UNIVERSIDAD NACIONAL DEL CALLAO

ESCUELA DE POSGRADO

UNIDAD DE POSGRADO DE LA FACULTAD DE INGENIERÍA

ELÉCTRICA Y ELECTRÓNICA

TESIS

"DESARROLLO DE UN FILTRO DE DISTORSIÓN

ARMÓNICA PARA MEJORAR LA ECONOMÍA DE LA

PLANTA DE INTRADEVCO DE LURÍN"

PARA OPTAR EL GRADO ACADÉMICO DE MAESTRO EN INGENIERÍA

ELÉCTRICA CON MENCIÓN EN GESTIÓN DE SISTEMAS DE ENERGÍA

ELÉCTRICA

Gustavo Néstor Salazar Huamaní

Callao, 2017

PERÚ

TEMA:

"Desarrollo de un Filtro de Distorsión Armónica Para Mejorar la Economía de la Planta de Intradevco de Lurín."

HOJA DE REFERENCIA DEL JURADO

MIEMBROS DEL JURADO

DR.	: JUAN HERBER GRADOS GAMARRA	PRESIDENTE
MG.	: HUGO FLORENCIO LLACZA ROBLES	SECRETARIO
MG.	: JORGE ELIAS MOSCOSO SÁNCHEZ	MIEMBRO
MG.	: CÉSAR AUGUSTO SANTOS MEJÍA	MIEMBRO
DR.	: FERNANDO JOSÉ OYANGUREN RAMÍREZ	ASESOR

N° DE LIBRO	: 01
FOLIO	: 059
FECHA DE APROBACIÓN	: agosto 18, 2017
RESOLUCIÓN DIRECTORAL	: 020-2017-UPG-FIEE

DEDICATORIA

Dedico este trabajo de tesis a mis profesores colegas y alumnos que en el día a día se esfuerzan por lograr la superación aun cuando la adversidad les quiera demostrar que no es posible. Y a todas las futuras generaciones que de seguro alcanzarán grandes éxitos si descansan su Fé en Dios nuestro Señor.

AGRADECIMIENTOS

Agradezco a Dios y a la Virgen por darme la paz para concluir este trabajo de tesis, agradezco a mis Padres Hilario y Margarita por su ejemplo de lucha incansable en el día a día. A mi esposa Sonia e hijos Sebastián, Paz y Stefano por su apoyo y comprensión, a todos y cada uno de mis profesores y compañeros de la Universidad Nacional del Callao y de manera especial a quienes no vieron la conclusión de este trabajo por su temprana partida. A todos ellos mi más sincero y cariñoso agradecimiento.

HOJA DE REFERENCIA DEL JURADO Y APROBACIÓN	2
DEDICATORIA	3
AGRADECIMIENTOS	4
INDICE GENERAL	5
LISTA DE TABLAS	8
LISTA DE FIGURAS	8
ACRÓNIMOS	10
RESUMEN	11
ABSTRACT	. 12
I. PLANTEAMIENTO DE LA INVESTIGACIÓN	13
1.1. Identificación del Problema	13
1.2. Formulación del Problema	13
1.2.1. Problema General	13
1.2.2. Problema Específico	13
1 3 Obietivos	14
1.3.1. Objetivo General	14
1.3.2. Objetivos Específicos	14
1.4. Justificación del trabajo de investigación	15
1.5. Delimitación de la investigación	15
1.5.1. Alcances	15
1.5.2. Limitaciones	15
II.MARCO TEÓRICO	18
2.1 ANTECEDENTES DEL ESTUDIO	18
2.1.1 Optimización del filtro pasivo de distorsión armónica	18

2.1.2 Mejoramiento de Banda de Absorción de Armónicos	20
2.1.3 Impacto económico con la inserción del filtro	21
2.2 MARCO CONCEPTUAL	21
2.2.1 Introducción	
2.2.2 Secuencia de Armónicos	22
2.2.3 Corriente de entrada con Distorsión armónica de los	
sistemas ASD	28
2.2.4 Flujo De Potencia Asistido Computacionalmente	30
2.2.5 Flujo De Potencia Armónico	30
2.3 DEFINICIONES BÁSICAS	
2.3.1 Distorsión armónica: Conceptos, indicadores y límites	31
2.3.2 Técnicas de filtrado pasivo de armónicos para sistemas	
ASD	35
2.3.3 Tres reactores de línea AC y enlace inductor DC	43
2.3.4 Filtro de armónicos pasivo sintonizado	47
2.3.5 Filtro pasivo de armónicos pasa bajo de banda ancha	48
2.4. FILTRO PASIVO TRIFÁSICO DE BANDA ANCHA MEJOR	ADO
2.4.1 Introducción	51
2.4.2 Método preciso de diseño de la FPATBAM	51
2.4.3 Diseño del Filtro por computadora: (primer código)	58
2.4.4 Modelamiento de impacto del filtro con el método de	. •
penetración armónica simple: (segundo código)	61
III. VARIABLES E HIPÓTESIS	
3.1 Definición de las Variables	74
3.2 Operacionalización de las Variables	74
3.3 Hipótesis general e hipótesis específicas	74
	75
4.1 Tipo de Investigación	75
4.2 Diseño de la Investigación	75

4.3 Población y muestra	75
4.4 Técnica e instrumentos de recolección de datos	75
4.5 Procedimiento de recolección de datos	76
4.6 Procesamiento estadístico y análisis de datos	76
V. RESULTADOS Y COSTOS	79
VI. DISCUSIÓN DE RESULTADOS	84
6.1 Contrastación de hipótesis con los resultados	84
6.2 Contrastación de resultados con otros estudios similares	84
VII. CONCLUSIONES	85
VIII. RECOMENDACIONES	87
IX. REFERENCIAS BIBLIOGRÁFICAS	88
ANEXOS	91
1- Matriz de Consistencia	92
2- Mediciones con analizador de redes	94
3- Evaluación de perdidas con software cepermatic	100
• 4- Flujo de carga en Dig-Silent	103
• 5- Flujo de carga en Neplan	107
 6- Análisis De Armónicos del 5to Y 7mo Armónico en 	
Neplan	112

Tabla 2.1 Secuencia de los armónicos	26
Tabla 2.2 IEEE 519 límites de corriente armónica	35

Tabla 2.3 Límites de distorsión armónica de tensión	36
Tabla 2.4 Valores iniciales de filtro de banda ancha calculado con	código
1 Matlab	53
Tabla 2.5 Valores de filtro optimizados calculados con código 1	59
Tabla 4.1 Categoría de orden de armónicos encontrados en las 3	30
muestras de mediciones obtenidas en las mediciones e	de los
últimos 5 años	78
Tabla 4.2 Oferta económica del filtro	82
Tabla 4.3 Relación Beneficio Costo de inversión del filtro	83

<u>Lista de Figuras</u>

Figura 2.1 Vista De La Máquina Jonh Wha En La Planta Intradevco Lurín	de 27
Figura 2.2 Sistema diodo rectificador de puente sistema ASD front-e	end
sin filtros de armónicos.	. 30
Figura 2.3 Forma de onda de corriente de línea	31
Figura 2.4 Espectro armónico de línea actual	31
Figura 2.5 Filtrado pasivo basado en reactor de línea AC e inductan	icia
DC de línea.	37
Figura 2.6 Configuración de filtro pasivo serie	39
Figura 2.7 Configuración de filtros en derivación	39

Figura 2.8 Configuración de filtro pasa bajo de banda ancha tipo LC(a) y

tipo LLCL (b)

Figura 2.9 Configuración del sistema rectificador de doce pulsos.	41
Figura 2.10 Configuracion de filtros activos fundamentales:	
(a) Filtro activo shunt, (b) filtro activo serie	42
Figura 2.11 Los filtros activos híbridos comunes son: (izquierdo) filtro	
activo en derivación y filtro pasivo en derivación, (b) filtro	
activo serie y filtro pasivo en derivación	43
Figura 2.12 Solución trifásica con reactores de línea en AC para	
armónica de corriente en el sistema ASD	47
Figura 2.13 Configuración de un sistema de filtro shunt sintonizado de	5to
y 7mo con reactores AC adicionales	49
Figura 2.14 Filtro pasivo simple pasabajos LC de banda ancha	51
Figura 2.15 Filtro pasabajos de banda ancha mejorado	54
Figura 2.16 Impedancia de línea y paralela con corriente armónica para	£
fuente con distorsión en NEPLAN	58
Figura2.17 Diagrama de flujo de FPATBA	60
Figura 2.18 Recolección de datos en planta de estudio	77
Figura 2.19 Prueba Chi cuadrado corrido en software de validación de	
hipótesis	79
Figura 2.20 Area de rechazo de hipótesis nula H0, con significancia	
α= 0.05	79

ACRONIMOS:

AC (Alterna Current), Corriente Alterna

ASD (Automatic Speed Driver), Variador de Velocidad Automático

DC: (Direct Current), Corriente Directa

FPATBA: Filtro Pasivo Trifásico de Banda Ancha

FPATBAM: Filtro Pasivo Trifásico de Banda Ancha Mejorado

IEEE (Institute of Electrical and Electronics Engineers), Instituto de

Ingenieros Electricistas y Electrónicos)

IGBT (Isolated Gate Bipolar Transistor), Transistor Bipolar de

Compuerta Aislada

PCC (Point Common Coupling), Punto de Común Acoplamiento

THDi (Total Harmonic Distorsion of Intensity), Distorsión Armónica Total de Corriente

THDv (Total Harmonic Distorsion of Voltage), Distorsión Armónica Total de Tensión.

TDD (Total Demand Distorsion), Distorsión Armónica respecto de la Demanda Total

VSI (Voltage Source Inverter), Fuente de Tensión del Inversor

CSI (Current Source Inverter), Fuente de Corriente del Inversor

RESUMEN

El trabajo de tesis expuesto enfocó el cálculo y modelamiento de un filtro pasivo trifásico de armónicos de banda ancha. El cual atiende la necesidad de solucionar un problema de salida de operación de la maguina Aoky por presencia de una máguina John Wha generadora de armónicos. El filtro pasivo trifásico pasabajos es calculado de forma simple y con ayuda de iteraciones en matlab se logra obtener un filtro mejorado que logra atenuar los armónicos y también mejorar el factor de potencia, asi como alejar las frecuencia de resonancia que pudieran afectar las cargas próximas sensibles a esta distorsión. Finalmente se somete el sistema a un flujo de carga armónico para evaluar el impacto del filtro en la red, según el método de penetración armonica simple. Ello permitirá mejorar la economía de planta al elevar los niveles de producción en la planta en estudio, evitando una repentina explosión del filtro por resonancia, disminuyendo las perdidas de potencia activa, evitando también el temprano deterioro de motores y tarjetas de máquinas sensibles a la presencia de armónicos.

ABSTRACT

The work of thesis exposed focused the calculation and modeling of a passive three-phase filter of broadband harmonics. Which addresses the need to solve a problem of output of operation of the machine Aoky by presence of a John Wha machine harmonic generator. The passive three-phase passive filter is calculated in a simple way and with the help of iterations in matlab it is possible to obtain an improved filter that manages to attenuate the harmonics and also to improve the power factor, as well as to distance the resonance frequencies that could affect the near sensitive loads To this distortion. Finally, the system is subjected to a harmonic load flow to evaluate the impact of the filter in the network, according to the simple harmonic penetration method. This will allow to improve the plant economy by raising production levels in the plant under study, avoiding a sudden explosion of the resonance filter, reducing the active power losses, also avoiding the early deterioration of motors and machine cards sensitive to the presence of harmonics .

I.PLANTEAMIENTO DE LA INVESTIGACIÓN

1.1. Identificación del Problema

Una inadecuada gestión de la calidad de la energía, centrado en la gestión de la distorsión armónica y del mantenimiento; ocasiona una baja rentabilidad de dichas instalaciones, reflejadas en sus indicadores económicos de gestión.

1.2. Formulación del Problema

1.2.1 Problema General

La energía eléctrica permite mover todo el proceso productivo de las plantas. Pero resulta preocupante el nivel de pérdidas de producción, que se manifiestan ante la presencia de distorsión armónica que nos lleva a plantear la siguiente interrogante:

¿Cómo la falta de un filtro de distorsión armónica afecta la economía de INTRADEVCO- Lurín?

1.2.2. Problema Específico

Asimismo la distorsión armónica y su filtro tiene múltiples efectos sobre una red eléctrica, manifestándose como severos calentamientos inclusive en el propio filtro, para luego agravar sus efectos destructivos como deterioro temprano de motores, colapso de transformadores de potencia como se dá en nuestro caso. Debido

a una ligera evaluación del impacto del filtro. Ante ello cabe hacerse la interrogante siguiente:

¿Cómo la falta de un modelamiento con penetración armónica afecta la confiabilidad de desarrollo de un filtro de la planta Intradevco de Lurín?

1.3. Objetivos.

1.3.1. Objetivo General.

En base a la interrogante anterior se dá soluciones que permitan atenuar la distorsión armónica. Para ello debe plantearse las estrategias de diseño apoyándonos en las herramientas computacionales que se emplean actualmente. En vista de ello se debe asumir el reto y formularse el siguiente objetivo:

Desarrollar un filtro de distorsión armónica para mejorar la economía de la planta INTRADEVCO de Lurín

1.3.2. Objetivos Específicos.

Es evidente entonces que se debe calcular un filtro que opere modelado en diferentes escenarios de carga y flujo armónico. Por ello planteamos los siguientes objetivos específicos:

 Modelar un filtro con penetración armónica para lograr un desarrollo confiable de un filtro que mejore la economía de la planta INTRADEVCO de Lurín.

1.4. Justificación del trabajo de investigación.

Con la ejecución del presente trabajo de investigación, se conseguirá establecer pautas para dar solución a un problema de interrupción de la producción, que se refleja en indicadores económicos de rentabilidad negativos.

Considero importante el trabajo por constituir un aporte al desarrollo de la investigación, fundamentalmente en el aspecto tecnológico y de gestión, y para dar soluciones que procuren una mejor utilización de la energía eléctrica, haciéndola más eficiente y eficaz, llegando a conclusiones que puedan tomar de referencia las empresas distribuidoras de electricidad y los proyectistas de nuevas industrias.

1.5 Delimitación de la investigación

1.4.1. Alcances

El trabajo de investigación se ha desarrollado en el ámbito de la zona industrial de Lima, para centrarse en particular a Lurín, establecida sobre la margen izquierda del kilómetro 40 de la panamericana camino al sur. Realizando el estudio del

alimentador radial respectivo, el cual es el que mayores problemas presenta, abarcándose la red primaria y secundaria comprometida.

1.4.2. Limitaciones

Una de las principales limitaciones será que la información se ha recopilado con distintos patrones de tiempo de medición, vale decir que para la información registrada ha sido empleado el Metrel MI-2592 de la empresa ETTSII SAC, con muestreo cada 5min y en otros casos cada 10min como el Fluke 435 PQ-Analyzer de MPC INGS.

La información de campo se tomó utilizando la técnica del muestreo estadístico, que en nuestro caso ha sido el muestreo aleatorio simple. Para este efecto se ha empleado el Fluke 435 PQ-Analyzer y otros equipos similares.

II MARCO TEÓRICO

2.1. ANTECEDENTES DEL ESTUDIO

El presente informe de tesis ha empleado un método de diseño analítico de un filtro pasivo de armónicos trifásico de banda ancha mejorado (FPATBAM). Para una fuente de armónicos tipo diodo rectificador de un variador de velocidad.

El método se basó en el modelamiento en el dominio de la frecuencia del rectificador y su filtro. El éxito del método implica la representación exacta de los armónicos de la carga, Zubi[21.]

