad de corte.	-Reogramas	-curva de fluidez	Analítico Cuantitativo
W ≃ Comportamiento reológico	-Reogramas - Índice de flujo	- curva de fluidez - n < 1	Analítico Cuantitativo

TABLA Nº 3.1 OPERACIONALIZACIÓN DE VARIABLES

Fuente: Elaboración Propia.

3.3 Hipótesis

3.3.1 Hipótesis General:

Los modelos reológicos de Ostwald-de Waele, Herschel Bulkley, Sisko y Williamson característicos de los fluidos No Newtonianos independientes del tiempo de tipo seudoplástico se relacionan significativamente con el fluido de la pulpa del camu camu.

3.3.2 Hipótesis Específicas:

- a) Existe una relación no lineal entre el esfuerzo de corte y velocidad de corte del fluido de la pulpa del camu camu.
- b) El fluido de la pulpa del camu camu presenta un comportamiento reológico característico de un fluido no newtoniano independiente del tiempo de tipo seudoplástico

IV. METODOLOGÍA

4.1 Tipo de investigación

- Correlacional: Debido a que la utilidad de este tipo de investigación fue saber cómo se puede comportar un concepto o variable conociendo el comportamiento de otra u otras variables relacionadas.
- Transversal: Debido a que se determinó los parámetros y modelos matemáticos en un tiempo determinado, interesando estudiar el problema en ese momento.
- Experimental: Ya que se realizó un conjunto de actividades metódicas y técnicas que para recabar la información y datos necesarios sobre el tema a investigar y el problema a resolver.

4.2 Diseño de la investigación

Obtención de las muestras

Se lavó 3.6 kg. de frutos seleccionados de camu camu de la variedad Myrciaria dubia con agua clorada (4 gotas por litro de agua) y se escaldó con agua a 80°C por 5 minutos, seguidamente se dejó enfriar hasta temperatura de ambiente y se retiró las semillas de forma manual. Se obtuvieron 2 muestras.

La muestra de la pulpa simple se obtuvo utilizando una refinadora con una malla de abertura de 200 micras, obteniendo 1.6 kg de pulpa de camu camu, de los cuales se separó como muestra 400 g.

Para la segunda muestra de pulpa refinada se tomó 1.2 Kg de la pulpa simple y posteriormente se refinó utilizando una refinadora con malla de abertura de 500 micras, obteniéndose como muestra 800 g.

Determinación de los grados Brix

Para efectuar la medición se utilizó un refractómetro. Al inicio de cada medición se calibro el equipo adicionándole gotas de agua al prisma hasta que la lectura sea cero. Una vez calibrado el equipo se agregó al prisma una gota de cada muestra utilizando una pipeta. Se observó a través de ocular del dispositivo los grados Brix.

Se realizaron las mediciones de los °Brix para las muestras de pulpa simple y refinada a temperaturas de 20, 40 y 60 °C.

Determinación de pH

Se determinó el pH por lectura directa en un potenciómetro de mesa, basado en la medición electrométrica de la actividad de los iones hidrógeno presentes en una muestra del producto. Se calibró el equipo

con agua destilada y luego se colocó las muestras en el sensor del equipo para la lectura de datos.

Se realizaron las mediciones de pH para las muestras de pulpa simple y refinada a temperaturas de 20, 40 y 60 °C.

Medidas Reológicas

Se utilizó un reómetro rotacional con una geometría de paletas de la marca Anton-Paar modelo RheoLab QC con un rango de velocidad de 1 a 100 s⁻¹, con el cual se determinaron el esfuerzo y la velocidad de corte necesarios para construir las curvas de fluidez (reogramas) para cada una de las muestras a diferentes temperaturas.

El reómetro RheoLab QC, el cual fue operado por un moderador desde una computadora utilizando el software RheoPlus.

Se utilizó el sistema de baño de recirculación de agua de la marca Julabo, con el cual se trabajó a las temperaturas de 20°C, 40°C y 60°C para cada una de las dos muestras.

4.3 Población y muestra

 Población: 3.6 kilos de fruta madura de camu camu de la variedad Myrciaria dubia, proveniente de la provincia de Coronel Portillo, departamento de Ucayali. Muestra: Se tomó toda la población de los 3.6 kg de la fruta camu camu, luego del despepado se obtuvo 2.6 kg de fruto de camu camu.

Se obtuvieron 2 muestras para el trabajo de investigación:

- Muestra de pulpa simple: 400 g de Pulpa de la fruta madura de camu camu de la variedad Myrciaria dubia extraída a malla de 200 micras de abertura.
- Muestra de pulpa refinada: 800 g Pulpa de la fruta madura de camu camu de la variedad Myrciaria dubia extraída a malla de 500 micras de abertura.

4.4 Procesamiento estadístico y análisis de datos

Las determinaciones de los parámetros fisicoquímicos se realizaron por triplicado, el resultado se expresó mediante el promedio más la desviación estándar (±). Para la determinación de los parámetros reológicos se utilizó el programa estadístico SPS-20, donde también se realizaron análisis de varianza ANOVA.

V. RESULTADOS

5.1 Análisis Fisicoquímico de la pulpa

Luego de haber obtenido las 2 muestras de pulpa simple y refinada de camu camu, se realizó los análisis fisicoquímicos donde se obtuvieron los siguientes valores de pH y sólidos solubles totales (TABLA Nº 5.1)

Denteratio	PULPA	PULPA
Parametro	SIMPLE	REFINADA
рН	3.7 ± 0.57	3.3 ± 0.1
SST (°Brix)	5 ± 0.5	4 ± 0.5

TABLA Nº 5.1 PARÁMETROS FISICOQUÍMICOS

Fuente propia

5.2 Comportamiento reológico de la pulpa del camu camu

Las mediciones efectuadas de los valores de velocidad y esfuerzo de corte para cada una de las muestras a las temperaturas de 20, 40 y 60 °C, se muestran en las tablas N° 5.2, 5.3, 5.4,5.5, 5.6 y 5.7.

Estos valores fueron tratados en computadora y se obtuvieron los valores de los parámetros y reogramas para cada modelo a analizar, donde se observa que las curvas obtenidas tanto para la pulpa simple y refinada de camu camu obedecen a los modelos reológicos de un

fluido no newtoniano independiente del tiempo de tipo plástico para 20°C y seudoplástico para 40°C Y 60°C.

TABLA Nº 5.2 DATOS REOLÓGICOS DE PULPA SIMPLE DEL CAMU CAMU A 20 °C

	the second s	
	velocidad	esfuerzo
N ⁰	de	de
	corte	corte
	(1/S)	(Pa)
1	0.001	1.990
2	0.003	3.980
3	0.011	4.980
4	0.419	5.480
5	2.630	5.970
6	7.890	6.470
7	12.800	6.970
8	18.100	7.470
9	24.500	7.960
10	32.000	8.460
11	39.600	8.960
12	47.600	9.460
13	56.700	9.950
14	65.200	10.500
15	74.300	10.900
16	84.600	11.400
17	95.500	11.900

Fuente: Datos reportados del reómetro

TABLA Nº 5.3	
DATOS REOLÓGICOS DE PULPA SIMPLE DEL CAMU CAMU A 40 º	°C

NO	velocidad	Esfuerzo	
	de	de	
IN**	corte	corte	
	(1/S)	(Pa)	
1	0.1	1.500	
2	1.530	4.480	
3	4.210	4.980	
4	7.370	5.480	
5	11.000	5.970	
6	15.200	6.470	
7	20.100	6.970	
8	26.100	7.470	
9	32.100	7.960	
10	39.300	8.460	
11	47.300	8.960	
12	55.700	9.460	
13	64.800	9.950	
14	74.600	10.500	
15	84.800	10.900	
16	95.700	11.400	

Fuente: Datos reportados del reómetro.

· · · · · · · · · · · · · · · · · · ·	y · ·····-	
	velocidad	Esfuerzo
N ⁰	de	de
	corte	corte
	(1/S)	(Pa)
1	0.5	1.000
2	1.200	2.490
3	3.750	2.990
4	6.370	3.490
5	9.090	3.980
6	11.800	4.480
7	14.800	4.980
8	18.400	5.480
9	22.200	5.970
10	26.900	6.470
11	32.700	6.970
12	38.400	7.470
13	45.200	7.960
14	52.300	8.460
15	60.300	8.960
16	68.700	9.460
17	78.100	9.950
18	88.400	10.500
19	99.300	10.900
	and the second	

TABLA Nº 5.4 DATOS REOLÓGICOS DE PULPA SIMPLE DEL CAMU CAMU A 60 ºC

Fuente: Datos reportados del reómetro

TABLA Nº 5.5	
DATOS REOLÓGICOS DE PULPA REFINADA DEL CAMU CAMU A 20) °C

· · · · · · · · · · · · · · · · · · ·	*** ********	· · · · · · · · · · · · · · · · · · ·
Nº	velocidad	esfuerzo
	de	de
	corte	corte
	(1/S)	(Pa)
1	0.001	1.500
2	0.003	2.490
3	0.004	2.990
4	0.010	3.490
5	1.110	4.980
6	3.130	5.480
7	8.510	5.970
8	13.200	6.470
9	18.300	6.970
10	23.900	7.470
11	30.100	7.960
12	36.900	8.460
13	44.500	8.960
14	53.000	9.460
15	62.300	9.950
16	72.100	10.500
17	82.600	10.900
18	94.100	11.400

Fuente: Datos reportados del reómetro

TABLA Nº 5.6		
DATOS REOLÓGICOS DE PULPA REFINADA DEL CAMU O	CAMU A 4	0°C

N ^o	velocidad	esfuerzo
	de	de
	corte	corte
	(1/S)	(Pa)
1	0.1	1.000
2	3.110	3.490
3	7.160	3.980
- 4	9.860	4.480
5	13.200	4.980
6	16.900	5.480
7	22.700	5.970
8	29.100	6.470
9	35.700	6.970
10	43.100	7.470
_11	50.800	7.960
12	59.300	8.460
13	68.300	8.960
14	77.700	9.460
15	88.100	9.950
16	98.700	10.500

Fuente: Datos reportados del reómetro
TABLA Nº 5.7 DATOS REOLÓGICOS DE PULPA REFINADA DEL CAMU CAMU A 60 °C

	velocidad	esfuerzo
NO	de	de
r v	corte	corte
	(1/S)	(Pa)
1	0.100	1.000
2	1.870	1.500
3	6.620	2.490
4	8.540	2.990
5	11.600	3.490
6	15.300	3.980
7	19.100	4.480
8	23.400	4.980
9	28.700	5.480
10	34.900	5.970
11	41.300	6.470
12	48.800	6.970
13	56.400	7.470
14	64.900	7.960
15	74.000	8.460
16	83.600	8.960
17	94.100	9.460

Fuente: Datos reportados del reómetro

Fuente: Obtenida a partir de los datos de las tablas N° 5.2, 5.3, 5.4.

64

5.3 Modelos Reológicos relacionados a los fluidos no newtonianos de

tipo seudoplastico

TABLA Nº 5.8 PARAMETROS REOLOGICOS DEL MODELO DE OSTWALD

	MODELO DE OSTWALD											
	Р	ulpa simple		Pulpa refinada								
т	Índice de consistencia K (Pa.S ⁿ)	Índice de Flujo n	R2	Índice de consistencia K(Pa.S ⁿ)	Índice de Flujo n	R2						
20° C	5.817	0.130	0.887	4.828	0.166	0.941						
40° C	3.427	0.254	0.972	1.998	0.356	0.996						
60° C	1.695	0.406	0.996	1.116	0.471	0.9 9 6						

Fuente: Obtenido a partir del tratamiento estadístico de las tablas N° 5.2, 5.3, 5.4, 5.5, 5.6, 5.7

TABLA № 5.9 PARAMETROS REOLOGICOS DEL MODELO DE HERSCHEL

		MODELO DE HERSCHEL											
		Pulpa simple	2	Pulpa refinada									
T	Índice de consistencia K (Pa.S ⁿ)	Índice de flujo n	ŢΟ (Pa.)	R2	Índice de consistencia K (Pa.S ⁿ)	Índice de flujo n	Ţ0 (Pa.)	R2					
20° C	1.194	0.413	3.732	0.952	1.674	0.361	2.480	0.980					
40° C	1.816	0.361	1.765	0.979	1.591	0.395	0.555	0.997					
60° C	1.519	0.425	0.259	0.996	0.821	0.528	0.531	0.998					

Fuente: Obtenido a partir del tratamiento estadístico de las tablas N° 5.2,

5.3, 5.4, 5.5, 5.6, 5.7

	MODELO DE SISKO											
	Pulp	a simp	le		Pulp	Pulpa refinada						
т	Índice de flujo n	A (Pa.S)	B (Pa.S ⁿ)	R2	Índice de flujo n	A (Pa.S)	B (Pa.S ⁿ)	R2				
20° C	0.071	0.046	5.470	0.974	0.102	0.044	4.684	0.991				
40° C	0.182	0.030	3.726	0.985	0.282	0.022	2.266	0.998				
60° C	0.386	0.007	1.747	0.996	0.436	0.010	1.177	0.996				

TABLA Nº 5.10 PARAMETROS REOLOGICOS DEL MODELO DE SISKO

Fuente: Obtenido a partir del tratamiento estadístico de las tablas Nº 5.2,

5.3, 5.4, 5.5, 5.6, 5.7

TABLA Nº 5.11
PARAMETROS REOLOGICOS DEL MODELO DE WILLIAMSON

	MODELO DE WILLIAMSON											
		Pulpa si	mple	Pulpa refinada								
Т	A (Pa)	В (S ⁻¹)	ர∞ (Pa.S)	R2	A (Pa)	B (S ⁻¹)	η _∞ (Pa.S)	R2				
20° C	6.069	0.002	0.660	0.990	5.544	0.004	0.068	0.987				
40° C	5.524	0.237	0.067	0.986	4.951	1.860	0.059	0.990				
60° C	5.011	2.768	0.065	0.986	5.042	8.032	0.053	0.989				