Los armónicos han sido medidos en campo y replicados en los software de ingeniería, la fundamental y los circuitos equivalentes de tensiones y corrientes, son empleados para calcular analíticamente el rendimiento del filtro y su optimización atiende la necesidad de minimizar la potencia disipada, alejar las frecuencias de resonancia y mantener un factor de potencia alto considerando el desplazamiento del cosφ.

El método analítico se verificó a través de simulaciones por computadora empleando el método de penetración armónica simple y de mediciones en campo.

También se revisó el rendimiento y las debilidades del filtro de armónicos pasivos para porcentajes de carga diversos.

Se proporciona en la entrada de los diodos rectificadores una distorsión armónica total de corriente y se realiza la comparación, que consiste en evaluar el factor de potencia de entrada, rectificación, regulación de tensión, eficiencia energética, tamaño y costo.

Los problemas de resonancia y rendimiento de la operación en régimen balanceado se abordan al manejar Li y Lo de manera de alejar la frecuencia resonancia serie.

La optimización se basó en el análisis de simulaciones por computadora empleando el método de penetración armonica simple para minimizar la potencia disipada y garantizar baja presencia de armónicos de tensión y de corriente, los resultados son validados en el Neplan, DigSILENT y resultados de modelamiento.

2.1.1 Optimización del filtro pasivo de distorsión armónica Los filtros pasivos de característica básica L-C, que en un momento fueron desplazados por los filtros activos, regresan apoyados en el modelamiento matemático. Siendo la optimización de estos y su bajo costo en relación a los primeros, interesantes argumentos para su aplicación. Ganando confiabilidad al ser sometidos a diferente escenarios de modelamiento al someterlos a las condiciones más exigentes.

La optimización de los filtros pasivos posee puntuales objetivos siendo uno de ellos la compensación de potencia reactiva por su naturaleza

capacitiva-inductiva. Así también debido al efecto compensador de la potencia reactiva de los filtros, una vez que estos se instalan en el sistema, se produce un incremento sustancial del factor de potencia y al mismo tiempo se reducen las pérdidas de potencia y energía en los elementos del circuito de distribución.

Para determinar el efecto económico de la compensación de potencia reactiva, todos los escenarios característicos de la carga diaria deben ser considerados para calcular el consumo de energía y el factor de potencia de la instalación.

En una empresa industrial, la facturación eléctrica es un medio conveniente para medir el costo anual del consumo de energía de la instalación. Para cada escenario de carga diaria, la potencia activa total y la potencia reactiva total suministradas por la fuente, así como las pérdidas de potencia activa y reactiva en cada elemento del circuito ,incluyendo los filtros, pueden ser calculadas mediante un programa de flujo de potencia a frecuencia fundamental y un programa de penetración de armónicos, [4] Cabral J.

Asimismo la optimización también puede combinar redes neuronales artificiales y algoritmos genéticos en la planificación de filtros pasivos con multiples fuentes de armónicos. Siendo el objetivo minimizar el costo de operación del filtro reduciendo las perdidas en un escenario de un alto THDi y THDv simultáneamente, [5] Chang.

En cuanto a la robustez de un filtro pasivo, los armonicos producen principalmente dos tipos de efectos: el calentamiento y el envejecimiento prematuro de condensadores, transformadores, cableados y control. Los condensadores se deterioran por una excesiva circulación de corriente. La suma de la corriente fundamental y armónica produce un calentamiento que reduce la vida útil de los condensadores. Este fenómeno está principalmente asociado a resonancias. Las baterías de condensadores son una de las principales víctimas de los armónicos, Barona[3].

2.1.2 Mejoramiento de Banda de Absorción de Armónicos Es importante destacar que es posible realizar diversos estudios para evaluar el impacto de dimensionamiento del capacitor en el índice de THDv de la tensión de línea. Se puede observar que inicialmente un dimensionamiento del capacitor tiene gran influencia en la generación de tensiones armónicas en el modelamiento de un sistema de compensador de tensión en barras. Por ello se ha notado que a partir de cierto punto no es posible mejorar el THD aumentando la capacitancia de la batería de condensadores. Aproximadamente de 500microfaradios para THD de de 45% en la carga.Freitas[9].

Los fitros pasivos proveen una económica alternativa de reducción de armónicos en la redes eléctricas. La dimensión del capacitor y la frecuencia de resonancia necesita ser determinado para el caso de un

filtro sintonizado a una sola frecuencia siendo este el filtro más popular. Al diseñar el filtro sintonizado deberán tener en cuenta aspectos como:

- a) Estructura de Múltiple barras
- b) Generadores de armónicos variables con el tiempo.
- c) Dimensión del condensador individual
- d) Ubicación del fitro
- e) Costo de fabricación y operación
- f) Norma o estándar a cumplir.
- g) Frecuencia de resonancia
- h) Periodo de variación de cargas lineales.

Estos crietrios deben aplicarse, [11]Hong

2.1.3. Impacto económico con la inserción del filtro

Diversas técnicas de reducción de armónicos se han desarrollado para satisfacer los requisitos impuestos por las actuales normas de armónicos. Pero el impacto económico de ahorro radica en los siguientes rubro:

- Disminución de Perdidas de Energía: La disminución del flujo de potencia tanto de potencia activa y de potencia reactiva permiten menor disipación de energía disminuyendo la huella de carbono.
- Protección de la Vida Útil de los Equipos Evitando los episodios de resonancia se logra mayor duración de las tarjetas electrónicas sensibles a la distorsión.

- Aprovechamiento de la Capacidad instalada.- Los alimentadores se ven descongestionados de flujo de energía permitiendo mayor capacidad de conducción de potencia.
- Mayor Productividad de la Planta.- Al tener operativa las máquinas se tienen mayor capacidad de producción

2.2. MARCO CONCEPTUAL

2.2.1 Introducción

El filtro pasivo tuvo en su diseño diversos aspectos, para lo cual se irán abordando oportunamente los conceptos según convenga la secuencia u orden. Es importante considerar que cada concepto también puede ser considerado según la norma o autor de referencia.

2.2.2 Secuencia De Armónicos:

Para los sistemas trifásicos balanceados en condiciones normales, las ondas de corriente o tensión tienen un desfase entre sí de 120°, y su secuencia de fases es positiva (A, B, C). Los armónicos de cada una de las fases, dado que su frecuencia es un múltiplo de la frecuencia fundamental, presentan unos ángulos de desfase diferentes a las formas de onda fundamentales, por lo cual estos pueden presentar diferentes secuencias de fase.

Dado un sistema trifásico en el cual las ondas fundamentales forman un sistema balanceado y las tres fases tienen la misma forma de onda podemos realizar el siguiente análisis de AmpueroR [1].

Tomando como referencia la componente fundamental de la fase A, las restantes componentes fundamentales están dadas por:

 $V_A = A \angle 0^{\circ}$ $V_B = A \angle -120^{\circ}$ $V_C = A \angle +120^{\circ}$

Dónde:

A: Amplitud de la componente fundamental.

Para el armónico de orden k su desfase φ_k respecto a la fundamental es igual para las tres fases, esto es indispensable para que las formas de onda sean iguales. Por lo tanto las componentes armónicas de orden k están dadas por:

$$V_{Ak} = A_k \angle \varphi_k \quad V_{Bk} = A_k \angle (\varphi_k + \varphi_{AB}) \quad V_{Ck} = A_k \angle (\varphi_k + \varphi_{AC})$$

A_k: Amplitud del armónico k.

 φ_{AB} : Ángulo de desfase entre las componentes fundamentales de las fases A y B expresado en grados del armónico k.

 φ_{AC} : Ángulo de desfase entre las componentes fundamentales de las fases A y C expresado en grados del armónico k.

Un periodo de la componente fundamental es igual a k periodos del armónico de orden k, lo cual permite expresar en grados del armónico k los desfases dados en grados de la componente fundamental utilizando la ecuación:

$$\varphi_k = \mathbf{k} \mathbf{\phi}$$

 ϕ_k : Ángulo de desfase dado en grados del armónico k

φ: Ángulo de desfase dado en grados de la componente fundamental
 De donde se tiene que las componentes armónicas de orden k están
 dadas por:

$$V_{Ak} = A_k \angle \varphi_k$$
 $V_{Bk} = A_k \angle (\varphi_k + k(-120^\circ))$ $V_{Ck} = A_k \angle (\varphi_k + k(120^\circ))$

Entonces, para los armónicos de orden 3n (con n entero) las componentes armónicas son:

$$V_{A(3n)} = A_{(3n)} \angle \varphi_{(3n)} \tag{2.1}$$

$$V_{B(3n)} = A_{(3n)} \angle (\varphi_{(3n)} + (3n) * (-120^{\circ})) = A_{(3n)} \angle (\varphi_{(3n)} + n * (-360^{\circ})) =$$
$$V_{B(3n)} = A_{(3n)} \angle \varphi_{(3n)}$$
(2.2)

$$V_{C(3n)} = A_{(3n)} \angle (\varphi_{(3n)} + (3n) * (120^{\circ})) = A_{(3n)} \angle (\varphi_{(3n)} + n * (360^{\circ})) =$$
$$V_{C(3n)} = A_{(3n)} \angle \varphi_{(3n)}$$
(2.3)

(2.1), (2.2) y (2.3) demuestran que las componentes armónicas de las tres fases están en fase entre sí, por consiguiente, los armónicos de orden 3n llamados TRIPLENS son de secuencia cero, y sobrecalientan la línea neutra.

Para los armónicos de orden (3n + 1) (con n entero) las componentes armónicas son:

$$V_{A(3n+1)} = A_{(3n+1)} \angle \varphi_{(3n+1)}$$

$$V_{B(3n+1)} = A_{(3n+1)} \angle (\varphi_{(3n+1)} + (3n+1) * (-120^{\circ}))$$

$$V_{B(3n+1)} = A_{(3n+1)} \angle (\varphi_{(3n+1)} + n(-360^{\circ}) - 120^{\circ})$$
(2.4)

$$V_{B(3n+1)} = A_{(3n+1)} \angle (\varphi_{(3n+1)} - 120^{\circ})$$

$$V_{C(3n+1)} = A_{(3n+1)} \angle (\varphi_{(3n+1)} + (3n+1) * (120^{\circ}))$$

$$V_{C(3n+1)} = A_{(3n+1)} \angle (\varphi_{(3n+1)} + n * (360^{\circ}) + 120^{\circ})$$

$$V_{C(3n+1)} = A_{(3n+1)} \angle (\varphi_{(3n+1)} + 120^{\circ})$$
(2.6)

(2.4), (2.5) y (2.6) demuestran que las componentes armónicas de las tres fases presentan desfases entre sí de 120° con la misma secuencia seguida por las componentes fundamentales, es decir, que los armónicos de orden (3n + 1) son de secuencia positiva.

Para los armónicos de orden (3n - 1) (con n entero) las componentes armónicas son:

$$V_{A(3n-1)} = A_{(3n-1)} \angle \varphi_{(3n-1)}$$
(2.7)

$$V_{B(3n-1)} = A_{(3n-1)} \angle (\varphi_{(3n-1)} + (3n-1) * (-120^{\circ}))$$

$$V_{B(3n-1)} = A_{(3n-1)} \angle (\varphi_{(3n-1)} + n * (-360^{\circ}) + 120^{\circ})$$

$$V_{B(3n-1)} = A_{(3n-1)} \angle (\varphi_{(3n-1)} + 120^{\circ})$$

$$V_{C(3n-1)} = A_{(3n-1)} \angle (\varphi_{(3n-1)} + (3n-1) * (120^{\circ}))$$

$$V_{C(3n-1)} = A_{(3n-1)} \angle (\varphi_{(3n-1)} + n * (360^{\circ}) - 120^{\circ})$$

$$V_{C(3n-1)} = A_{(3n-1)} \angle (\varphi_{(3n-1)} - 120^{\circ})$$

(2.9)

(2.7), 2.8) y (2.9) demuestran que las componentes armónicas de las tres fases presentan desfases entre sí de 120° con una secuencia contraria a la seguida por las componentes fundamentales, es decir, que los armónicos de orden (3n - 1) son de secuencia negativa.

La Tabla 2.1 muestra gráficamente la regla que sigue la secuencia de fases de los armónicos.

Tabla 2.1

Secuencia de los armónicos

Nº Armónico	1	2	3	4	5	6	7	8	9	10	11	12	13
Secuencia	+	-	0	+	1	0	+	-	0	+	-	0	+

La secuencia seguida por los armónicos es importante para analizar sus efectos, obteniéndose las siguientes conclusiones:

- a) En sistemas trifásicos, los armónicos de orden 3n de corriente solo se pueden propagar cuando es posible un retorno por neutro. Siendo atrapados en el bobinado en delta que en nuestro caso no se dá pues la conexión es YNynd6 para el transformador de la maquina AOKY.
- b) Los armónicos de orden (3n + 1) en tensión generan en los motores un campo giratorio en el mismo sentido de la componente fundamental.
- c) Los armónicos de orden (3n 1) en tensión como el quinto, generan en los motores un campo giratorio en sentido contrario al generado por la componente fundamental. Por lo que generan un torque antagónico al generado por la frecuencia fundamental produciendo vibraciones y calentamiento en las maquinas

asíncronas. Como es el caso en nuestra planta en estudio donde la maguina AOKY sufre estos episodios.

Debe tenerse en cuenta que las conclusiones sobre secuencia de los armónicos solo son válidas cuando el sistema trifásico está balanceado y las formas de onda de las tres fases son idénticas. En la práctica, pueden encontrarse diferencias entre las tres fases del sistema, lo que conduce a que los armónicos puedan tener componentes de diferentes secuencias a las obtenidas en el caso ideal planteado.

De ello se advierte que el filtro pasivo a plantearse será el de frecuencia quinta es decir una frecuencia de corte próximo a 300 Hz.

El presente estudio se ha realizado en las líneas de Soplado y Aerosoles de la planta de Lurín a 40km al sur de Lima, perteneciente a la planta industrial manufacturera INTRADEVCO.

La línea de soplado está formada por una Maquina inyectora de plástico China de marca Jonh WHA, considerada como fuente de armónicos, y una máquina Japonesa de marca Aoky encargadas de fabricar envases plásticos de gran demanda.

Existe una Subestación de llegada, la misma que alimenta a la planta de soplado con tensión de 440VAC, 60Hz. Esta SS.EE está compuesta por un transformador eco de 1.25 MVA con Tensión de corto circuito TCC=6.1%, es de fabricación peruana EPLI y grupo de conexión YNynd6 22.9/0.44/0.23kV; del año 2006.

Figura2.1

Vista De La Máquina Jonh Wha En La Planta Intradevco-Lurín

Fuente: Elaboración propia

Asimismo se tiene un transformador en aceite de 1000kVA de 5.73% de tensión de corto circuito. Con grupo de conexión YNynd6 y relación de transformación 22.9/0.4/0.23kV del año 2004.

La investigación se ha centrado en el análisis de la Gestión de la Calidad de la energía de la planta de soplado la cual es la que mayores problemas presentó, en su configuración actual y analizando su gestión en los años 2012 y 2013, para luego realizar una proyección a 5 años, evaluando los indicadores económicos de la gestión.

La gestión de calidad de la energía, a su vez, se centró en la inserción de un filtro pasivo pasa bajos de banda ancha para la atenuación de la distorsión armónica de quinto orden, lo que permitió la continuidad de la producción aun cuando el empleo de la máquina China Jonh Wha, genera altos niveles de distorsión de corriente. Luego se plantearon alternativas coherentes para superar las deficiencias detectadas, de esta manera mejorar su performance, asegurando su viabilidad en el horizonte de planeamiento y su sostenibilidad en el tiempo.