Fuente: Obtenido a partir del tratamiento estadístico de las tablas N° 5.2,

5.3, 5.4, 5.5, 5.6, 5.7

TABLA Nº 5.12

VALORES CALCULADOS DE ESFUERZO DE CORTE Y VISCOSIDAD APARENTE PARA PULPA SIMPLE DE CAMU CAMU A 20 °C

Dato	sexperiment	ales	Modelo de Ostwald		Modelo d	elHerschel	Modelo	deSisko	Modelo de Williamson	
Velocidad de	Esfuerzo de	Viscosidad	Esfuerzo	Viscosidad	Esfuerzo	Viscosidad	Esfuerzo	Viscosidad	Esfuerzo	Viscosidad
Corte	corte	aparente	de corte	aparente	de corte	aparente	de corte	aparente	de corte	aparente
Experimental	experimental	experimental	Calculado	calculado	Calculado	calculado	Calculado	calculado	Calculado	calculado
1/S	Pa.	Pa.S	Pa.	Pa.S	Pa.	Pa.S	Pa.	Pa.s	Pa.	Pa.S
0.001	1.990	1990.000	2.370	2369.731	3.801	3800.866	3.350	3349.603	2.023	2023.066
0.003	3.980	1326.667	2.734	911.179	3.840	1280.136	3.621	1207.142	3.642	1213.866
0.011	4.980	452.727	3.237	294.230	3.917	356.127	3.972	361.068	5.136	466.912
0.419	5.480	13.079	5.195	12.399	4.566	10.897	5.162	12.319	6.068	14.482
2.630	5.970	2.270	6.596	2.508	5.512	2.096	5.980	2.274	6.238	2.372
7.890	6.470	0.820	7.609	0.964	6.534	0.828	6.697	0.849	6.588	0.835
12.800	6.970	0.545	8.103	0.633	7.154	0.559	7.144	0.558	6.913	0.540
18.100	7.470	0.413	8.476	0.468	7.680	0.424	7.551	0.417	7.263	0.401
24.500	7.960	0.325	8.816	0.360	8.206	0.335	7.992	0.326	7.686	0.314
32.000	8.460	0.264	9.128	0.285	8.728	0.273	8.468	0.265	8.181	0.256
39.600	8.960	0.226	9.384	0.237	9.188	0.232	8.924	0.225	8.682	0.219
47.600	9.460	0.199	9.611	0.202	9.618	0.202	9.386	0.197	9.210	0.193
56.700	9.950	0.175	9.833	0.173	10.060	0.177	9.894	0.175	9.811	0.173
65.200	10.500	0.161	10.013	0.154	10.435	0.160	10.358	0.159	10.372	0.159
74.300	10.900	0.147	10.184	0.137	10.807	0.145	10.845	0.146	10.973	0.148
84.600	11.400	0.135	10.358	0.122	11.197	0.132	11.388	0.135	11.652	0.138
95.500	11.900	0.125	10.522	0.110	11.580	0.121	11.954	0.125	12.372	0.130

Fuente propia: Obtenido a partir de las tablas N° 5.8, 5.9, 5.10 y 5.11

Fuente propia: Obtenido a partir de la Tabla Nº 5.12

Fuente propia: Obtenido a partir de la Tabla Nº 5.12

TABLA Nº 5.13 VALORES CALCULADOS DE ESFUERZO DE CORTE Y VISCOSIDAD APARENTE PARA PULPA REFINADA DE CAMU CAMU A 20 °C

.

Dat	ostexperimen	tales.	Modelo d	e Ostwald	Modelo d	e Herschel	Modelo	de Sisko	Modelo de	Villiamson
Velocidad de	Esfuerzo de	Viscosidad	Esfuerzo	Viscosidad	Esfuerzo	Viscosidad	Esfuerzo	Viscosidad	Esfuerzo de	Viscosidad
Corte	corte	aparente	de corte	aparente	de corte	aparente	de corte	aparente	corte	aparente
Experimental	experimental	experimental	Calculado	calculado	Calculado	calculado	Calculado	calculado	Calculado	calculado
1/5	Pa.	Pa.S	Pa.	Pa.S	Pa	Pa.S	Pa.	Pa.s	<u> </u>	Pa.S
0.001	1.500	1500.000	1.534	1533.795	2.618	2618.279	2.315	2315.395	1.109	1108.868
0.003	2.490	830.000	1.841	613.547	2.686	895.196	2.590	863.345	2.376	792.068
0.004	2.990	747.500	1.931	482.669	2.708	677.022	2.667	666.800	2.772	693.068
0.010	3.490	349.000	2.248	224.785	2.798	279.751	2.929	292.875	3.961	396.068
1.110	4.980	4.486	4.912	4.426	4.218	3.800	4.783	4.309	5.600	5.045
3.130	5.480	1.751	5.835	1.864	5.007	1.600	5.400	1.725	5.750	1.837
8.510	5.970	0.702	6.889	0.809	6.106	0.718	6.202	0.729	6.120	0.719
13.200	6.470	0.490	7.409	0.561	6.729	0.510	6.675	0.506	6.440	0.488
18.300	6.970	0.381	7.822	0.427	7.261	0.397	7.106	0.388	6.787	0.371
23.900	7.470	0.313	8.177	0.342	7.744	0.324	7.526	0.315	7.168	0.300
30.100	7.960	. 0.264	8.496	0.282	8.202	0.272	7.953	0.264	7.590	0.252
36.900	8.460	0.229	8.788	0.238	8.638	0.234	8.391	0.227	8.053	0.218
44.500	8.960	0.201	9.066	0.204	9.069	0.204.	8.856	0.199	8.570	0.193
53.000	9.460	0.178	9.332	0.176	9.498	0.179	9.355	0.177	9.148	0.173
62.300	9.950	0.160	9.586	0.154	9.920	0.159	9.880	0.159	9.780	0.157
72.100	10.50	0.146	9.822	0.136	10.323	0.143	10.419	0.145	10.446	0.145
82.600	10.90	0.132	10.046	0.122	10.717	0.130	10.982	0.133	11.161	0.135
94.100	11.40	0.121	10.266	0.109	11.114	0.118	11.586	0.123	11.943	0.127

Fuente propia: Obtenido a partir de las tablas N° 5.8, 5.9, 5.10 y 5.11

.

,

Fuente propia: Obtenido a partir de la Tabla Nº 5.13

- 71

TABLA Nº 5.14
VALORES CALCULADOS DE ESFUERZO DE CORTE Y VISCOSIDAD APARENTE PARA PULPA SIMPLE DE CAMU CAMU A 40 °C

Dat	osjexperimen	tales	Modelode.Ostwald		Modelo de Herschel		Modelo de Sisko		Modelo de Williamson	
Velocidad de	Esfuerzo de	Viscosidad	Esfuerzo	Viscosidad	Esfuerzo	Viscosidad	Esfuerzo	Viscosidad	Esfuerzo	Viscosidad
Corte	corte	aparente	de corte	aparente	de corte	aparente	de corte	aparente	de corte	aparente
Experimental	experimental	experimental	Calculado	calculado -	Calculado	calculado	Calculado	calculado	Calculado	calculado
1/S	Pa	Pa.S	Pa.	Pa.S	Pa.	Pa.S	Pa.	Pa.s	Pa.	Pa.S
0.100	1.500	1500.000	1.909	19.095	1.390	2.781	2.453	24.534	1.646	16.459
0.405	3.980	9.827	2.724	6.726	1.900	1.584	3.173	7.834	3.512	8.671
1.530	4.480	2.928	3.818	2.495	2.923	0.779	4.072	2.661	4.886	3.193
4.210	4.980	1.183	4.937	1.173	3.596	0.564	4.966	1.180	5.512	1.309
7.370	5.480	0.744	5.692	0.772	4,140	0.455	5.581	0.757	5.846	0.793
11.000	5.970	0.543	6.301	0.573	4.595	0.389	6.095	0.554	6.144	0.559
15.200	6.470	0.426	6.841	0.450	5.033	0.340	6.570	0.432	6.458	0.425
20.100	6.970	0.347	7.344	0.365	5.496	0.299	7.036	0.350	6.806	0.339
26.100	7.470	0.286	7.848	0.301	5.931	0.267	7.529	0.288	7.223	0.277
32.100	7.960	0.248	8.271	0.258	6.414	0.238	7.968	0.248	7.634	0.238
39.300	8.460	0.215	8.707	0.222	6.946	0.212	8.447	0.215	8.124	0.207
47.300	8.960	0.189	9.127	0.193	7.419	0.193	8.936	0.189	8.666	0.183
55.700	9.460	0.170	9.514	0.171	7.932	0.175	9.415	0.169	9.232	0.166
64.800	9.950	0.154	9.887	0.153	8.423	0.161	9.905	0.153	9.845	0.152
74.600	10.500	0.141	10.247	0.137	8.932	0.148	10.405	0.139	10.505	0.141
84.800	10.900	0.129	10.586	0.125	9.427	0.137	10.904	0.129	11.190	0.132
95.700	11.400	0.119	10.916	0.114	9.940	0.127	11.417	0.119	11.922	0.125

Fuente propia: Obtenido a partir de las tablas N° 5.8, 5.9, 5.10 y 5.11

Dat	osjexperimen	tales	Modelod	e Ostwald	Modelod	eHerschel	Modelo	deSisko	Modelo de Williamson	
Velocidad de Corte Experimental	Esfuerzo de corte experimental	Viscosidad aparente experimental	Esfuerzo de corte Calculado	Viscosidad aparente calculado						
0.001	Ра 1.000	Pa.S 1000.000	1.561	Pa.S 3 122	Pa	Pa.S 7 744	Pa. 1 875	Pa.S 3 749	Pa.	Pa.S
3.110	3.490	1.122	2.992	0.962	1.674	0.895	3.189	1.025	3.282	1.055
7.160	3.980	0.556	4.027	0.562	2.758	0.417	4.105	0.573	4.353	0.608
9.860	4.480	0.454	4.512	0.458	3.079	0.361	4.537	0.460	4.747	0.481
13.200	4.980	0.377	5.006	0.379	3.526	0.304	4.981	0.377	5.118	0.388
16.900	5.480	0.324	5.467	0.323	3.997	0.261	5.401	0.320	5.457	0.323
22.700	5.970	0.263	6.072	0.267	4.428	0.232	5.965	0.263	5.915	0.261
29.100	6.470	0.222	6.633	0.228	4.869	0.208	6.503	0.223	6.370	0.219
35.700	6.970	0.195	7.134	0.200	5.363	0.187	6.996	0.196	6.812	0.191
43.100	7.470	0.173	7.629	0.177	5.888	0.169	7.497	0.174	7.289	0.169
50.800	7.960	0.157	8.089	0.159	6.387	0.155	7.977	0.157	7.773	0.153
59.300	8.460	0.143	8.547	0.144	6.926	0.142	8.470	0.143	8.299	0.140
68.300	8.960	0.131	8.988	0.132	7.434	0.132	8.960	0.131	8.849	0.130
77.700	9.460	0.122	9.410	0.121	7.965	0.123	9.443	0.122	9.420	0.121
88.100	9.950	0.113	9.840	0.112	8.498	0.115	9.950	0.113	10.047	0.114
98.700	10.500	0.106	10.246	0.104	9.028	0.108	10.444	0.106	10.683	0.108

TABLA Nº 5.15 VALORES CALCULADOS DE ESFUERZO DE CORTE Y VISCOSIDAD APARENTE PARA PULPA REFINADA DE CAMU CAMU A 40 °C

Fuente propia: Obtenido a partir de las tablas N° 5.8, 5.9, 5.10 y 5.11

Dat	osexperimen	tales	Modeloo	eOstwald	Modelool	ModelodeHerschel		ModelodeSisko		ModelodeWilliamson	
Velocidad de	Esfuerzo de	Viscosidad	Esfuerzo	Viscosidad	Esfuerzo	Viscosidad	Esfuerzo	Viscosidad	Esfuerzo	Viscosidad	
Corte	corte	aparente	de corte	aparente	de corte	aparente	de corte	aparente	de corte	aparente	
Experimental	experimental	experimental	Calculado	calculado	Calculado	calculado	Calculado	calculado	Calculado	calculado	
1/S	Pa.	Pa.S	Pa.	Pa.S	Pa.	Pa.S	Pa.	Pa.s	Pa.	Pa.S	
0.5	1.000	1000.000	1.279	2.558	1.390	2.781	1.340	2.681	0.799	1.598	
1.200	2.490	2.075	1.825	1.521	1.900	1.584	1.883	1.569	1.593	1.328	
3.750	2.990	0.797	2.899	0.773	2.923	0.779	2.936	0.783	3.127	0.834	
6.370	3.490	0.548	3.595	0.564	3.596	0.564	3.615	0.567	3.907	0.613	
9.090	3.980	0.438	4.153	0.457	4.140	0.455	4.159	0.458	4.432	0.488	
11.800	4.480	0.380	4.617	0.391	4.595	0.389	4.612	0.391	4.826	0.409	
14.800	4.980	0.336	5.062	0.342	5.033	0.340	5.047	0.341	5.183	0.350	
18.400	5.480	0.298	5.529	0.301	5.496	0.299	5.505	0.299	5.552	0.302	
22.200	5.970	0.269	5.967	0.269	5.931	0.267	5.936	0.267	5.898	0.266	
26.900	6.470	0.241	6.451	0.240	6.414	0.238	6.414	0.238	6.292	0.234	
32.700	6.970	0.213	6.984	0.214	6.946	0.212	6.942	0.212	6.745	0.206	
38.400	7.470	0.195	7.454	0.194	7.419	0.193	7.411	0.193	7.170	0.187	
45.200	7.960	0.176	7.964	0.176	7.932	0.175	7.923	0.175	7.660	0.169	
52.300	8.460	0.162	8.450	0.162	8.423	0.161	8.413	0.161	8.159	0.156	
60.300	8.960	0.149	8.953	0.148	8.932	0.148	8.924	0.148	8.711	0.144	
68.700	9.460	0.138	9.440	0.137	9.427	0.137	9.421	0.137	9.282	0.135	
78.100	9.950	0.127	9.945	0.127	9.940	0.127	9.941	0.127	9.916	0.127	
88.400	10.500	0.119	10.458	0.118	10.464	0.118	10.473	0.118	10.605	0.120	
99.300	10.900	0.110	10.963	0.110	10.981	0.111	11.002	0.111	11.330	0.114	