Los sistemas eléctricos industriales, de un tiempo a esta parte vienen siendo automatizados y ampliados sin tomar en cuenta los problemas de energía que se presentan especialmente en desmedro de su calidad de onda, al ser gestionados de manera coyuntural. Es decir que, se llega a ejecutar una ampliación sin tener las condiciones armónicas técnicas adecuadas. Si bien las metas de productividad se alcanzan pero no de manera sostenible, pero solo hasta que se produzca un colapso del banco de condensadores, como de la subestación ó la misma maguinaría, es tomado en cuenta este problema.

Este cúmulo de hechos, tienen implicancias económicas desfavorables para la empresa manufacturera y también distribuidora, las cuales han sido descritas, analizadas y evaluadas, para finalmente proponer un plan estratégico de mejora de la gestión de la calidad de la energía, de esa manera la empresa podrá producir con mayor calidad y hacer sostenible en el tiempo la productividad y su economía.

2.2.3 Corriente de entrada con distorsión armónica de los Sistemas de ASD

Un sistema ASD con un puente de 6 pulsos diodo rectificador básico, que se muestra en la figura.2.1 Tiene típicamente una línea de entrada de forma de onda de corriente y espectro armónico. Los armónicos generados tienen $2p \pm 1$, donde p es el número de pulsos del rectificador de tensión. En el espectro armónico de los primeros cuatro armónicos dominante (5 °, 7 °, 11 ° y 13 °). En el caso particular ilustrado (sistema de baja impedancia < 2 %) la distorsión total de armónicos (THDI) es muy alta > 70 % y la forma de onda de corriente es muy distorsionada. El contenido de la corriente armónica básica de un puente de diodo rectificador de 6 pulsos es altamente dependiente de la ubicación donde el rectificador esté conectado.

Figura 2.2

Sistema diodo rectificador de puente sistema ASD front-end sin filtros de armónicos.

Fuente[Zubi]

Forma de onda de corriente de línea

Fuente [Elaboración propia]

Espectro armónico de línea actual

Fuente:[Elaboración propia]

2.2.4 Flujo De Potencia Asistido Computacionalmente

La solución al problema de flujo de potencia con ayuda computacional es una practica estándar. El usuario especifica los datos de entrada basado en criterios técnicos reales locales. Para luego ajustar el control de parámetros de acuerdo a un criterio global, esto lleva a fijarse un objetivo y encontrar un óptimo (mínimo o máximo). Este es un problema de optimización estática de una función escalar objetivo también llamada función de costo. Donde se trata dos casos: uno el flujode potencia activa o real y en segundo caso el flujo de potencia reactiva, tratándose de minmizar las pérdidas Dommel[6]

2.2.5 Flujo De Potencia Armónico

Un flujo de cargas armónico puede definirse como una extensión del flujo de cargas convencional a las frecuencias de los armónicos para el caso de redes que alimentan cargas no lineales. El objetivo central de dicho flujo radica en la determinación de los módulos y los ángulos de los voltajes para todos los nodos de la red a cada una de las frecuencias armónicas consideradas. Estas tensiones están dadas por las condiciones de carga y generación y de los elementos que componen la red que se estudia. Con este resultado y otros datos del sistema, se pueden obtener ciertos parámetros que brindan una caracterización más completa del circuito. Entre ellos están las transferencias de potencia y corriente por las ramas; la potencia activa, reactiva y aparente en cada nodo de carga o generación así como los porcentajes de distorsión (THD) en tensión y corriente.

Están además, el factor de potencia, la potencia de distorsión y otras magnitudes asociadas. En los casos que fuese necesario, pueden obtenerse también, las

formas de onda (de tensión y corriente) y los parámetros característicos asociados a ellas: valores picos, velocidades de crecimiento, etcétera, Perez I.[16].

2.3 DEFINICIONES BÁSICAS

2.3.1 Distorsión Armónica .- Se define como ondas de tensión y corriente cuya frecuencia es un entero multiplo de la onda fundamental.Arrillaga[2]. Esta distorsión es acompañada también de otras ondas que tienen freecuencias no múltiplos exactos llamadas interarmonicas.

Si la frecuencia de la señal eléctrica es inferior a la fundamental, recibe el nombre de subarmónico, ésta podría ocasionar parpadeos luminosos, perceptibles visualmente, denominados Flicker, Estigarribia[8]

Los Paises en el pasado han creado sus estándares para limitar los niveles de distorsión a niveles permisibles. Los indicadores del nivel de distorsión que se pueden citar son:

Distorsión Armónica Total de Corriente

$$THDi = \frac{\sqrt{\sum_{n=2}^{N} \ln^2}}{11}$$
(2.10)

Donde el In es el valor eficaz de los armónicos de corriente y I₁ es el valor eficaz de la componente de la corriente fundamental. Sin embargo, esto puede ser a menudo engañoso. Por ejemplo, muchos ASD exhibirán valores altos de THD de corriente de entrada, cuando están operando a cargas muy ligeras. Esto no es crítico porque la magnitud del armónico fundamental es baja, a pesar que su distorsión relativa es alta. Para tener en cuenta la carga y efectuar la caracterización de las corrientes armónicas en una forma consistente, el IEEE estándar 519-1992 define un término adicional, la demanda total de distorsión (TDD). Este término es el mismo que el THD excepto que la distorsión se expresa como un porcentaje de la carga fundamental a corriente nominal y no de la magnitud de la corriente fundamental en el momento de la medición.

Por lo tanto, el factor TDD está dada por:

$$TDD = \frac{\sqrt{\sum_{n=2}^{N} I_n}}{I_L}$$
 2.11)

Donde el In es el valor eficaz de los armónicos de corriente y la l∟ es la demanda nominal de la componente de la corriente fundamental. Por lo tanto, el estándar IEEE 519-1992 recomienda límites de corriente armónica, que se muestra en la Tabla 1.1, y se expresa en términos de TDD, en lugar de THD.

El Isc / IL es la relación de cortocircuito en el PCC. Como IL se definió anteriormente, Isc es la corriente de corto del circuito disponible en la entrada de la carga no lineal. La relación de cortocircuito define el límite TDD que se aplica a la salida de un transformador de distribución, y por lo tanto a las cargas conectadas a él. Ya que la distorsión armónica de tensión en el sistema de utilidad surge de la interacción entre las corrientes de carga distorsionadas y la impedancia del sistema de servicios públicos, la utilidad es el principal responsable de la limitación de la distorsión de la tensión en el PCC.

Tabla 2.2

RELACIÓN:	Limite	es para Com	ponentes Ai en % de li	mónicas im	pares	DISTORSIÓN DE DEMANDA TOTAL
lsc/le	ARMÓNICAS	ARMÓNICAS	ARMÓNICAS	ARMÓNICAS	ARMÓHICAS	(% TDD)
isc/1_<20	4.0	2.0	1.5	0.6	0.3	5.0
20 < 1sc / 1L <50	7.0	3.5	2.5	1.0	0.5	8.0
50 < lsc/ l_ <100	10.0	4.0	4.0	1.5	0.7	12.0
100 < 1 _{SC} /1 _L <1000	12.0	5.5	5.0	2.0	1.0	15.0
kc/է>1000	15.0	6.0	6.0	2.5	1.4 (20.0

IEEE 519 Límites de corriente armónica

Fuente: http://www.variacionesdevoltaje.com

El estándar IEEE 519-1992 limita la tensión armónica recomendada estándar, que se muestran en la Tabla 2.3, Estos valores se expresan como el porcentaje de la tensión fundamental. Para los sistemas por debajo de 69 kV, el THD de tensión debe ser inferior a 5 %, siempre que
en el sistema la resonancia no coincida con las frecuencias armónicas presentes en las corrientes de carga. Por lo tanto para cumplir con estas limitaciones, la utilización de eficientes, económicos y confiables filtros de armónicos es obligatoria.

Tabla 2.2 Limites de distorsión de corriente Los niveles más altos de la generación de corriente armónica se permiten para los valores más altos de SCR, debido a que un solo cliente tiene menos impacto en la distorsión de la tensión del sistema.

Tabla 2.3

Rango de tensiónDistorsión armónica
individual (%)Distorsión armónica
total THDv (%)1kV < Vn < 69kV3569kV < Vn < 161kV1,52,5Vn > 161kV11,5

Límites de distorsión armónica de tensión

Fuente: http://www.scielo.org.co

Nota: Los sistemas de alta tensión pueden tener un máximo de 2.0 % THD, donde la causa es una HVDC terminal que atenuar por el tiempo que se golpea ligeramente para un usuario.

En esta tesis, los índices de distorsión armónica total se utilizarán tanto para la corriente y la tensión. Ellos se distinguen por el uso de THD₁ y THD₂ para los armónicos de corriente y tensión respectivamente.

2.3.2 Técnicas de filtrado pasivo de armónicos para sistemas ASD

Un método tradicional para mejorar la calidad de la energía es el empléo de filtros pasivos conectado a los terminales de las cargas sensitivas. Sin embargo esta práctica tiene algunas desventajas: el deterioro de la impedancia de la red o cambios en el nivel de carga, lo cual puede hacer resonar la impedancia de la red con la impedancia del filtro, Kuamaraswami [12].

El principal problema del empleo de un filtro pasivo de potencia es determinar su ubicación, tamaño y frecuencia del armónico, empleando el minimo costo, para ello se plantea una función objetivo que exige una reducción de pérdidas. Al mismo tiempo que incluye otras restricciones.

El filtro pasivo sintonizado en serie, que se muestra en la figura 2.4 está conectado en serie con la carga. El filtro consiste en la inductancia y la capacitancia en paralelo que se sintoniza para proporcionar alta impedancia a una frecuencia armónica seleccionada. La alta impedancia entonces bloquea el flujo de corriente armónico en sólo la frecuencia sintonizada y no en frecuencia fundamental.

El filtro está diseñado para dar baja impedancia, permitiendo así que la corriente de la fundamental fluya. Para el bloqueo de múltiples armónicos,

se necesitan múltiples filtros en serie y deben estar diseñados para transportar una corriente total de carga nominal, ya que están conectados en serie. Por lo tanto, pueden crear pérdidas significativas a frecuencia fundamental.

Filtrado pasivo basado en reactor de línea de AC e inductancia DC de línea

Fuente:[21]

En contraste, los filtros pasivos de derivación sólo llevan una fracción de la corriente que un filtro serie. Dado el alto costo de un filtro de serie, y el hecho de que los filtros de derivación pueden suministrar potencia reactiva a la frecuencia fundamental, su uso es más difundido.

Figura 2.6

Configuración de filtro pasivo serie

Fuente: www.ipqdf.com

Un filtro de derivación ofrece un camino de muy baja impedancia a la frecuencia a la cual está sintonizado y desvía la mayor parte de la corriente armónica en esa frecuencia. Los filtros en derivación más comúnmente empleados son sintonizados y relativamente fáciles de diseñar y poner en práctica. Los tipos comunes de filtro de derivación se muestran en la figura 2.7. los cuales tienen inconvenientes a la hora de soportar cambios de topología y cambios en el porcentaje de plena carga, según el régimen de trabajo.

Fig.2.7

Configuración de filtros en derivación

Fuente: [14]

A diferencia de los filtros de derivación y de los filtros serie que tienen una estrecha banda de supresión de armónicos, los filtros de banda ancha tienen una gama más amplia de la propiedad de supresión de armónicos.

Configuración de filtro pasa bajo de banda ancha tipo LC(a) y tipo LLCL (b)

Fuente: [21]

Los filtros de Banda Ancha, emplean una combinación de las dos técnicas pasivas, con una alta impedancia para bloquear los armónicos de corriente no deseados (que fluyen a través de la red) y una trayectoria de baja impedancia de derivación para desviar su flujo a través del filtro de derivación.

La técnica de multiplicación de fase se basa en el aumento del número de pulsos para el convertidor, esto aumenta el orden armónico más bajo para el convertidor y reduce el tamaño del filtro pasivo necesario para filtrar los armónicos de corriente. Un convertidor de 12 pulsos idealmente tiene orden armónico debajo de 11 (los armónicos de corriente quinto y séptimo son teóricamente inexistentes). Del mismo modo, un convertidor de 18 impulsos tiene el más bajo orden armónico de 17. Sin embargo, un convertidor de 12 impulsos, que se muestra en la figura 1.7, necesita dos

puentes de 6 pulsos y dos conjuntos de 30 grados desplazamiento de fase entradas de AC y un convertidor de 18 impulsos necesita tres puentes de 6 pulsos y tres conjuntos de entradas de AC.

Figura 2.9

Six - pulse. bridges Convertor busbar CB1 Y Y Y A Q 2 2

Configuración del sistema rectificador de doce pulsos.

Existen diferentes topologías para el logro de cambio de fase. En general, la técnica de multiplicación de fase es eficaz para reducir los armónicos de corriente de bajo orden, siempre y cuando haya un equilibrio de carga en cada uno de los convertidores. Sin embargo, su gran tamaño, baja eficiencia, y alto costo son los principales inconvenientes de esta topología. Método de compensación de armónicos activo (filtrado) es relativamente un nuevo método para la eliminación de los armónicos de corriente de la línea. Filtros activos dan buen rendimiento y reducción de los armónicos de corriente. Sin embargo, se basan en los sofisticados componentes de electrónica de potencia y por lo tanto son mucho más costosos que los filtros pasivos. En los filtros activos la idea básica consiste en inyectar a la línea igualdad de magnitudes de los armónicos de corriente / tensión generados por la carga no lineal y con diferencia de ángulo de fase de 180 grados, de modo que se anulan entre sí.

Los filtros activos se pueden clasificar en función del tipo convertidor, topología, y el número de fases. El tipo de convertidor puede ser tanto inversores actuales fuente (CSI) o VSI. CSI basada en filtros activos, emplean un inductor como dispositivo de almacenamiento de energía. A base de filtros activos VSI, utilizan un condensador como dispositivo de almacenamiento de energía. La topología puede ser derivación, serie, o una combinación de ambos. La tercera clasificación se basa en la multiplicación del número de fases, tales como de dos hilos (una sola fase) y de tres o cuatro conductores (trifásico) sistemas. Tres filtros activos de fase, Zubi[21].

Figura 2.10

Configuracion de filtros activos fundamentales: Filtro activo shunt(izquierda), filtro activo serie (derecha)

Fuente: [21]

Los filtros activos híbridos, como se muestran en la figura 1.9 al combinar filtros activos y pasivos en diversas configuraciones. El propósito principal de filtros activos híbridos es reducir costos iniciales y mejorar la eficiencia.

Figura 2.11

Los filtros activos híbridos comunes son: (izquierdo) filtro activo en derivación y filtro pasivo en derivación, (derecho) filtro activo serie y filtro pasivo en derivación

Topologías de filtros híbridos han sido desarrolladas, y tienen aún una aceptación significativamente pequeña, estos filtros activos consumen menos de 5 % de la potencia de carga en KVA comparada con el independiente paralelo (25-30%) o filtro activo serie.

Por lo general, con combinaciones del filtro pasivo de derivación, el filtro pasivo es sintonizado hasta una frecuencia específica para suprimir el correspondiente armónico y disminuir la potencia de salida del filtro activo. Otra combinación típica es de un filtro activo y un filtro pasivo serie, (a) y (b), son configuraciones mostradas en la Fig.2.11. Los filtros activos híbridos comunes son: (a) filtro activo en derivación y filtro pasivo en derivación, (b) filtro activo serie y filtro pasivo en derivación.