TABLA Nº 5.16 VALORES CALCULADOS DE ESFUERZO DE CORTE Y VISCOSIDAD APARENTE PARA PULPA SIMPLE DE CAMU CAMU A 60 °C

Fuente propia: Obtenido a partir de las tablas N° 5.8, 5.9, 5.10 y 5.11

Fuente propia: Obtenido a partir de la Tabla Nº 5.16

Datos experimentales		Madalad	o Ostrosti	Medalova	b (flower bei)		(h)(Bhlin	(Tradition day	(THE CONTRACT	
Velocidad de	Esfuerzo do	Viscosidad		Vicessided				aelsisko	Iviodelojde	williamson
Corte			Esiuerzo do corto	viscosidad	Estuerzo	Viscosidad	Estuerzo	Viscosidad	Estuerzo	Viscosidad
Experimental	evnerimental	evperimental		aparente		aparente		aparente	de corte	aparente
1/S	Pa	Pa S	Pa	Da S						
0 100	1 000	10.000	<u> </u>	1 a.0	Fa.	7744	<u>га.</u>			Pa.5
0.100	1.000	10.000	0.377	3.773	0.774	/./44	0.432	4.323	0.067	0.673
1.870	1.500	0.802	1.499	0.801	1.674	0.895	1.565	0.837	1.051	0.562
6.620	2.490	0.376	2.718	0.411	2.758	0.417	2.750	0.415	2.629	0.397
8.540	2.990	0.350	3.065	0.359	3.079	0.361	3.084	0.361	3.051	0.357
11.600	3.490	0.301	3.540	0.305	3.526	0.304	3.543	0.305	3.594	0.310
15.300	3.980	0.260	4.033	0.264	3.997	0.261	4.019	0.263	4.117	0.269
19.100	4.480	0.235	4.477	0.234	4.428	0.232	4.450	0.233	4.562	0.239
23.400	4.980	0.213	4.927	0.211	4.869	0.208	4.887	0.209	4.994	0.213
28.700	5.480	0.191	5.424	0.189	5.363	0.187	5.373	0.187	5.461	0.190
34.900	5.970	0.171	5.948	0.170	5.888	0.169	5.888	0.169	5.948	0.170
41.300	6.470	0.157	6.438	0.156	6.387	0.155	6.374	0.154	6.410	0.155
48.800	6.970	0.143	6.965	0.143	6.926	0.142	6.899	0.141	6.916	0.142
56.400	7.470	0.132	7.456	0.132	7.434	0.132	7.393	0.131	7.403	0.131
64.900	7.960	0.123	7.966	0.123	7.965	0.123	7.909	0.122	7.926	0.122
74.000	8.460	0.114	8.474	0.115	8.498	0.115	8.427	0.114	8.470	0.114
83.600	8.960	0.107	8.975	0.107	9.028	0.108	8.943	0.107	9.031	0.108
94.100	9.460	0.101	9.489	0.101	9.576	0.102	9.477	0.101	9.633	0.102

TABLA Nº 5.17 VALORES CALCULADOS DE ESFUERZO DE CORTE Y VISCOSIDAD APARENTE PARA PULPA REFINADA DE CAMU CAMU A 60 ºC

Fuente propia: Obtenido a partir de las tablas N° 5.8, 5.9, 5.10 y 5.11

Fuente propia: Obtenido a partir de la Tabla Nº 5.17

VI. DISCUSIÓN DE RESULTADOS

6.1 Contrastación de la hipótesis con los resultados

Hipótesis Especifica 1: Existe una relación no lineal entre el esfuerzo de corte y velocidad para el fluido de la pulpa del camu camu.

Las curvas de fluidez de los reogramas de las gráficas N° 5.1 y 5.2 elaborados con los datos experimentales de las tablas N° 5.2, 5.3, 5.4, 5.5, 5.6 y 5.7 demuestran la relación no lineal que existe entre el esfuerzo de corte y la velocidad de corte.

5.7, 5.9, 5.11 y 5.13

Hipótesis Especifica 2: El fluido de la pulpa de camu camu presenta un comportamiento reológico característico de un fluido no newtoniano independiente del tiempo de tipo seudoplástico.

El fluido de la pulpa simple y refinada a una temperatura de 20 °C bajo las condiciones estudiadas tiende a un comportamiento reológico no newtoniano independiente del tiempo de tipo plástico real con valores de to Experimental > 1.5 Pa. y to Calculado > 2.48 Pa.

Por otra parte, para la pulpa simple y refinada a temperaturas de 40 °C y 60 °C las curvas de fluidez de los reogramas de las gráficas N° 5.7, 5.9, 5.11, 5.13 y los valores de n (índice de flujo) menores a 1 obtenidos en las tablas N° 5.8 y 5.9 para los modelos reológicos de Ostwald-de Waele y Herschel Bulkley determinan que el comportamiento reológico del fluido de

la pulpa del camu camu bajo las condiciones estudiadas corresponde a la de un fluido no newtoniano de tipo seudoplástico.

Hipótesis General: Los modelos reológicos de Ostwald, Herschel, Sisko y Williamson característicos de los fluidos No Newtonianos independiente del tiempo de tipo seudoplástico se relacionan significativamente con el fluido de la pulpa de camu camu.

Basándonos en los resultados estadísticos obtenidos se corrobora la convergencia de la hipótesis.

El fluido de la pulpa simple y refinada del camu camu bajo las condiciones estudiadas a temperatura de 20 °C presenta mejor ajuste ante los modelos de Sisko ($R^2 > 0.974$) y Williamson ($R^2 > 0.987$), a temperaturas de 40 °C y 60 °C los 4 modelos de Ostwald ($R^2 > 0.972$), Herschel ($R^2 > 0.979$), Sisko ($R^2 > 0.985$) y Williamson ($R^2 > 0.986$) se relacionan significativamente tal como lo muestra el ANEXO 10.

6.2 Contrastación de resultados con otros estudios similares.

Los datos de los análisis fisicoquímicos (TABLA Nº 5.1) son similares a los publicados por Zoila Diaz (2010) pH 2.5 y 5.46 °Brix.

Los modelos de Ostwald, ($R^2 > 0.887$), Herschel Bulkley ($R^2 > 0.952$), Sisko ($R^2 > 0.974$) y Williamson ($R^2 > 0.986$), describen adecuadamente el

comportamiento de flujo de la pulpa del camu camu tanto para la pulpa simple como refinada (ANEXO 10).

El modelo de Ostwald ha sido utilizado para describir el comportamiento reológico de la pulpa de camu camu (Díaz, 2010), pulpa de níspero (Andrade, 2009) y pulpa simple y concentrada de manzana (Manaya, 2013); el modelo de Herschel ha sido utilizado en purés de frutas como frambuesa, fresa, durazno y ciruela (Maceiras 2006); los modelos de Ostwald, Herschel y Sisko mostraron un buen ajuste a los datos experimentales del jugo de manzana malaya (Santos, 2016). Todos estos estudios corresponden a fluidos no newtonianos independientes del tiempo de tipo seudoplástico.

Existe una divergencia entre el comportamiento reológico de los antecedentes y la pulpa de camu camu simple y refinada a 20 °C, debido a que estos estudios indicaron que la pulpa de camu camu y las otras pulpas mencionadas en el párrafo anterior corresponden a un fluido de tipo seudoplastico para un intervalo de temperatura de 20 °C a 70 °C y en este trabajo se determinó que para una temperatura de 20 °C la pulpa de camu camu bajo las condiciones estudiadas el fluido de la pulpa sinple y refinada del camu camu va perdiendo su seudoplasticidad y tiende a un comportamiento reológico de tipo plástico real. Por otro lado, para el rango de temperatura de 40 °C a 60 °C los reogramas y los valores de los índices de flujo obtenidos en los modelos de Ostwald y Herschel mostraron

claramente el comportamiento seudoplástico de la pulpa del camu camu, tanto para la pulpa simple (5 ºBrix) como para la pulpa refinada (4 °Brix).

VII. CONCLUSIONES

- a. La pulpa del camu camu a temperatura de 20 °C y concentraciones de 5 °Brix y 4 °Brix tiende a un comportamiento no newtoniano independiente del tiempo de tipo plástico real.
- La pulpa del camu camu en el rango de temperatura de 40 °C a 60 °C y concentraciones de 5 °Brix y 4 °Brix demuestra un comportamiento no newtoniano independiente del tiempo de tipo seudoplástico.
- c. La terminación del modelo reológico depende de la temperatura, de la caracterización reológica del fluido y de las condiciones de estudio.
- d. El fluido de la pulpa simple y refinada del camu camu bajo las condiciones estudiadas a temperatura de 20 °C presenta mejor ajuste ante los modelos de Sisko (R² >0.974) y Williamson (R² >0.987), a temperaturas de 40 °C y 60 °C los 4 modelos de Ostwald (R² >0.972), Herschel (R² >0.979), Sisko (R² >0.985) y Williamson (R² >0.986) se relacionan significativamente tal como lo muestra el ANEXO 10.

VIII. RECOMENDACIONES

- a. En la obtención de la pulpa de camu camu, luego de realizar el escaldado botar inmeditamente el agua ya el fluto puede deshacerse o absorber esta.
- b. Al inicio de cada medición de los °Brix se debe calibrar el refractómetro adicionándole gotas de agua al prisma hasta que la lectura sea cero.
- c. Al inicio de cada medición de pH se debe calibrar el equipo lavando el sensor con agua destilada y luego colocarlo en un vaso con agua destilada hasta una lectura de pH 7.
- d. Antes de realizar las mediciones reológicas se debe esperar al menos
 15 minutos luego del cambio temperatura del reómetro para que la muestra pueda alcanzar la temperatura de trabajo.
- e. Se recomienda hacer un estudio del efecto de la temperatura y concentración para la pulpa de camu camu analizado para cada modelo estudiado.

IX. REFERENCIAS BIBLIOGRAFICAS

ALAIN-CLAUDE, Roudot. **Reología y análisis de la textura de los alimentos.** Editorial Acribia S.A. Zaragoza, España. 2004

ANDRADE R.D. y Otros. Efecto de la temperatura en el comportamiento reológico de la pulpa de níspero (Achras sapota L.). Disponible en: <u>http://www.scielo.org.ve/pdf/rfaz/v26n4/art08.pdf.</u> Articulo web. Consultada el 11 de mayo del 2016.

DIAZ CORDOVA, Zoila. Estudio reológico de la pulpa del camu camu con el viscosímetro Rehotest N° 2. Lima. Universidad Nacional del Callao, Facultad de Ingeniería Química. 2004

GUPTA S. V. **Practical Density Measurement and Hydrometry**. London. Editorial Institute of Physics Publishing. 2002.

HUGHES, William Y BRIGHTON, Jhon. **Dinamica de fluidos.** Nueva York, Estados Unidos. Editorial McGraw-Hill. 1970

IBARZ A. Y BARBOSA-CANOVAS G.V. **Operaciones Unitarias en la Ingeniería de Alimentos.** Disponible en:

https://books.google.com.pe/books?id=Bb4J6pzmG_wC&pg=PA129&dq=LIBR OS+DE+REOLOGIA&hl=es&sa=X&ved=0ahUKEwjCtbqQ95rMAhUHWx4KHd yLBEIQ6AEILTAE#v=onepage&q=LIBROS%20DE%20REOLOGIA&f=false. Articulo web. Consultada el 11 de mayo del 2016.

MACEIRAS R. y Otros. Rheological properties of fruit purees: Effect of cooking. Disponible en:

https://www.researchgate.net/publication/248514308 Rheological properties of fruit purees Effect of cooking. Articulo web. Consultada el 30 de mayo del 2017.

MANAYA D. y Otros. Caracterización del comportamiento al flujo de pulpa simple y concentrada de manzana (Phyrus malus L) variedad San Antonio. Disponible en:

<u>file:///C:/Users/claud/Downloads/356-761-1-PB%20(3).pdf.</u> Articulo web. Consultada el 10 de mayo del 2016. QUINTÁINS RIVEIRO, Lourdes Consuelo. **Reología de productos** alimentarios. Disponible en:

https://books.google.com.pe/books?id=a6Us33_kYXAC&pg=PP5&dg=CONSU ELO+QUINTANS+RIVEIRO+LOURDES.+Reolog%C3%ADa+de+productos+a limentarios&hl=es&sa=X&ved=0ahUKEwj_oZXchtvVAhUGOiYKHV-VDfMQ6AEIJTAA#v=onepage&q=CONSUELO%20QUINTANS%20RIVEIRO %20LOURDES.%20Reolog%C3%ADa%20de%20productos%20alimentarios &f=false. Articulo web. Consultada el 10 de mayo del 2016

RAKESH K. Gupta, ELLIOT Kennel, KWANG - JEA Kim. **Polymer Nanocomposites Handbook**. Florida, Estados Unidos. Editorial Taylor and Francis group. 2010.

RAMIREZ, J.S. Fundamentos de Reología de Alimentos. Disponible en: <u>http://tarwi.lamolina.edu.pe/~dsa/Fundamentos%20de%20Reologia.pdf.</u> Articulo web. Consultada el 15 de mayo del 2016

RAMIREZ, J.S. Introducción a la Reología de los Alimentos. Disponible en: <u>http://reciteianews.blogspot.pe/2013/08/revista-reciteia-ano6-v6n1.html.</u> Articulo web. Consultada el 15 de mayo del 2016

VEGA VIZCARRA, Rodney. Manual de valor agregado de Camu Camu, Proyecto: Desarrollo tecnológico y uso sostenible de los productos de la biodiversidad (Bioexport); Sub proyecto: Desarrollo de tecnologías de valor agregado para Camu Camu en Ucayali.

Disponible en:

http://www.iiap.org.pe/promamazonia/sbiocomercio/Upload%5CLineas%5CDo cumentos/430.pdf. Articulo web. Consultada el 15 de mayo del 2016.

VERMA, L. R. Postharvest Thechnology of Fruits and Vegetables. New Delhi. Editorial INDUS Publishing company. 2000.