Para el tipo PWM de tensión de la fuente Rectificadores (PWM- VSR) tiene beneficios como la regeneración de energía, baja distorsión armónica, el factor de potencia unitario y del circuito intermedio controlado.

A menudo se utilizan en aplicaciones en las que el modo de funcionamiento regenerativo es sustancial.

El Principio de funcionamiento PWM- VSR se basa en la generación de corriente sinusoidal directamente, mientras que el filtro activo se basa en la compensación de armónicos de la carga. Sin embargo, el alto costo de topología es el principal inconveniente que hace que sea poco practicable en muchas aplicaciones.

Para concluir, la mayor parte de las técnicas de filtrado mencionados tienen inconveniente común de alto costo en comparación con técnicas de filtrado pasivos. En consecuencia, las técnicas de filtrado pasivo de armónicos, en gran medida, son todavía más comúnmente utilizado, para la mitigación de armónicos de corriente de 6 pulsos, Zubi [21].

En esta tesis, de las técnicas de filtrado armónico pasivo, la técnica de banda ancha tipo pasa bajo es la topología de filtro pasivo más empleada. Por lo tanto el filtro de banda ancha tipo LLCL mejorado se investiga a lo largo de esta tesis.

Básicamente en filtros pasivos, el flujo de las corrientes armónicas inyectadas en las líneas se puede prevenir mediante la utilización de una

alta impedancia serie para bloquear o desviarlos a través de un camino de derivación de baja impedancia.

Estos dos métodos explican el concepto serie y derivación de filtros pasivos, respectivamente. Entre éstos, los filtros de inductancia serie proporcionan cantidad limitada de supresión de corriente armónica con alto costo reducido significativamente en la tensión de salida. Los filtros sintonizados son efectiva sólo en la proximidad estrecha de la frecuencia a la que están sintonizados los filtros. En contraste, los filtros de banda ancha pasivas tienen un ancho de banda

más amplio y atenúan casi todas las corrientes armónicas en esta banda ancha. Los filtros de banda ancha son pasivas el empleo de una combinación de los dos métodos principales, con una alta impedancia de serie para bloquear las corrientes armónicas no deseadas (desde que fluye a la red) y una bajo camino de derivación de impedancia para desviar el flujo de corrientes armónicas no deseado (filtro de derivación capacitiva), Zubi [21].

2.3.3 Tres reactores de línea AC y enlace inductor DC

La técnica de reducción de armónicos pasivo más simple y económica implica el uso de reactores de línea de AC en frente del ASD como se muestra en la figura.2.3. El filtro de inductancia en serie (a menudo denominado como reactancia en línea) es un buen método ya

establecido. Se utilizan típicamente inductores de 1 % a 5 % en Lac. En los EE.UU. 3 % y en Europa 4 % son valores utilizados

$$\omega e Lac\% = \frac{\omega e Lac}{Zbase}$$
(2.12)

donde Z_{base} es la impedancia base dada en (2.1) y ω_e es la frecuencia de la red eléctrica. La reactancia del inductor aumenta proporcional a la frecuencia del sistema AC. Por lo tanto, la inductancia suaviza la corriente de la línea deformada por el convertidor.

Por la presente, una distorsión armónica de corriente significativamente menor se puede lograr hasta un THD₁ del 35 % en comparación con el ASD THD₁ básica. Este nivel de THD1 se puede mejorar cuando una inductancia en la zona DC del variador se combina con los reactores de línea AC. A diferencia de los tres reactores AC de línea, el enlace de la inductancia en DC no causa ninguna caída de tensión reactiva, mientras se contribuye a la formación de las formas de onda actuales. Se sabe que la impedancia efectiva del enlace con inductancia DC, cuando se refiere a la parte de AC, es aproximadamente la mitad de su valor numérico. El tamaño inductor DC de enlace entre el 3% y el 5% es típicamente incorporado en algunos de los sistemas ASD comerciales..

La introducción de un reactor de línea de AC trifásica entre la fuente de corriente alterna y el rectificador, donde los reactores AC también rehacen la forma de onda de corriente en los terminales menos pulsante, como el

cambio repentino de corriente. La corriente del condensador DC hace más pequeño y más continua la corriente. Esto aumenta la vida útil de los condensadores del circuito intermedio en el lado de la carga. Sin embargo, el inconveniente de los reactores de línea de AC de tres fases que es un reductor de tensión, debido a un aumento del tiempo

Fig.2.12

Solución trifásica con reactores de línea en AC para armónica de corriente en el sistema ASD

Fuente: [Elaboración Propia]

necesario para la conmutación de corriente durante la transferencia desde el diodo de salida hasta el diodo de entrada en el puente rectificador trifásico. En algunos casos, con reactores de alta en línea de AC utilizados, la tensión de rectificador puede no ser suficiente para alimentar a la carga. La reducción de la tensión del circuito intermedio puede ser aproximadamente calculada como sigue:

En condiciones nominales de la salida de voltaje de DC para un caso ideal (Lac = 0 %) viene dada por

$$Vdco = \frac{3\sqrt{2}}{\pi} V_{LL}$$
(2.13)

, donde V_{LL} es el valor rms de la tensión de alimentación de línea. La reducción de tensión en el circuito intermedio para una Lac específica viene dada por

$$\Delta V = \frac{3\omega_e L_{ac} \times I_{dc}}{\pi}$$
(2.14)

donde Lac es la inductancia de la reactancia de línea utilizada e ldc es la corriente de carga nominal de DC. Por lo tanto, el normalizado del enlace de DC caída de tensión es la relación de (2.13) a (2.12) y es dada por:

$$\Delta V\% = \frac{\Delta}{Vdco}$$
(2.15)

Suponiendo un enlace DC constante de corriente ldc, la entrada del rectificador de corriente nominal IR está dada por

$$I_{\rm R} = I_{\rm dc} x \sqrt{\frac{2}{3}}$$
 (2.16)

El empleo de (2.15), después de la sustitución de (2.12) y (2.13) en (2.14), para la reactancia normalizada de línea, el porcentaje de reducción en la tensión de salida del circuito intermedio puede ser en relación al porcentaje de reactancia de línea por

$$\Delta v = 0.5 \left(x_{ac} \right) \tag{2.17}$$

Donde Xac es la reactancia de línea AC en porcentaje $\omega_{L_{ac}\%}$, donde ΔV es la reducción de la tensión de salida DC de enlace en porcentaje. Es

decir, una reactancia de línea CA de 3 % reduce la tensión DC en el circuito de aproximadamente 1,5 %.

El principal inconveniente es el rango THD_i actual línea alta (> 30 %) a pesar de que un enlace DC de la inductancia se combina con los reactores de línea de AC. Esta gama de THD_i no cumple con las normas de distorsión armónica de corriente en la mayoría de los casos.

La onda de la corriente y el espectro armónico típico para un sistema AC con reactor de línea 4 %de AC en ASD con 5,5 kW trifásico se muestra en la figura.2.13. La corriente de línea y las formas de onda de tensión de fase de alimentación se muestran en la fig.2.14 con un 36 % de THDi actual y 0,91 de factor de potencia de línea de retraso a plena carga.

2.3.4 Filtro de armónicos pasivo sintonizados.-Filtros sintonizados pasivos pueden ser derivación o tipo serie. Los filtros de derivación pueden tener varias configuraciones, como se ilustra en la figura 2.7

Figura 2.13

Configuración de un sistema de filtro shunt sintonizado de 5to y 7mo con reactores AC adicionales

Fuente[21]

Como resultado se desvía el flujo del rectificador, donde la corriente armónica sigue su camino. Se consigue la supresión de armónicos, siempre que la magnitud de la impedancia de línea sea mucho más alta que la impedancia del filtro de derivación en la frecuencia armónica.

2.3.5 Filtro pasivo de armónicos pasa bajo de banda ancha

Los filtros armónicos de banda ancha aventajan a los filtros de banda estrecha, pues los filtros de banda estrecha son altamente sensibles a la frecuencia de resonancia. Además los filtros de banda ancha no tienen picos de resonancia, Egorova [7].

El método de filtrado pasa bajo de banda ancha, discutido brevemente al inicio, es ideal acercarse a bloquear todos los armónicos de corriente en múltiples frecuencias (generalizadas). Prácticamente, los filtros de banda ancha están diseñados para alcanzar una frecuencia de corte que es menor que la primera frecuencia armónica dominante. Los filtros pasa bajo de banda ancha utilizan un gran reactor de línea AC en serie, para evitar que los armónicos no deseados fluyan por la línea. Una batería de condensadores se instalan en paralelo con el rectificador, para absorver las corrientes armónicas no deseadas evitando que fluyan a través de la línea de corriente alterna y continua.

Este filtro de derivación individual es suficiente para suprimir todos los armónicos (banda ancha) y evita el problema de amplificación de la armónica, por la disminución de la frecuencia de resonancia en paralelo,

lejos de las frecuencias dominante inyectada de armónicos. Esta es una importante ventaja al utilizar filtros pasa bajo de banda ancha, Zubi [21]

Filtro pasivo simple pasabajos LC de banda ancha

Fuente: [Elaboración Propia]

Un filtro pasa bajo de banda ancha de tipo LC sencilla, es la que se muestra en la figura. 2.14, consta de un gran reactor de línea de AC de entrada (Li), junto con el condensador de filtro de derivación (Cf) que suele ser conectado en Δ , (Cf = $3Cf\Delta$). Los terminales del condensador están conectados al rectificador de carga. Este filtro simple puede estar diseñado para lograr un satisfactorio nivel de THD de corriente de línea y de un factor de potencia de entrada en menor medida. Sin embargo, debido a la sobretensión en el condensador y por lo tanto los terminales del rectificador (en un amplio rango de carga desde vacío hasta a plena carga), los componentes se esfuerzan y pueden fallar.

Típica formas de onda relativas al filtro LC simple y su problema de sobretensión se muestran en la figura. 2.16 y la figura 2.17 a plena carga y sin carga respectivamente. La tensión de salida del rectificador es

mucho más grande que la tensión de línea de AC, y por lo tanto la tensión de bus de DC puede ser significativamente mayor que el valor nominal que conduce a fallo a la unidad. Para evitar este problema de sobretensión, el reactor de línea de AC de entrada está diseñado en combinación con un transformador reductor (autotransformador), Zubi[21].

En la figura 2.14, Z line se define en la siguiente.

$$Zline = [(Ri + Rs) + jn\omega e(Li + Ls)]$$
(2.18)

donde Ri y R son la resistencia en serie equivalente inductor del filtro y la línea resistencia en serie equivalente, Li y Ls son las series de entrada inductor de filtro y la fuente inductancia equivalente, respectivamente, y Cf condensador jn ωe .

$$Zcapacitor = \left[\frac{1}{n\omega eCf}\right]$$
(2.19)

Siendo C_F el condensador de filtro de derivación. Una alta relación de impedancia entre la impedancia de la línea y la impedancia del condensador en todas las frecuencias armónicas dominantes generadas en 6 pulsos completos de los puentes rectificadores es suficiente para desviar los armónicos a través de la ruta de derivación. Mientras tanto, es evidente que la componente de la corriente fundamental fluirá desde la línea de AC al rectificador puesto que la relación de impedancia es bastante bajo.]

Actual Fig.2.17 Line y formas de onda de tensión de alimentación (de puntos) a plena carga (5,5 kW Sistema ASD). En el filtro LC de banda ancha, la mejora del factor de potencia de línea requiere la utilización de condensadores de filtro más pequeños. Como resultado, esto reducirá los problemas de sobretensión.

Tabla 2.4

Potencia (kW)	Li (mH)	Լp(mH)	Cf∆ (µF)	Lo (%)	THDi(%) de linea	Factor de potencia en adelanto
0.75	20	9	1.4e-06	0.02	4.47	0.9
5	20.9	9.05	9.7e-06	0.004	4.45	0.99
50	20.9	9.05	9.7e-05	3.8e-04	4.29	0.99
500	20.9	9.06	9.71e- 04	3.81e- 05	4.31	0.99

Valores iniciales de filtro de banda ancha calculado con código 1

2.4. FILTRO PASABAJOS DE BANDA ANCHA MEJORADO (FPATBAM)

Antes se estudió la mitigación de armónicos para un ASD, usando los métodos de filtrado pasivos comunes utilizados, sus reglas generales de diseño y rendimiento, se discutieron así como los atributos. Entre los

filtros armónicos pasivos discutidos, el filtro pasa bajo de banda ancha LC ha sido encontrado como un enfoque más práctico para filtrado armónico. El filtro tiene un rendimiento superior a los otros métodos de filtrado discutidos. Es eficaz en la supresión de los armónicos de corriente del rectificador, es simple y libre de problemas de resonancia de armónicos. Sin embargo, la estructura simple del filtro viene con un grave inconveniente que son las sobre tensiones en terminales del rectificador. Como resultado, el filtro de banda ancha mejorado (FPATBAM) ha sido desarrollado con el fin de superar la deficiencia del filtro LC y obtener las características generales de rendimiento superiores.

2.4.2 Método preciso de diseño de la FPATBAM, La topología del filtro de banda ancha está configurada como se muestra en la figura 2.15.

Filtro pasabajos de banda ancha mejorado

Fuente: [21]

La línea de alimentación AC trifásica está conectado a un reactor de entrada de AC trifásica (Li) y a una resistencia de amortiguación (Rd). La rama central consiste en un reactor de AC filtro serie (Lf) y el banco condensador (Cf) forma un filtro de derivación. La batería de condensadores se suele conectar en Δ conectado (Cf = 3Cf en Δ). Finalmente, se inserta un reactor de salida de AC trifásica (Lo) entre los terminales del rectificador y los terminales de conexión de Li del filtro. Con un diseño apropiado, en las frecuencias armónicas dominantes de corriente del rectificador (en un amplio rango de frecuencias), el reactor de entrada grande (Li) proporciona una alta impedancia (rectificador a la línea Z_{RL} impedancia) con respecto a la impedancia de filtro de derivación, como se muestra en la figura 2.23, por lo que todos los armónicos de corriente del rectificador serán impedidos por la línea y desviado para pasar a través del filtro de derivación. La impedancia Z line de la línea se encuentra por la ecuación (2.17) y la impedancia del filtro de derivación está dada por:

$$Zshunt = [\mathsf{RL}_{\mathsf{f}} + \mathsf{j} (\mathsf{n}\omega_e L_{\mathsf{f}} - 1/\mathsf{n}\omega_e C_{\mathsf{f}}]$$
(2.20)

Donde R_{Lf} es la resistencia serie equivalente del inductor de filtro, L_f y C_f son el reactor y condensador del filtro de derivación, respectivamente.

Li proporciona una impedancia suficiente que minimiza el flujo de armónicos de corriente desde el rectificador a la línea de AC, y también minimiza el efecto de la tensión de línea armónica en el rectificador dando como resultado una alta impedancia Z_Ir que proporciona a los armónicos predominantes de línea (es decir, proporciona aislamiento armónico entre la fuente y el rectificador). Debido al gran Li los armónicos de tensión de línea no pueden establecer la corriente armónica significativa en el filtro de derivación. Por lo tanto, el deber de Li reactor es para bloquear el flujo de armónicos de corriente en ambos sentidos.

Como la frecuencia de resonancia en paralelo es menor que el rectificador de corriente dominante a frecuencias armónicas, se evita el riesgo de resonancia armónica. El condensador de filtro Cf mejora el factor de potencia de entrada, proporcionando frecuencia fundamental completa con compensación reactiva de potencia. La potencia real P está fluyendo desde la alimentación a la carga. Y se reparte en Lf y Li tales que no hay sobretensión en los bornes del rectificador. Utilizando (2.20), la ecuación (2.19) se reescribe en (2.21) y en consecuencia en (2.16)

$$\omega_{p=\frac{1}{(L_{i}+L_{f})C_{f}}}^{2}$$
(2.21)

 $\omega_s^2 = \frac{1}{L_f C_f} \tag{2.22}$

 $L_f = 1/(\omega_s^2 * C_f)$ (2.23)

$$L_{i} = \frac{1}{c_{f}} \left(\frac{1}{\omega_{p}^{2}} - \frac{1}{\omega_{s}^{2}} \right)$$
(2.24)

De acuerdo con (2.19) y (2.20) la Lf y Li se definen en términos de Cf para una selección de valores en (2.21) y (2.22), respectivamente.

$$\omega_p^2 = \frac{1}{(L_i \ C_f) + (\frac{1}{\omega_s^2})}$$
(2.25)

$$L_i * C_f = \left(\frac{1}{\omega_p^2} - \frac{1}{\omega_s^2}\right) \tag{2.26}$$

Sustituyendo Li y Lf con sus equivalentes de (2.22) y (2.23) en la ecuación (2.17), el Cf es finalmente dado en esta etapa por las fórmulas del método completo de diseño del filtro y son aproximados. Las ecuaciones deben ser ejecutadas en el orden de (2.23), (2.21) y (2.22). Los parámetros involucrados en las ecuaciones deben ser seleccionados cuidadosamente con el fin de hacer que los cálculos de parámetros iniciales sean lo suficientemente precisos para el propósito de reducir el número de cálculos necesarios en el método de diseño preciso.

La selección de las series de valores de frecuencias resonantes fs depende del contenido armónico del rectificador, y por lo tanto depende de la rigidez de forma de onda de corriente rectificada.

El diagrama de impedancia de filtro de la figura 2.24 muestra la dependencia del contenido de armónicos y la resistencia actual del rectificador, tanto para el caso no-rígido y el rígido de la fuente de corriente, Zubi [21].

Fig. 2.16

Impedancia de línea y paralela con corriente armónica para fuente con distorsión en NEPLAN

Fuente: [Elaboración Propia]

La figura 2.15 muestra la impedancia de línea y rama de derivación con los armónicos de corriente.

Se selecciona la frecuencia en las proximidades de las dos frecuencias armónicas resonante más dominante en serie Fs actuales (quinto y séptimo). Si la carga del rectificador es una fuente continua de corriente rígida Fs; se selecciona de manera que esté casi en el centro entre el quinto y séptimo armónica. Dado que en caso rígido del circuito intermedio del quinto armónico es un quinto del fundamental, y el séptimo armónico es una séptima parte de la componente fundamental. El 7º armónico no es insignificante en comparación con el 5 º armónico en términos de requisitos de compensación.

Tabla 2.5

Potencia (kW)	Li (mH)	Lp(mH)	CfΔ (μF)	Lo(%)	THDi(%) de línea	Factor de potencia en adelanto
0.75	20.9659	9.0562	1.4571e-06	0.0254	4.4721	0.9937
5	20.9659	9.0562	9.7139e-06	0.0038	4,4559	0.9938
50	20.9659	9.0562	9.7139e-05	3.8134e-04	4.2907	0.9949
500	20.9659	9.0562	9.7139e-04	3.8134e-05	3.1309	0.9999

Valores de filtro optimizados calculados con código 1

Teniendo en cuenta los valores de potencia de una planta y su información de la rigidez actual (si no se da, se puede suponer como fuente de corriente suave), con las frecuencias resonante serie y paralelo seleccionado.

El diagrama de flujo del código de MATLAB construido para el método aproximado se muestra en la figura 2.25. En este diagrama se aprecia los valores que se deben ingresar primeramente para hallar los valores iniciales de capacitancia y de inductancias considerando las caídas de tensión permisibles, factor de potencia y en especial los limites de THD según las exigencias de los estándares IEEE. Para luego a través de iteraciones lograr valores más óptimos. De este modo es posibles obtener un filtro capáz de ser insertado en el método de penetración armónica

simple. Los valores finales obtenidos deben ser llevados a valores comerciales de capacitancia expresados en kVAR según la tensión de diseño. Para luego volver a entrar a los corridos de MATLAB primer y segundo código alcanzando valores reales de ejecución de proyecto.

Fig. 2.17

Diagrama de flujo de FPATBA

Fuente: elaboración propia

2.4.3 Diseño del Filtro por computadora

Valiendonos de la ayuda computacional del MATLAB procedemos a emplear el código de cálculo del filtro apoyados en un el modelo planteado por Zuby[21] para los armónicos 5, 7, 11, 13. Este código que figura en el trabajo mencionados ha sido modificado hasta lograr la convergencia. Se recomienda emplear las versiones más reciente del programa.

disp('Cálculo de filtro pasivo de Trifásico de Banda Ancha'); disp('aplicada a la salida de una fuente de rectificador'); disp('diode rectifier front-end adjustable speed drives'); disp('is utilized to calculate the optimal filter parameters.'); %GIVEN PARAMETERS AND RATINGS PR=input('enter the ASD rated power value in kW:'); VLL=input('enter the supply line-to-line rated voltage value in V:'); fe=input('enter the supply frequency value in Hz:'); Ls=input('enter the source equivalent reactance value in ?H:'); Rs=input('enter the source equivalent resistance value in milliohm:'); THDmax=input('enter the line current THD limit value (THDmax%):'); DelVmax=input('enter the output voltage regulation limit value (DelVmax%):'); disp('PLEASE WAIT'); %CALCULATE THE BASE PARAMETERS AND RATED OPERATING POINT VALUES Vdc=VLL*(3*sqrt(2))/pi;%RATED DC LOAD VOLTAGE Idc=1000*PR/Vdc;%RATED DC LOAD CURRENT Rdc=Vdc/ldc;%RATED DC LOAD RESISTANCE V1=VLL/sqrt(3);%RATED SUPPLY PHASE VOLTAGE RMS VALUE Beta1=0.79,% RATED RECTIFIER CURRENT FUNDAMENTAL STIFFNESS FACTOR IFLP=Beta1*Idc*sort(2);%FULL-LOAD LINE CURRENT FUNDAMENTAL COMPONENT PEAK VALUE %--- APPLYING APPROXIMATE DESIGN METHOD FOR INITIAL FILTER PARAMETERS CALCULATION fs=275;%SELECTED SERIES RESONANCE FREQUENCY fp=150;%SELECTED PARALLEL RESONANCE FREQUENCY Alpha=0.5;%SELECTED ALPHA VALUE (NO-LOAD TO FULL-LOAD LINE CURRENT RATIO) %188 We=2*pi*fe; Wp=2*pi*fp; Ws=2*pi*fs; %STAR CONNECTED INITIAL FILTER CAPACITANCE VALUE (EQUATION 3.32) Cfi=((1000*PR*Beta1*Alpha)/(0.78*(VLL^2)))*((1/We)-(We/(Wp^2))); Lfi=1/(Ws^2*Cfi);%INITIAL FILTER REACTANCE VALUE(EQUATION 3.30) Lii=(1)Cf)*((1/Wp^2)-(1/Ws^2));%INITIAL INPUT REACTANCE VALUE(EQUATION 3.31) Cfidelta=Cfi/3;%DELTA CONNECTED FILTER CAPACITANCE VALUE Betarms=0.84;%RMS STIFFNESS FACTOR Ir=Betarms*Idc;%RATED RECTIFIER CURRENT RMS VALUE ZBASE=V1/Ir;%SYSTEM BASE IMPEDANCE Lfperi=100*Lfi*(2*pi*60)/ZBASE;%INITIAL FILTER REACTANCE VALUE IN PERCENTAGE Liperi=100*Lii*(2*pi*60)/ZBASE;%INITIAL INPUT REACTANCE VALUE IN PERCENTAGE %----- APPLYING ACCURATE DESIGN METHOD FOR FINAL FILTER PARAMETERS ESTIMATION Loper=4;%OUTPUT REACTOR VALUE IN PERCENTAGE Lo=(0.01*Loper*ZBASE)/(2*pi*60); RinLo=0.01*(0.01*Loper*V1/Ir); -- RECTFIFIER CURRENT HARMONIC RATIOS (CHR) CHR(1)=1.0;%FUNDAMENTAL COMPONENT CHR(5)=0.34;%5th HARMONIC COMPONENT CHR(7)=0.095;%7th HARMONIC COMPONENT CHR(11)=0.07;%11th HARMONIC COMPONENT CHR(13)=0.035;%13th HARMONIC COMPONENT

--- SUPPLY VOLTAGE HARMONIC RATIOS (VHR) %-----VHR(1)=0.0;%FUNDAMENTAL COMPONENT VHR(5)=0.0225;%5th HARMONIC COMPONENT VHR(7)=0.0129;%7th HARMONIC COMPONENT VHR(11)=0.0116;%11th HARMONIC COMPONENT VHR(13)=0.0088;%13th HARMONIC COMPONENT Zs=Rs+(100*pi*Ls*sqrt(-1));%EQUIVALENT SOURCE IMPEDANCE Zsabs=abs(Zs); %----- DEFINING THE PAREMERTS STEP SIZE Lfpermax=Lfperi;%THE MAXIMUM FILTER REACTOR VALUE IN PERECENTAGE Lipermax=Liperi;%THE MAXIMUM INPUT REACTOR VALUE IN PERCENTAGE Cfmin=Cfi;%THE MINIMUM FILTER CAPACITANCE VALUE Liper=Liperi;%INPUT REACTOR VALUE IN PERCENTAGE Lfper=Lfperi;%INITIAL FILTER REACTOR VALUE IN PERCENTAGE delLi=-0.5;%INPUT REACTOR STEP SIZE delLf=-0.2;%FILTER REACTOR STEP SIZE delCf=0.002*Cfi;%FILTER CAPACITOR STEP SIZE x=0: y=0: Col=1; %189 Cf=Cfmin; while x <80%THE FIRST LOOP FOR Cf VARIATION x=x+1: Cf=Cf+delCf; for i=1:15 Liper=Liper+delLi;%THE SECOND LOOP FOR LI VARIATION Lip(i)=Liper: Li(i)=(Liper*0.01*ZBASE)*1/(2*pi*60); RinLi(i)=0.01*(0.01*Lip(i)*V1/lr);%ESTIMATING ESR FOR 99% EFFICIENCY for j=1:15 % THE THIRD LOOP FOR Lf VARIATION Lfper=Lfper+delLf; Lfp(j)=Lfper; Lf(j)=(Lfper*0.01*ZBASE)*1/(2*pi*60); RinLf(j)=0.01*(0.01*Lfp(j)*V1/Ir);%ESTIMATING ESR FOR 99% EFFICIENCY LfH=Lf(i): %FUNDAMENTAL CURRENT COMPONENT AND DOMINANT CURRENT HARMONICS %(5th, 7th, 11th and 13th)ARE CONSIDERED for jk=1:2:13 FS(jk)=(fe*jk); %THE HARMONIC FREQUENCY WS(jk)=2.0*pi*FS(jk); % IHS(jk)=IFLP*(CHR(jk));%FULL-LOAD RECTIFIER CURRENT HARMONIC PEAK VALUES %TOTAL LINE IMPEDANCE (ZLI+Zs) ZSline(jk)=((RinLi(i)+(Rs*1.0e-3))+((Ls*1.0e-6)+Li(i))*WS(jk)*sqrt(-1)); %TOTAL FILTER IMPEDANCE (ZLf+ZCf) Zfilter(jk)=(RinLf(j)+(Lf(j)*WS(jk))*sqrt(-1))-sqrt(-1)/((WS(jk)*Cf)); abZSline(jk)=abs(ZSline(jk)); abZfilter(jk)=abs(Zfilter(jk)); %-VHS(jk)=(V1*sqrt(2))*(VHR(jk)); %SUPPLY VOLTAGE HARMONIC PEAK VALUES %SUPPLY SIDE CURRENT HARMONICS PEAK VALUES ILH2(jk)=(VHS(jk))/(abs(ZSline(jk)+Zfilter(jk))); %LOAD SIDE CURRENT HARMONICS PEAK VALUES ILH1(jk)=(abs(Zfilter(jk)))*(IHS(jk))/(abs(ZSline(jk)+Zfilter(jk))); %TOTAL LINE CURRENT HARMONICS PEAK VALUES AFTER FILTERING ILHT(jk)=ILH1(jk)+ILH2(jk); end %for jk %LINE CURRENT THD CALCULATION THDILINE(j)=100*sqrt((ILHT(5)^2+ILHT(7)^2+ILHT(11)^2+ILHT(13)^2)/(IFLP^2)); THD=THDILINE(j); %FILTER PARALLEL RESONANCE FREQUENCY (Li, Lf AND Cf) %190 Fpp=1/((2*pi)*(sqrt(Cf*(Li(i)+Lf(j))))); %SHUNT BRANCH SERIES RESONANCE FREQUENCY (Lf AND Cf) Fss=1/((2*pi)*(sqrt(Cf*Lf(j))));

LL=(Lo+Li(i));%COMMUTATION AND VOLTAGE DROP REACTOR(EMPERICAL FORMULA)

XLo=(100*pi*(Lo+LL))*sqrt(-1); ZRLo=(XLo+(Rdc/1.823));%TOTAL LOAD IMPEDANCE INVOLVING Lo, LL AND Rac abZRLo=abs(ZRLo); ----- CALCULATING LINE POWER FACTOR -----%-Ztotal=(ZSline(1))+((ZRLo*Zfilter(1))/(ZRLo+Zfilter(1)));%TOTAL INPUT FUNDAMENTAL IMPEDANCE I1rms=V1/Ztotal;%SUPPLY CURRENT FUNDAMENTAL COMPONENT RMS VALUE IFL=abs(I1rms);%FULL-LOAD LINE CURRENT FUNDAMENTAL COMPONENT RMS VALUE phaserad=phase(l1rms); PF(j)=cos((phaserad)); cosfi=PF(j);%FULL-LOAD LINE POWER FACTOR ----- CALCULATING FULL-LOAD NODE P VOLTAGE -----%-----%FULL-LOAD SUPPLY CURRENT FUNDAMENTAL COMPONENT RMS VALUE 11(j)=11ms; %FULL-LOAD SHUNT FILTER CURRENT FUNDAMENTAL COMPONENT RMS VALUE lf1(j)=I1(j)*((ZRLo)/(ZRLo+Zfilter(1))); %FULL-LOAD NODE P VOLTAGE FUNDAMENTAL COMPONENT RMS VALUE Vp(1)=If1(j)*(Zfilter(1)); Vprms(1)=abs(Vp(1)); Vp1FLT(j)=Vprms(1); VnFL=Vp1FLT(j); ---- CALCULATING NO-LOAD NODE P VOLTAGE ----%---%NO-LOAD NODE P VOLTAGE FUNDAMENTAL COMPONENT RMS VALUE Vp1NL(1)=V1*(abs(Zfilter(1)))/(abs(ZSline(1)+Zfilter(1))); Vp1NLT(j)=Vp1NL(1); VnNL=Vp1NLT(j); %NO-LOAD LINE CURRENT FUNDAMENTAL COMPONENT RMS VALUE IrmsNL(j)=V1/(abs(ZSline(1)+Zfilter(1))); INL=IrmsNL(j); Inoload(i,j)=INL; %------ CACULATING NODE P VOLTAGE REGULATION ------Voverload(j)=((Vp1NLT(j)-Vp1FLT(j))/Vp1NLT(j)); Voverloadper=100*Voverload(j); ----- CHECKING CONSTRAINTS AND STORING RESULTS ----if(THD<THDmax)&(THD>(THDmax-0.1))&(Voverloadper<DelVmax)&(Voverloadper>(DelVmax-0.1)) Col=Col+1; %191 y=y+1; xy(y)=y; yy=y LimH(y)=1000*Li(i);%INPUT REACTOR Li OptR((y+1),Col)=LimH(y); LfmH(y)=1000*Lf(j);%FILTER REACTOR Lf OptR((y+1),(Col+1))=LfmH(y); CfuFdel(y)=(Cf/3.0)*1000000;%FILTER CAPACITOR Cf OptR((y+1),(Col+2))= CfuFdel(y); THDi(y)=THD;%LINE CURRENT THD OptR((y+1),(Col+3))=THDi(y) Voper(y)=Voverloadper;%VOLTAGE REGULATION AT NODE P OptR((y+1),(Col+4))= Voper(y); PF(y)=cosfi;%LINE POWER FACTOR OptR((y+1),(CoI+5))= PF(y); Fparal(y)=Fpp;%FILTER PARALLEL RESONANCE FREQUENCY OptR((y+1),(Col+6))= Fparal(y); Fseries(y)=1/((2*pi)*(sqrt(Cf*LfH)));%SHUNT BRANCH SERIES RESONANCE FREQUENCY Alpha(y)=100*INL/IFL; end Col=1: end Lfinal=Lfper Lfper=Lfpermax;%RESET INITIAL CONDITION end Lifinal=Liper Liper=Lipermax;%RESET INITIAL CONDITION end ------ LISTING THE FINAL FILTER PARAMETERS AND SYSTEM PERFORMANCE RESULTS %----OptResult{1,1}='Results'; OptResult{1,2}='Li(mH)'; OptResult{1,3}='Lf(mH)'; OptResult{1,4}='Cf(?F)';