VILLACHICA, Hugo. **El cultivo de camu camu en la Amazonía Peruana.** Ed. Tratado de Cooperación Amazónica (TAC). Lima, Perú. 1996.

VILLACHICA, Hugo. Frutales y hortalizas promisorias de la Amazonia. Ed. Tratado de Cooperación Amazónica (TAC)-Secretaria Pro-Témpore. Lima, Perú. 1996.

VLIET TON VAN. Rheology and Fracture Mechanics of Foods. Floria, Estados Unidos. Editorial CRC Press. 2013.

SANTOS, Pedro Enrique. Influence of temperature, concentration and shear rate on the rheological behavior of malay apple (Syzygium malaccense) juice.

Disponible en:

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1981-67232016000100407&Ing=pt&ting=en. Articulo web. Consultada el 15 de mayo del 2017.

WEIPERT D., TSCHEUSCHNER H. D. y WINDHAB E. **Rheologie del** Lebensmittel. Hamberg. Editorial B. Berh's VerlagGmbH&Co. 1993.

ANEXOS

PROBLEMA GENERAL	OBJETIVO GENERAL	HIPÓTESIS GENERAL	VARIABLES	DIMENSIONES	INDICADORES	MÉTODO
¿En qué medida los modelos reológicos se relacionan con el fluido de la pulpa del camu camu?	Determinar los modelos reológicos que se relacionan con el fluido de la pulpa del camu camu.	Los modelos reológicos de Ostwald-de Waele, Herschel Bulkley, Sisko y Williamson característicos de los fluidos No Newtonianos Independientes del tiempo de tipo seudoplástico se relacionan	<u>V. DEPENDIENTE:</u> X = Modelos Reológicos	Coeficiente de determinación	- R ² ≈ 1	Analítico Cuantitativo
		significativamente con el fluido de la pulpa del camu camu.	<u>V. INDEPENDIENTES:</u> Y = Fluido de la pulpa de camu camu	- Concentración - Temperatura - Acidez	- °Brix - °Centígrados - pH	Analítico Cuantitativo
a. ¿Cuál es la relación entre el esfuerzo de corte y velocidad de corte para el fluido de pulpa del camu camu?	a. Determinar la relación entre el esfuerzo de corte y la velocidad de corte para el fluido de pulpa de camu camu.	HIPOTESIS ESPECIFICAS a. Existe una relación no lineal entre el esfuerzo de corte y velocidad de corte del fluido de la pulpa del camu camu.	Z = Relación entre esfuerzo y velocidad de corte.	- Reograma velocidad vs esfuerzo	- Cur v a de fluidez	Analítico Cuantitativo
b. ¿Cuál es el comportamiento reológico del fluido de la pulpa del camu camu?	b. Determinar el comportamiento reológico de la pulpa del camu camu.	 Fl fluido de la puipa del carnu camu presenta un comportamiento reológico característico de un fluido no newtoniano independiente del tiempo de tipo seudoplástico. 	₩ =Comportamiento reológico	- Reograma - Indice de flujo	- Curva de fiuidez - n>1	Analitico Cuantitativo

ANEXO 1: MATRIZ DE CONSISTENCIA

en constants cylinder. (h) core and plate, (c) puraliel plate, and (d) same. (e) Coreconsis cylinder. (h) core and plate, (c) puraliel plate, and (d) same.

generated in the sample. For convenience, we will discuss only constant suces instruments to the following text olthough both types of instrument are componly used in the food industry. In addition, with many of the modern instruments, it is possible to make a constant stress instrument operate like a constant strain instrument and vice versa.

A number of different types of measurement celt can be used to contain the sumple during an experiment (froume 2002, Rao 2013);

- 3. Concentric cylinder: The surge is placed in the nurrow gap between two concentric cylinders (Pigure 8.14). Normally, the inner cylinder (the 66b) is driven at a constant torque (aggulation) and the resultant strain (angular deflection) or rate of strain (speed at which the cylinder force) and the resultant strain (angular deflection) or rate of strain (speed at which the cylinder force) and the resultant strain (angular deflection) or rate of strain (speed at which the cylinder rote) and the resultant strain (angular deflection) or rate of strain (speed at which the cylinder the deflection, the inner cylinder from its real position is an fuel-sample. For a solid, the angular deflection, the smalysing a predominantly scaled or liquid, the sample, for a solid, the angular deflection, the smalysing a predominantly scaled or liquid, the sample, for a solid, the angular deflection, the inner cylinder the shear modulue. For a liquid, the sample, for a solid, the angular deflection, the smaller the shear modulue. For a liquid, the strain of its clasticity of the inner cylinder the deflection, the strain (speed at which the fluctuation of shear strees. The issues the fluctual being between the cosily of the fluctual being between the cosily can be measured as function of shear strees. This instrument can be used for measuring the viscosity of the fluctuat between the cosily can be measured as function of shear strees. This instrument can be used for measuring the viscosity of the fluctuat the outer cosily can be measured as function of shear strees. The best modulues or viscosity of the measured for the viscosity of the fluctuat best in viscosity of the street is spine at a given as a function of shear strees. The fluctuation inductuation inducts, the outer cosily can be measured as function of shear strees. The fluctuation is street in spine to a street in spine the viscosity of the fluctuation inducts at a given analysed.
- 2. Provide/plate: In this type of messarement cell, the sample is placed between two parallel plates is placed between two parallel plates is placed between two parallel plates is stationary, while the upper can constant torque is upplied to the upper plate, and the resultant strain or rate of stroin is messared, depending on whether one is analyzing a predominanty solid or liquid sample. The main challenge with this type of experimental arrangement is that the shear strain varies across the parallel plate its straines. The main challenge with this type of experimental arrangement is that the shear strain varies across the parallel plate arrangement strange of the strain in the middle of the sample being less than that at the edges. The parallel plate arrangement arrangement is that the shear strain varies across the parallel plate arrangement arrangement is that the strain varies across the parallel plate arrangement arrangement is that the strain varies across the parallel plate arrangement is that the strain varies across the parallel plate arrangement arrangement. The main edges. The parallel plate arrangement arrangement is that the strain arrangement is the relating to the strain arrangement is the the stroin the middle of the sumple being less than that are based for analyzing and the middle of the sumple being less than that are based for the tarrangement is therefore usually unsuitable for analyzing and the model. The parallel plate arrangement are arrangement is therefore usually unsuitable for analyzing arrangement.
- 3. Cone and plate: This is estentially the same design as the parallel-plate measurement cell, except that the upper plate is replaced by a cone (Figure 8.14). The cone has a slight angle that is designed to answe that a more uniterm shear stress such actus the sample. The cone-and-plate arrangement is an increased to any succession stress such actus in angle that is more uniterm shear stress such actus in an plate. The cone has a slight angle that is designed to answe that a more uniterm shear stress such actus is the sample. The cone-and-plate arrangement is an increased by a cone-and base stress stress is a succession.
- hmora botator most har planae and boot si tast do bobalditan a societo mer A const. A bitorimor gaintinotecto to noisexilia gaincreasing anibali si bottom sidT .(El.8 ougH) siza su bitorimor gaintinotecto to noisexilia gaincreasing anibali si bottom sidT .(El.8 ougH) siza su

food emulsions because it overcomes many of the problems associated with conventional measurement geometries, such as disruption of sample structure during insertion into the device and wall slip.

5. Serviced edges: The effects of wall slip may also be overcome by using measurement cells that have serviced edges (rather than being smooth).

Often, the rheological properties of samples are measured either as a function of storage time at a fixed temperature or as the temperature is varied in a controlled manner.

ANEXO 3: Análisis de varianza con un factor (ANOVA) para el modelo de Ostwald – pulpa simple

T 20 °C

ANOVA^a

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	1146,921	2	573,460
Residual	13,933	15	,929
Total sin corrección	1160,854	17	
Total corregido	123,451	16	

Variable dependiente: esfuerzo

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .887.

T 40 °C

ANOVA*

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	1034,256	2	517,128
Residual	3,348	15	,223
Total sin corrección	1037,604	17	
Total corregido	120,103	16	

Variable dependiente: esfuerzo

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .972.

T 60 °C

ANOVA*

Origen	Suma de cuadrados	gì	Medias cuadráticas
Regresión	933,112	2	466,556
Residual	,603	17	,035
Total sin corrección	933,714	19	
Total corregido	150,860	18	

Variable dependiente: esfuerzo

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .996.

ANEXO 4: Análisis de varianza con un factor (ANOVA) para el modelo de Ostwald – pulpa refinada

T 20 °C

ANOVA*

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	1019,815	2	509,907
Residual	9,199	16	,575
Total sin corrección	1029,014	18	
Total corregido	155,394	17	

Variable dependiente: ESF

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .941.

.
T 40 °C

ANOVAª

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	799,306	2	399,653
Residual	,458	14	,033
Total sin corrección	799,764	16	
Total corregido	103,068	15	

Variable dependiente: esfuerzo

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .996.

T 60 °C

ANOVA^a

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	607,443	2	303,721
Residual	,459	15	,031
Total sin corrección	607,902	17	
Total corregido	108,828	16	

Variable dependiente: ESF

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .996.

ANEXO 5: Análisis de varianza con un factor (ANOVA) para el modelo de Herschel – pulpa simple

T 20 °C

ANOVA^a

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	1154,920	3	384,973
Residual	5,934	14	,424
Total sin corrección	1160,854	17	
Total corregido	123,451	16	

Variable dependiente: ESF

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .952.

T 40 °C

Origen	Suma de cuadrados	gł	Medias cuadráticas
Regresión	1035,059	3	345,020
Residual	2,545	14	,182
Total sin corrección	1037,604	17	
Total corregido	120,103	16	

ANOVA*

Variable dependiente: esfuerzo

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .979.

T 60 °C

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	933,137	3	311,046
Residual	,577	16	,036
Total sin corrección	933,714	19	
Total corregido	150,860	18	

Variable dependiente: esfuerzo

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .996.

ANEXO 5: Análisis de varianza con un factor (ANOVA) para el modelo de Herschel – pulpa refinada

T 20 °C

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	1025,866	3	341,955
Residual	3,148	15	,210
Total sin corrección	1029,014	18	
Total corregido	155,394	17	

Variable dependiente: ESF

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .980.

ANOVA ^a

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	799,424	3	266,475
Residual	,340	13	,026
Total sin corrección	799,764	16	
Total corregido	103,068	15	

Variable dependiente: esfuerzo

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .997.

T 60 °C

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	607,675	3	202,558
Residual	,227	14	,016
Total sin corrección	607,902	17	
Total corregido	108,828	16	

ANOVA^a

Variable dependiente: ESF

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .998.

4

ANEXO 6: Análisis de varianza con un factor (ANOVA) para el modelo de Sisko- pulpa simple

T 20 °C

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	1157,636	3	385,879
Residual	3,217	14	,230
Total sin corrección	1160,854	17	
Total corregido	123,451	16	

ANOVA^a

Variable dependiente: ESF

.

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .974.

T 40 °C

ANOVA^a

Origen	Suma de cuadrados	gi	Medias cuadráticas
Regresión	1035,820	3	345,273
Residual	1,784	14	,127
Total sin corrección	1037,604	17	
Total corregido	120,103	16	

Variable dependiente: esfuerzo

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .985.

T 60 °C

ANOVAª	
--------	--

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	933,131	3	311,044
Residual	,584	16	,036
Total sin corrección	933,714	19	
Total corregido	150,860	18	

Variable dependiente: esfuerzo

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .996.

ANEXO 7: Análisis de varianza con un factor (ANOVA) para el modelo de Sisko- pulpa refinada

T 20 °C

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	1027,680	3	342,560
Residual	1,333	15	,089
Total sin corrección	1029,014	18	
Total corregido	155,394	17	

Variable dependiente: ESF

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .991.

ANOVAª	
--------	--

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	799,608	. 3	266,536
Residual	,156	13	,012
Total sin corrección	799,764	16	
Total corregido	103,068	15	

Variable dependiente: esfuerzo

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .998.

T 60 °C

ANOVA*

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	607,456	3	202,485
Residual	,445	14	,032
Total sin corrección	607,902	17	- - - -
Total corregido	108,828	16	

Variable dependiente: ESF

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .996.

.

e

ANEXO 8: Análisis de varianza con un factor (ANOVA) para el modelo de Williamson- pulpa simple

T 20 °C

ANOVA[®]

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	1159,643	3	386,548
Residual	1,211	14	,087
Total sin corrección	1160,854	17	
Total corregido	123,451	16	

Variable dependiente: esfuerzo

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .990.

T 40 °C

ANOVA^a

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	1035,946	3	345,315
Residual	1,659	14	,118
Total sin corrección	1037,604	17	2
Total corregido	120,103	16	

Variable dependiente: esfuerzo

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .986.

T 60 °C

Origen	Suma de cuadrados	gl		Medias cuadráticas
Regresión	931,666		3	310,555
Residual	2,048	1	6	,128
Total sin corrección	933,714	1	9	
Total corregido	150,860	1	8	

Variable dependiente: esfuerzo

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .986.

ANEXO 9: Análisis de varianza con un factor (ANOVA) para el modelo de Williamson– pulpa refinada

T 20 °C

ANOVA

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	1027,043	3	342,348
Residual	1,971	15	,131
Total sin corrección	1029,014	18	
Total corregido	155,394	17	

Variable dependiente: esfuerzo

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .987.

1

T 40 °C

ANOVA^a

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	798,759	3	266,253
Residual	1,005	13	,077
Total sin corrección	799,764	16	
Total corregido	103,068	15	

Variable dependiente: esfuerzo

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .990.

T 60 °C

ANOVA*

Origen	Suma de cuadrados	gl	Medias cuadráticas
Regresión	606,730	3	202,243
Residual	1,172	14	,084
Total sin corrección	607,902	17	
Total corregido	108,828	16	

Variable dependiente: ESF

a. R cuadrado = 1 - (Suma de cuadrados residual) / (Suma corregida de cuadrados) = .989.

ANEXO 10: Gráficos comparativos de los Coeficientes de Determinación R² para los modelos de Ostwald, Herschel, Sisko y Williamson