OptResult{1,5}='THD'; OptResult{1,6}='DelVo'; OptResult{1,7}='PF'; OptResult{1,8}='fp'; no=y+1; while y>0 OptResult{no,1}=y; no=no-1; y=y-1; end

Los resultados de calculo se muestran en la tabla 2.4 para valores iniciales del filtro y en la tabla 2.5 para valores optimizados luego de 20 iteraciones

2.4.4 Modelamiento de impacto del filtro con el método de penetración armónica simple: (segundo código Matlab)

En este nivel se ha empleado el método de penetración armonica iterativa por su simplicidad al tratar el problema del flujo de carga armonico en forma matricial y considerando una topología radial. Los elementos lineales de la red fueron modelados considerando su dependencia con respecto a la frecuencia. Par nuestro caso tenemos que considerar Thevenin y tendremos líneas y transformadores como elementos de red. Para una red radial con N nodos, el minimo número de incognitas será: 2* NPQ + NPV, donde NPQ es el nodo de carga y NPV es el nodo en nuestro se tiene considerado el armonico de 5to,7mo, 11avo, 13avo y 17avo. orden por ende se tiene que el caso se ha evaluado primeramente para el flujo de potencia realizado con el método de newton Raphson en el DigSilent (ver anexo indicado). Y luego para el quinto armonico empleando la siguiente expresión:

$$F^{(1)} * \left(V_L^{(1)}, V_L^{(1)}, \beta \right) - \sum_{K=1}^N Y_{Lk}^{(1)} * V_k^{(1)} = 0$$
(2.27)

$$F^{(5)} * \left(V_L^{(1)}, V_L^{(5)}, \beta \right) - \sum_{K=1}^N Y_{Lk}^{(5)} * V_k^{(5)} = 0$$
(2.28)

Del mismo modo se tiene para los armónicos 7, 11, 15, y 17avo se tiene el código siguiente. Este código está disponible en www:/Mathworks/File/Exchange. Se recomienda trabajar en valores por unidad para alcanzar la convergencia minimizando tiempo de corrido del programa.

```
cic
clear all
sample_number=1;
w=2*pi*60;
```

for jj=1:sample_number

% line=[3 0 0 0 0 0 % 0 5 0 0 0 0 % 0 0 6 0 8 0 % 0 0 0 4 0 0 % 0 0 0 0 0 0 % 0 0 0 0 0 7]; % % load_power=[0 7 0 2 0 8 1]; %P+jQ

0		0			0			0			0			0			0			0	
0	0		0			0			0			0			0			0			0
0		0			0			0			0			0 0		(.52	:4+1j*. 0	.090)	.1	0	0
0		ŏ			ŏ			ŏ			ŏ			ŏ			Ō			Ō	
0	0		0			0			ō			0			0			0			0
0	Ť	0	•		0	-		0			0			0			0			0	
0		0			0			0			0			0			0			ŏ	
0	^		٥			n			n			0			O			0			0
0	Ů	0	Ŭ	_	0.	Ŭ		0	Ŭ		0	Ũ		0	-	~	0		^	0	
(.299+ 0	1j*.	083)*.55 0		0	0		0	0		0	0		0	0		U	0		U	0	
Ō	~	Ō	~		-	0			0			0			n			0			<u> </u>
0	U	0	U		0	U		0	U		0	U		0			0			0	, ,
0		(.378+1j*	.086))*.55	5	0		0	0		0	0		0	0		0	0		0	0
ŏ	_	Ŭ			Ŭ			Č	•		Ť	•		·	•			•			•
0	0	0	0		0	0		0	0		0	U		0	U		0	U		0	U
Ō		0		(.37	78+1	lj*.086)	*.5	0	0		0	0		٥	0		ŋ	0		0	0
0		U			U			Ű			U	_		v	_		v	-		Ū	•
0	0	0	0		0	0		0	0		0	0		0	0		0	U		0	0
0		ŏ			Ō		(.37	78+1	1j*.086)*.5	0	0		0	0		0	0		n	0
0		U			Ų			U			U			U			v			Ű	_
0	0	0	0		0	0		n	0		0	0		0	0		0	0		0	0
õ		ŏ			Ö			ŏ		(.52	24+	1j*.090)*.5		0		_	0		•	0
0 0		0			0			0			0			0			U	ı		U	
_	0	0	0		0	0		0	0		0	0		n	0		0	0		0	0
0		0			0			Ő			ŏ		(.5	24+1	1j*.090)*.5		0			0
0		0			0			0			0			0			0			U	
	0		0		~	0		~	0		0	0		٥	0		0	0	·	0	0
0		0			0			0			0			0		(.5	24+1j*	.090)	*.6	U	0
0		0			0			0			0			0			0			0	
	0	-	0		•	0		•	0		~	0.		•	0		0	0		0	0
0 0		0			0			0			0			0			0			U	
(.524+	·1j*	.090)*.4		0	0		0			0			0			0			0		
U	0	U	0		U	0		_	0		_	0		•	0		~	0		~	0
0 0		0			0 0			0			0			0			0			0	
(.524+	·1j*	.090)*.25		0			0			0			0			0			0		
0	0	U	0			0			0			0			0			0			0
0		0			0			0			0			0 0			0 0			0	
Ö		(.524+1j'	.090)*.2	Ť	0		Ť	0		•	0		•	0		-	0			0
0	0		0			0			0			0			0			0			0
0	2	0	-		0			0			0			0			0 0			0	
0		0			0			0			0			Ő			Ő			ŏ	
0	0		0			0			0			0			0			0			0
0	5	0			0	-		0	2		0			0	-		0			0	

0 0		0 0		0 0	(.52	0 !4+1j*.()90)*.2	0 2	0	0	0	0	0	0	0
0	0	0	0	0	0	0 0	0	0	0	0 0	0	0 0	0	0 0	0
0 0	•	Ō	•	0	0	0	(,) 0	524+1j'	.090)*.: 0	3	0		0		0
0 0 0	U	0 0 0	U	0 0 0	U	0 0 0	U	0 0 0	U	0 0 0	U	0 0 0	Ū	0 0 0	Ū
0 0 0	0	0 0 0	0	0 0 0	0	0 0 0	0	0 0 0	0	0 0 0	0	0 0 524+1j	0 *.090)*.4	0 0	0
0	0	0 0	0	0 0	0	0 0	0	0 0	0	0 0	0	0 0	0	0 0	0
0 (.524+	⊦1j*.090 0	0 I)*.3	0	0	0	0	0	0	0	0	0	0	0		0
0 0 0 (.524+	+1j*.090	0 0 0))*.2];		0 0 0	Ū	0 0 0		0 0 0	-	0 0 0		0 0 0		0 0 0	
load_1 230+1 72+1j 230+1 230+1 57+1j	power= Ij*142.5 *45 Ij*142.5 Ij*142.5 *34.5	1e3*[0 5 2 72- 5 2 5 1 57	5 230+1j* +1j*45 230+1j* 237+1j* 237+1j*34	60+1j*14 142.5 142.5 85 .5	1.5 13.5+1j' 23 75+ 57+1j	0 *7.5 0+1j*14 •1j*48 [*34.5];	2 2 12.5	30+ 30+1j* 30+1j*1 23 75+1j	1j*12.5 142.5 42.5 +1j*14 *48	1: 23 2.5	23+1j*7, 37+1j*84 30+1j*14 2304 75+1j*48	.5 2.5 -1j*142	0 72+1j*4 230+1j 2.5 2 57+1j*3	45 *142.5 30+1j* 94.5	0 142.5
sourc 0 67.77	e1=)*pi/180	0 0 0) 0	0	0 0	0 (-124)*r	0 (180))	0	0	0 0 _.	0	0	0 .1941* 0 0	exp(1j	*(- 0
0 0	0	0 0	0	0	.1824 0	'exp(1j' 0	*(-55.6 0	68)*pi/1 0	80) 0	0	0 .130	9*exp(0 1j*(11.9)*	oi/180)	0
0 0 0	.0250*) 0	0 exp(1j*(0	-29.87 .1190 0	0)*pi/180 *exp(1j*) 0 '(-84.11 0	0)*pi/18	0) 0	0	0 0)	0	5	0 0	U	.0
0 0 0	.0136*	0 0 exp(1j*(-23.75	0 0)*pi/180) 0	0 0		0	C	0 0	.075	8*exp() 0 0	1j*(-7.13)' 0	pi/180 0)
0	0	0	.0573 0	*exp(1j* 0	'(-143.5 0	6)*pi/1-	80) 0	0	0	0	0 .058	6*exp(0 1j*(68.57)	*pi/180	0))
0	.0075* 0	exp(1j*(0	(71.50) .0401 0	*pi/180) *exp(1j*	0 '(-175.5 0	6)*pi/1	0 80) 0	0	0 0) I	0	้ว	0 0	J	0
0 0	-	0		0		0		0		0	.037	9*exp(1j*(46.53)	*pi/180))

line=[(. 0 0 0	19	5+1j*.08)*. 0 0 0	6	(0 0 0 0		0 () ())))			0 0 0 0			0 0 0 0			0 0 0 0			0 0 0 0	
0 0 0	0	0 (.19 0 0	95+1	j*.08)*.5 0 0 0	5	0 0 0))		Q	0 0 0		C) 0 0		0	0 0 0		C) 0 0	
0	0	0 0 0	0		(. 0 0	299+1	j*.083 ()*.55))		((.52	0 24+1 0	j*.090))*.3	0	0	l	0	0		0	0
0	0	0	0		000	0		, (.299))	+1	j*.08	33)*. 0 0	5	(0		C	0		C		
0	0	0 0 0	0		0	0)))	0		U (. 0 0	299+1	j*.0i	0 33)*.5 0 0		С	0		(0 0 0	
0 0 (299+*	0 1i*	0 0 0 083)* 6	0	0	0	0	(0))	0	0	0	0	0	0 (.5) 0	24+1	j*.09 0	0 90)*.6 0		_ (0	0 0	
0	0	0 0	0		0 0 0	0	- ((0	-	0	0		0	0		0 (.5 0	24+1	j*.0	0 90)*.4 0	
0 0 (.524+'	0 1j*	0 0 0	0	0	0	0	(.524 0	, +1j*.09	90) 0)*.2 0	U	0 0	0	U	0 0	0	U	0 0	0	U	0
0 0 0	0	0 0 0	0	0	0 0 0	0	0))	0	0	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0
(.524+ 0 0 0	۰ 1	0 0 0 0	0	U	0 0	0))	0	U	0 0	0	U	0 0	0	U	0 0	0	U	0 0	0
0 0 0 0	0	(.524+1j*.(0 0	090) [,]	*.25	0 0	0	()))		0 0	0	(.5:	0 24+1j*	0 .090))*.3	0	0		0	0
0 0 0 0	U	0 0 0	U	(.524	4+1j 0 0	(*.090)	*.2 (Ū		0 0	o		0 0	ō		0 0	o		0 0	o
0 0 0 0	0	0 0 0	0		0 0 0	0)))	0		0 0 0	0		0 0 0	0		0 0 0	0		0 0 0	0
0 0 0	0	0 0 0	0		0 0 0	0)))	0	(.52	24+1 0 0	0 j*.090))*.4	0 0	0 0		0 0	0 0		0 0	0
0	0	0	0		0 0	0	(ן כ	0		0 0	0	(.5	24+1j* 0	0 .090))*.2	0	0 0		0	0 0

```
Size_line=size(line);
Size_load_power=size(load_power);
```

```
[line_number,xxx]=size(find(line~= 0));
[xxx,load_power_number]=size(find(load_power~= 0));
```

%%%% randomize loads with constant power factor with Laplacian random number generator %%%%%%%

```
%
    one=ones(Size_load_power(1,2),1);
    rand1=(60*one-15000*(0-(0.002/sqrt(2.))*sign(rand(Size_load_power(1,2),1)-0.5*one).*log(1*one-
%
2*abs((rand(Size_load_power(1,2),1))-0.5*one))))/100;
%
%
    for kk=1:Size_load_power(1,2)
%
      if rand1(kk,1)<0
        rand1(kk,1)=(60-15000*(0-(0.002/sqrt(2.))*sign(rand(1,1)-0.5).*log(1-2*abs((rand(1,1))-0.5))))/100;
%
%
      end
%
    end
%
%
    load_power=load_power.*rand1';
  BIBC=zeros(line_number,Size_load_power(1,2)-1);
for i=1:line_number
  for j=1:Size_load_power(1,2)-1
    if line(i,j)~= 0
      B=j;
      if i==1 && j==1
        BIBC(i,j)=1;
      else
        BIBC(:,j)=BIBC(:,i-1);
        BIBC(B,j)=1;
      end
    end
  end
end
for i=2:Size_load_power(1,2)
  if load_power(1,i)== 0
    BIBC(:,i-1)=0;
  end
end
%%%%%%%%
                for BCBV
                          BCBV=zeros(line_number,Size_load_power(1,2)-1);
for i=1:line_number
  for j=1:Size_load_power(1,2)-1
    if line(i,j)~= 0
      B=j;
      if i==1 && j==1
        BCBV(i,j)=line(i,j);
      else
        BCBV(j,:)=BCBV(i-1,:);
        BCBV(j,j)=line(i,j);
      end
    end
  end
end
```

% %%%%%%%%%% main load flow DLF=BCBV*BIBC; V1=ones(Size_load_power(1,2)-1,1); V_bus=ones(Size_load_power(1,2)-1,1); l=zeros(Size_load_power(1,2)-1,1); laa=zeros(Size_load_power(1,2)-1,1); i=1; telorance=1; while i<=200 % maximum iterations for j=1:Size_load_power(1,2)-1 I(j,1)=conj(load_power(1,j+1)/V_bus(j,1)); end l_test(:,i)=l; V_bus= V1-(DLF*I); V_test(:,i)=V_bus; if i<=1 telorance= 1; % convergence condition else telorance= abs(abs(I_test(line_number,i))-abs(I_test(line_number,i-1))); end if abs(telorance) <= 1e-5 fprintf('Power flow sloution found for %gth sample in "%g" iterations\n',jj,i) break end i=i+1; end if i==201 fprintf('No soulotion, the algorithm is not converge\n') break end V_bus_size=size(V_bus); v_bus_shift=zeros(V_bus_size(1,1)+1,1); v_bus_shift(1,1)=1; for i=2: $V_bus_size(1,1)+1$ v_bus_shift(i,1)=V_bus(i-1,1); end V_bus=v_bus_shift; $\line \line \lin$ for i=2: V_bus_size(1,1)+1 end l_bus=l_bus_shift; %%%%%% calculate the loads impedance) V_bus_size=size(V_bus); Z_loads=zeros(Size_load_power(1,2),1);

for i=1:V_bus_size(1,1) if load_power(1,i) ~= 0 $Z_loads(i,1)=(V_bus(i,1))/conj(load_power(1,i)/V_bus(i,1));$ else

```
Z_loads(i,1)=0;
end
end
```

h=1:

```
for mm=1:5
  if mm==1
     h=5;
     source=abs(source1(mm,:)).*l_bus';
   end
   if mm==2
     h=7;
     source=abs(source1(mm,:)).*I_bus';
   end
   if mm==3
     h=11;
      source=abs(source1(mm,:)).*l_bus';
   end
   if mm==4
     h=13:
     source=abs(source1(mm,:)).*1_bus';
   end
   if mm==5
     h=17;
      source=abs(source1(mm,:)).*I_bus';
   end
   \label{eq:line_(real(line_1)+1)*imag(line_1)*h);} \\ Z_loads=(real(Z_loads_1)+1)*imag(Z_loads_1)*h); \\ \\ \end{array}
```

line_1=real(line)+1j*imag(line)*h; Z_loads_1=real(Z_loads)+1j*imag(Z_loads)*2*pi*50*h; load_1=Z_loads_1';

```
Size_source=size(source);
```

load=Z_loads';

```
[line_number,xxx]=size(find(line~= 0));
[xxx,load_number]=size(find(load~= 0));
[xxx,source_number]=size(find(source~= 0));
parallel_number=source_number+load_number;
```

```
A=zeros(line_number,parallel_number);

A1=A;

load_number1=load_number;

source_number1=source_number;

for i=Size_line:-1:1

    if line(i,j)~= 0

        if source(1,j+1)~= 0

        A1(i,source_number1)=1;

        if source_number1~= 1

            source_number1~= 1;

        end

        end

        if load(1,j+1)~= 0
```
```
A1(i,load_number1+source_number)=1;
         load_number1=load_number1-1;
       end
    end
  end
end
for i=Size_line:-1:2
  for j=Size_line:-1:1
    if line(i,j)~= 0
     for k=1:Size_line
       if line(k,i-1)~= 0 %
for m=1:parallel_number
                          %% means these 2 line are conected to each other
          if A1(j,m)~= 0
           A1(i-1,m)=A1(j,m);
          end
        end
       end
     end
    end
  end
end
A=A1;
HA=zeros(line_number,parallel_number);
nn=0;
HA(1,:)=line(1,1);
for i=2:1:Size_line
  for j=1:1:Size_line
    if line(i j)~= 0
     for k=1:Size line
       if line(k,i-1)~= 0
        HA(j,:)=HA(i-1,:)+line(i,j)*A(j,:);
       end
     end
    end
  end
end
HAss=zeros(load_number);
i=1;
j=1;
for n=1:Size_load(1,2)
  if load(1,n)~= 0
    while j<=load_number
      HAss(i,j)=HA(n-1,source_number+j);
      j=j+1;
    end
    i=i+1;
    j=1;
  end
end
HAsh=zeros(load_number,source_number);
i=1;
j=1;
for n=1:Size_load(1,2)
  if load(1,n) \sim = 0
    while j<=source_number
```

```
HAsh(i,j)=HA(n-1,j);
     j=j+1;
    end
   i=i+1;
                                        ١
   i=1;
  end
end
Zs=zeros(load_number);
i=1;
for n=1:Size_load(1,2)
  if load(1,n)~= 0
   Zs(i,i)=load(1,n);
   i=i+1;
  end
end
HLF=HAss+Zs;
lh=zeros(source_number,1);
i=1;
for n=1:Size_source(1,2)
  if source(\overline{1},n)~= 0
   Ih(i,1)=source(1,n);
    i=i+1;
  end
end
Is=(HLF)^-1 * -HAsh*Ih;
I=zeros(parallel_number,1);
size_lh=size(lh);
size_ls=size(ls);
k=1;
for i=1:parallel_number
  if i<= size_lh(1,1)
    l(i,1)=lh(i,1);
  else
    if k<= load_number
     l(i,1)=ls(k,1);
     k=k+1;
    end
  end
end
V_bus_h=HA*I;
V_bus_h_size=size(V_bus_h);
v_bus_h_shift=zeros(V_bus_h_size(1,1)+1,1);
v_bus_h_shift(1,1)=0;
for i=2: V_bus_h_size(1,1)+1
  v_bus_h_shift(i,1)=V_bus_h(i-1,1);
end
V_bus_h=v_bus_h_shift;
V_mag=abs(V_bus_h);
V_ang=angle(V_bus_h)*180/pi;
V_size=size(V_bus_h);
for i=1:V_size(1,1)
% fprintf('V%g= %g, %g\n',i,V_mag(i,1),V_ang(i,1));
```

```
73
```

end

%%%%%%%% injected current to each bus %%%%%%%%%%%

```
for i=1:V_size(1,1)

if source(1,i)~= 0

l_harmonic_load(i,1)=V_bus_h(i,:)/Z_loads(i,1);

else

l_harmonic_load(i,1)=0;

end

end
```

I_ingected=source'-I_harmonic_load;

if mm==1 V_bus_h_total_abs_5th(jj,:)=abs(V_bus_h'); l_ingected_total_abs_5th(jj,:)=abs(l_ingected'); end if mm==2 V_bus_h_total_abs_7th(jj,:)=abs(V_bus_h'); l_ingected_total_abs_7th(jj,:)=abs(l_ingected'); end if mm==3 V_bus_h_total_abs_11th(jj,:)=abs(V_bus_h'); I_ingected_total_abs_11th(jj,:)=abs(l_ingected'); end if mm==4 V_bus_h_total_abs_13th(jj,:)=abs(V_bus_h'); i_ingected_total_abs_13th(jj,:)=abs(I_ingected'); end if mm==5 V_bus_h_total_abs_17th(jj,:)=abs(V_bus_h'); l_ingected_total_abs_17th(jj,:)=abs(I_ingected'); end

V_bus_h_total(jj+(mm-1)*sample_number,:)=abs(V_bus_h'); I_injected_total(jj+(mm-1)*sample_number,:)=abs(I_ingected');

fprintf('sample No. %g for %gth harmonic generated.\n',jj,h);

end

end

fprintf(' **** All done ****.\n');

V_bus_h_total_abs=abs(V_bus_h_total); t_ingected_h_total_abs=abs(I_injected_total);

III. VARIABLES E HIPÓTESIS

3.1 Definición de las Variables

Variables Independientes:

X1: Filtro de distorsión armónica

X2: Distorsión armónica en la planta Intradevco de Lurín

Variables Dependientes:

Y: Mejora económica

3.2 Operacionalización de las Variables

Y=X1*X2

3.3 Hipótesis general e hipótesis específicas

Hipótesis General :Desarrollando un filtro de distorsión armónica se mejorará la economía de la planta Intradevco de Lurín Hipótesis Especifica 1: Modelando un filtro con penetración armónica se logra un desarrollo confiable de un filtro que mejora la economía de la planta Intradevco de Lurín

IV METODOLOGÍA

4.1. Tipo de Investigación

Nuestra investigación es de tipo descriptiva, pues la data ya se ha generado en el tiempo y su procesamiento se ha realizado, posterior a la ocurrencia de los fenómenos de interés.

4.2. Diseño de la Investigación

Por la naturaleza de la investigación el nuestro es un diseño transversal correlacional/causal, pues las causas y efectos ya ocurrieron en la realidad y nosotros observamos y reportamos.

4.3. Población y muestra

Población: Estará definida por 30 mediciones de calidad de energía realizadas en la plantas industriales de Lima, por la empresa ETTSII del (2010 al 2015)

- Muestra: Esta definida las mediciones de calidad de energía realizadas en la SS.EE Intradevco.
- 4.4. Técnica e instrumentos de recolección de datos

Los datos han sido recolectados de las plantas donde se han realizado estudios de calidad de energía en los últimos 6 años. Para ello se ha empleado el analizador de redes como instrumentos de medición, el cual observa los más altos estándares de calibración.

Fig. 2.18

Recolección de datos en planta de estudio

Fuente: Elaboración Propia

4.5. Procedimiento de recolección de datos

Esta recolección se realiza toda vez que las industrias solicitan servicios de medición de la calidad de la energía. De este modo el equipo analizador es sometido a calibración e instalado en las plantas industriales, para tomar esta data el analizador es ubicado en el tablero problema donde se desea monitorear la calidad de la energía.

4.6. Procedimiento estadístico y análisis de datos

Para este procedimiento hemos atendido la necesidad de establecer la frecuencia de corte del filtro pasivo, donde se ha considerado las mediciones de armonicos de últimos 6 años en las plantas industriales donde se han ido realizando estudios y mediciones de calidad de energía. Esta frecuencia de corte resulta trascendental pues de ella depende la eficiencia del filtro. A priori vemos que hay fuerte presencia de 3ro, 5to, 7mo, 13avo y 17avo. De los cuales el 5to es el más frecuente. Entonces nuestra hipotesís alternativa (H₁)es : " el quinto armonico es el más manifestado y por tanto es determinante de la frecuencia de corte del filtro para mejorar la economía de la planta Intradevco , ello direcciona a tomar una frecuencia de corte del filtro pasivo proximo a 300Hz.

Se evidenció con ayuda del PROCESS, software de apoyo estadístico y empleando un muestreo aleatorio simple, que la media es precisamente muy próximo al quinto armonico como muesra la figura.

La naturaleza del estudio permite manejar mediciones realizadas de calidad de energía, estas arrojan valores de orden de armónico detectado.

De aquí se trata de realizar un muestreo aleatorio simple dado que la variable aleatoria es categórica, pues la hipótesis plantea que el orden armónico a considerar sea de quinto orden.

Población:

Muestras de orden armónico obtenidas=30 muestras

Tabla	4.1	Categoría	de	orden	de	armónicos	encontrados	en	las	30	muestras	de
medici	ones	obtenidas	en l	as med	icioi	nes de los ú	timos 5 años					

5	7	3	7	5	11	7	5	3	5
7	5	7	5	5	11	3	5	7	7
5	3	5	11	9	5	5	7	3	5

Fuente: Elaboración propia

Fuente: Elaboración Propia

Se aprecia el rechazo de la hipótesis nula (H₀), por lo tanto la frecuencia de corte del filtro es ligeramente inferior al quinto armonico.

Asimismo el nivel de significancia 0.05. Para estar a la mitad de caer en una probabilidad de error tipo I y error tipo II. De otro lado la decisión de adoptar esta frecuencia de corte de 300hz, se apoya en la media(Ei) que se indica como 5.866.Para los datos indicados podemos graficar el área de rechazo como:

Fig. 2.20

Area de rechazo de hipótesis nula H0, con significancia α= 0.05

Fuente:Elaboración propia

V.- RESULTADOS Y COSTOS.-

Los resultados del método de penetración armonica se muestran en el COMAND WINDOW del MATLAB a continuación. Para ello han sido considerados los armónicos 5, 7, 11, 13 y 17. Cabe indicar que para lograr la convergencia en 19 iteraciones ha tenido que hacerse modificaciones al código inicial de MATHWORKS.

29/12/16 03:42 PM MATLAB Command Window	1 of 2
Fower flow sloution found for 1th sample in "19" iterations ample No. 1 for 5th harmonic generated. sample No. 1 for 1th harmonic generated. sample No. 1 for 12th harmonic generated. sample No. 1 for 13th harmonic generated. sample No. 1 for 17th harmonic generated. **** All done ****.	
V_bus_h_total_abs -	
Columns 1 through 15	
0 0.0007 0.0014 0.0019 0.0024 0.0029 0.0031	0.0033 4
0.0036 0.0038 0.0038 0.0038 0.0015 0.0017 0.0018 0 0.0005 0.0009 0.0012 0.0015 0.0018 0.0020	0.0022 🖌
0.0024 0.0025 0.0025 0.0025 0.0010 0.0012 0.0013 0 0.0004 0.0008 0.0010 0.0012 0.0014 0.0016	0.0017#
0.0010 0.0019 0.0019 0.0019 0.0000 0.0010 0.0010 0 0.0003 0.0006 0.0008 0.0009 0.0011 0.0012	0.00134
0.0014 0.0015 0.0015 0.0015 0.0007 0.0008 3.0009 0 0.0003 0.0005 0.0007 0.0008 0.0009 0.0010 0.0011 0.0011 0.0011 0.0008 0.0007 0.0007	0.0010
Columns 16 through 30	
0.0018 0.0033 0.0036 0.0040 0.0044 0.0048 0.0052	0.0056¥
0.0013 0.0029 0.0022 0.0023 0.0025 0.0027 0.0028 0.0013 0.0020 0.0022 0.0023 0.0025 0.0027 0.0028	0.0030
0.0012 0.0016 0.0017 0.0018 0.0020 0.0021 0.0022	0.0024 -
0.0025 0.0028 0.0028 0.0028 0.0028 0.0018 0.0018 0.0018 0.0009 0.0012 0.0013 0.0014 0.0014 0.0015 0.0016	0.0017
0.0018 0.0019 0.0019 0.0019 0.0012 0.0012 0.0017 0.0007 0.0010 0.0011 0.0012 0.0013 0.0014 0.0015 0.0017 0.0017 0.0017 0.0010 0.0010 0.0010	0.0015
Columns 31 through 34	
0.0000 0.0041 0.0032 0.0040	

0.0041	0.0042	0.0942
0.0028	0.0029	0.0029
0.0021	0.0021	0.0021
0.0016	0.0016	0.0016
0.0012	0.0013	0.0013
	0.0041 0.0028 0.0021 0.0016 0.0012	0.0041 0.0042 0.0028 0.0029 0.0021 0.0671 0.0016 0.0016 0.0012 0.0013

1_ingected_h_total_abs =

Columns 1 through 15

	Ó	C	0	0	0	0	0	0 ×
0	0	â	0	0	0	1.7830		

29/	<u>/12/16_03:</u>	42 PM	MATLAB	Command	WINdow			2 01	<u></u>
								•	
	0	0	D	0	0	0	0	₽¥	
0	Ð	0	0	0	0	1.2025			
	0	0	٥	0	0	0	0	₽ĸ	
0	0	0	0	э	Q	0.6963			
	0	0	0	Ũ	0	0	0	0 🖌	
0	0	0	0	0	0	0.5383			
	0	a	Ô	0	0	0	Ó	0∠	
0	D	0	0	0	0	0.3482			
с	olumns 16 th	rough 30							
	0	0	0	0	p	0	0	٥ĸ	
0	3.2033	0	0	0	0	0			
	0	Û	- 0	- 0	O	Ó	Ô	0 🖌	
G	1.1408	Q	0	ą	Q	0			
	0	0	0	0	0	0	0	02	
0	0.6206	0	0	3	Q	0			
	0	0	Ð	0	0	0	0	02	
0	0.3422	0	D	0	Q	0			
	0	٥	0	0	0	0	0	0⊻	
0	3.2829	0	٥	0	Ô	0			
C	Columns 31 th	rcugh 34							
	Ó	٥	1.6501	ð					
	0	Ũ	1.0766	· 0					
	0	0	0.5184	0					
	0	0	0.3628	٥					
	D	0	0.1746	0					

>>

Los resultados son altamente aceptables, pues se ha-alcanzado modelar un sistema que puede representar confiabilidad permitiendo los siguientes logros:

- i) Reducción de la distorsión armonica total desde 36% a 4.5%
- ii) Reducción de perdidas de potencia por calentamiento en alimentadores evidenciado de 10% a 4%al emplear la evaluación de disipación de energía de CEPERMATIC. Al lograrse 6860.03 W-h

- iii) Aumento de vida útil de las tarjetas de control y de las PC que con frecuencia se deterioran.
- iv) Aumento de vida útil de los bancos de condensadores que son una victima inmediata de la distorsión
- v) Reducción de la huella de carbono al evitar calentamiento de los motores y transformadores evitándose perdidas por efecto Joule.
- vi) Los resultados del flujo armónico se aprecian

MEJORA ECONÓMICA (RETORNO DE LA INVERSIÓN COSTOS)

A continuación se aprecia el costo de materiales que asciende a S/.35551.04 nuevos soles, para la estimación del retorno de la inversión se detalla en el cuadro siguiente la relación beneficio/costo:

	COSTOS FIL	RO DE AR	MONICOS		
Item	Descripción	Cant	Unidad	P.U(S/.)	P.P(S/.)
1	Núcleo	60	kg	27.8	1668
	Pletina de Cu	80	k8	45	3600
3	Pletina de Al	85	kg	31	2635
	Gabinete	1	und	1520	1520
5	Condensadores	3	und	2120	6360
6	Contactores para condensadores	<u>3</u>	und	1950	5850
7	Fusible	3	und	345	1035
8	Guardamotor	-3	und	540	1620
9	Controlador	1	und	5840	5840
				Sub-total(S/.)	
				IGV (18%)	5423.04
				Total	35551.04

Tabla 4.2 Oferta económica del filtro

Fuente: Elaboración Propia

beneficio	costo
Ahorro anual de parada de	Costo de Material + Costo de
planta= (US\$)115 000.00	Ingeniería= (US\$)31200.33

Tabla 4.3 Relación Beneficio Costo de inversión del filtro

Fuente: Elaboración Propia

Nota: El retorno de la inversión se realizará antes del medio año, lo cual

es aceptable

VI. DISCUSIÓN DE RESULTADOS

La evidente ventaja que representa la instalación del filtro es posible hacerla más eficiente si se consigue asociar el filtro a un controlador tal que actue en momentos críticos, reduciendo su consumo propio.

Un segundo filtro sería otra opción interesante, siempre y cuando se desee atenuar armónicos de orden 3n-1, tal que se evite la vibración y calentamiento de los motores eléctricos evidenciado también en las mediciones

83

+- · ·

La desventaja que tiene el filtro sería la necesidad de enfriamiento que genera la necesidad de ventiladores, los que a su vez consumen también potencia.

6.1 Contrastación de hipótesis con los resultados

Los resultados evidencian las hipótesis general y especifica como se puede apreciar en el capítulo V referente a costos. Estos costos se irán incrementado al realizar los prototipos previos. Para evitar estos costos deberá fabricarse bobinas mutiples con tap que permitan ir jugando con la sintonía en campo tanto a plena carga y escalonadamente hasta la minima carga aceptable.

6.2 Contrastación de resultados con otros estudios similares

Los resultados tienen semejanza con el estudio de Hazem Zubi[21], pero este estudio a diferencia hace también también el estudio del impacto de la inserción del filtro. Ello reduciría drásticamente el nivel de riesgo que suele interesar al realizar la ejecución del proyecto

VII. CONCLUSIONES

1-Los filtros pasivos son altamente eficaces si se planean con ayuda computacional. La necesidad de contar con soluciones económicas ve en la optimización una interesante herramienta de trabajo, y abre campo a la ingeniería de diseño, en circunstancias donde las

soluciones exigen muy alta condfiabilidad. De este modo la planta recibe un impacto económico favorable desde que se supera el problema de incompatibidad electromagnética incrementando su capacidad de producción de la planta en estudio.

Asimismo la economía también se puede apreciar desde que disminuye la disipación de potencia durante el flujo de potencia, restringiéndose el flujo armónico y protegiéndose así la vida útil de las instalaciones, al disminuir los episodio de resonancia que tienen en riesgo a las fuentes y tarjetas electrónicas sensibles.

Y el costo mismo del filtro y su robustez también permite adaptarse a futuros cambios previo monitoreo.

2-La penetración armonica es también una herramienta muy interesante y útil al analizar redes de energía, en especial redes radiales como es el común de nuestras plantas. Donde es posible ver a priori resultados del impacto al insertar el filtro en la red. Ello desde luego permite tener la posibilidad de atender muy altos niveles de solicitaciones de variación de parámetros eléctricos. De tal modo que cada barra bajo estudio permite visualizar su nivel respuesta, en tensión y en especial sus indicadores de distorsión armónica, elevando la calidad del diseño. Por lo que hace posible trabajar nuestras redes y transformadores al borde de su capacidad permisible.

VIII. RECOMENDACIONES

- 1- Es recomendable solicitar un nuevo estudio de flujo armonico de la red si se desea realizar :
 - a- Cambios de potencia de cargas
 - b- Cambios de sección de alimentadores de la red
 - Cambiar tecnología de iluminación, podría ser la gota que derrame el vaso de agua al generar episodios de inestabilidad armonica.
 - d- Los armónicos de tiempo se ponen de manifiesto en determinados instantes por lo que los estudios de armónicos deberán realizarse con mas de un analizador a la vez. Y a diferente condiciones de porcentaje de plena carga.
- El primer código ya le dará valores trabajables, y el segundo código evaluará el impacto del filtro.

IX. REFERENCIAS BIBLIOGRÁFICAS

[1]Ampuero.R.2011.Tesis.Análisis y Mitigación De Armónicos En El Sector Industrial.

[2]Arrillaga J. 2003Power System Harmonics 2nd Ed.-

[3]Barona A.2008Tesis Magister Minimizacion De Los Efectos De Las Perturbaciones Electricas En Los Procesos Industriales

[4] Cabral J.2012 IEEE. Optimización Multiobjetivo de Filtros Pasivos

[5]Chang Y.2008Science Direct. Optimization of a passive harmonic filter based on the neural-genetic algorithm with fuzzy logic for a steel manufacturing plant

[6]DommelTinney.Paper IEEE1969.Minimizacion de perdidas con Flujo de Potencia Óptimo.

[7]Egorova2008 Tesis Grado_De Mejora De Los Métodos De Cálculo

[8]Estigarribia Revista H. Armonicos-baja-tension

[9]Freitas W. Modelagem e Analise Dinamica de Dispositivo DSTATCOM Usando o Simpower System para Matlab-Simulink

[10]Grossmann U.2005Tesis Grado Frequenzselektive Regelung eines parallelen Hybridfilters zur Oberschwingungskompensation in Energieversorgungsnetzen

[11]Hong Y.2012 Science Direct Optimal passive filter planning considering probabilistic parameters using cumulant and adaptive dynamic clone selection algorithm

[12]Kumaraswami I.2012 Journal Amelioration of Power Quality in Isolated Power System [13]Manjulata Badi2012 Tesis Magister Power Quality Improvement Using Passiveshunt Filter, Tcr And Tsc Combination

[14]Mohammadi M.2015 Science Direct Bacterial foraging optimization and adaptive version for economically optimum sitting, sizing and harmonic

[15]Noriega M. 2010 Magazine UC&T Utilización Del Algoritmo De Forraje Bacterial Para Identificar en Línea los parámetros de un motor eléctrico

[16]Perez I.2012 Flujo de carga con armónicos empleando la matriz impedancia de barras

[17]Square D. 2003 Data Bulletin Harmonic Mitigating Transformers

[18]Swagatam D. 2013Journal.Bacterial Foraging Optimization Algorithm Theoretical Foundations, Analysis, and Applications

[19]Vásquez J.2005 Journal-Diseño de filtros pasivos, activos e híbridos para la compensación armónica de cargas trifásicas no lineales

[20]Yao W. 2015 Journal.Digital notch filter based active damping for LCL filters

[21]Zuby H. 2005 Thesis Magister LOWPASS BROADBAND HARMONIC FILTER DESIGN

ANEXOS

- 1- Matriz de Consistencia
- 2- Mediciones con analizador de redes
- 3- Evaluación de perdidas con software cepermatic
- 4- Flujo de carga en Dig-SILENT
- 5- Analisis Del 5to Y 7mo Armónico en NEPLAN

		MAURIZID	CONSISTIEN		
"DESA MEJO	ARROLLO D RAR LA ECO	E UN FILTRO DNOMÍA DE L	DE DISTOR A PLANTA IN	SIÓN ARMÓN NTRADEVCO	IICA PARA DE LURÍN''
PROBLEMA	OBJETIVO	HIPÓTESIS	VARIABLES	DIMENSIONES	INDICADORES
PROBLEMA GENERAL: ¿Como la falta de un filtro de distorsión armonica afecta la economía la planta de INTRADEVCO de Lurín?" PROBLEMA ESPECÍFICO 1 ¿Cómo la falta de un modelamiento con penetración armónica afecta la confiabilidad de desarrollo de un filtro de la planta Intradevco de Lurín.	OBJETIVO GENERAL: Desarrollar un filtro de distorsión armónica para mejorar la economía de la planta de INTRADEVCO de Lurin. OBJETIVO ESPECÍFICO: Modelar un filtro con penetración armónica para lograr un desarrollo confiable de un filtro que mejore la economía de la planta Intradevco de Lurín.	HIPÓTESIS GENERAL: Desarrollando un filtro de distorsión armónica se mejorará la economía de la planta Intradevco de Lurín HIPÓTESIS ESPECÌFICA 1:Modelando un filtro con penetración armónica se logra un desarrollo confiable de un filtro que mejora la economía de la planta Intradevco de Lurin.	VARIABLES INDEPENDIENTES : X1: filtro de distorsión armónica X2: Distorsión armónica en la planta Intradevco de Lurín. VARIABLES DEPENDIENTES Y: Mejora económica Operacionalización de las Variables: Y=X1*X2	DIMENSIONES: De X1: Eficiencia del filtro De X2: Distorsión Armonica Total de Corriente y de Tensión De Y: Productividad	INDICADORES de X1: Porcentaje de Atenuación del Filtro INDICADORES de X2: THDi (%) THDv(%) INDICADORES de Y: Incremento productivo(%)

2- Mediciones con analizador de redes

C U www.ceper.com.pe/app<.eper	matic/	-			¥	:
REGRESAR AL SITO WEB						.^
EPER) Aéreas baja tensión Fij	as baja tensión	Fijas med	ia tensión - Flei	ibles baja tensión Porta electrodos		
Instalación	Aire libre	Enterredo	Tubos	INSTALACIONES FIJAS - BAJA TENSIÓN		
Temperatura del terreno	20		• 'C	SOLUCIÓN 1 : 3 CABLES EN PARALELO POR FASE		
Resistividad termica terreno	1.00		• Ωm	THW-90 456/750 V 1x400 MM2 • Temperatura ambiente: 20°C		
Corriente	Continua	Monofésica	Trifásica	Caida de Tensión: 10.7 voltios (2.67%)		
¿Corriente de proyecto conocida?	\$1		No	Perdida de Energia: 6865.62 vatios-hora (2.32%) factor RTerm: 1		
Amperaje	1445.05970520	23*2	Amp	 factor TAmb: 1.09012344973 AMperaje Corregido: 599.468514603 		
Potencia	1000		Kva 🕈	SOLUCIÓN 2 : 3 CABLES EN PARALELO POR FASE		
Tensión de la línea	400		Volt	LS0HX-50 450.750 V 1x400 MM2		
Frecuencia	60		Hz	Temperatura ambienta: 20°C Caida de Tensión: 10.68 votitos (2.67%)		
Longitud de la línea	100		nsts	 Pérdida de Energía: 6860.03 vatios-hora (2.11%) factor RTerm: 1 		
Factor de potencia	0.8		cos Ŷ	factor TAmb: 1.08012344973 AMperale Correction 604 869131851		
Eficiencia de instalación	1		dec			
Máxime caída de tensión	 5		.2			
Máxima pérdida de energía	4		55			

ယု

Evaluación de perdidas con software cepermatic

4- Flujo De Carga En Dig-Silent

5- Análisis del 5to y 7mo armónico en NEPLAN

.

acias de resultados		- In	Hombre	ТНО	1	T v		Váno	Descri	Zona	Área	Red	
······································		<u> </u>		*	Hy	- v	-	•	oción			red	
	↓	1 112	H-112	16.47	300	39,630	905	89.69	I	Z008 1	Área 1		
			1	ר ^{יי} ו	420	41 819	95	89 57	<u> </u>		1	1	
····· - Resultados nodo			+		660	43 334	996	89 32	┣───┤				
		113	8-113	.	300	13 900	6 04	269 25	1	Zona 1	Area 1	<u> </u>	
Resultados Elemento	5		1	<u>ן</u>	420	14 594	6 35	263 95	<u> </u>				
	11 6		+		660	15 235	€ 65	263 35	§		1		
- Resultados Filtro		- 85	B-85	1 45	300	3 192	08	87 53		Zona 1	Area 1	1	
	8		1	ר	420	3 349	0 94	87 75			[1	
	9				660	3 507	0.33	87 65	1		<u> </u>		
· · · · · · · · · · · · · · · · · · ·			6-68	1 67	300	2 110	0 92	89.22		Zone 1	Area 1	<u> </u>	
	11 11		1	1 '	420	2 215	0.96	89 42			!		
	12		_ <u>_</u>	1	660	2 321	1 01	69 6				†	
chivos de resultados	11	217	N217	16 54	300	39 995	9.09	87.73		Zôna 1	Area	1	
	14	-1	1	7	420	41 980	9 54	83 17			1		
xportar a archivo.:] [[] Formato 4.x	15			1	660	43 964	9 99	63 43			1		
	16	.221	N221	1 45	300	3 201	68	67 77		Z0011	AGE 3	;	
	1 17		1	ו	420	3 359	0 54	87 92			1	I	
	18		i	1	660	3 518	0 88	87 75		,	1		
Cancelar	19	81	N81	1.68	300	235.881	1.03	90.36		Zone 1	Arta 1	1	
	20		!	1	420	247 700	1 03	90 52				1	
	21		1		660	259,585	1 13	93.84			1		

.

.

ANÁLISIS EN 300HZ (5TO ARMÓNICO)

CARGA	MQ.Jon	n WH	A=100(%)	0.4MVA
BARGA	THOM(%)	f(Hz) 200	V 39.93	u(%)	Ang.Tensión
BARRA B-112 BARRA B-113	16.47	300	13 9	5.05 6.04	269.25
BARRA B-85	1.45	300	3.192	6.6	87.53
BARRA D-88	1.57	300	2.11	0.92	89.22
BARRA 8-217	10.54	300	33,395	3.09	87.77
BARRA B-81	1.58	300	235.83	1.03	50.36
CARGA	MQ.Jon	h WH	A=10(%)		0.04MVA
BARRA	TH(H(%)	f(Hz)	v	u(%)	Ang.Tensión
BARRA B-112	1.65	300	3.933	0.91	69.65
BARKA B-113	0.15	300	0.3192	0.01	87.53
BARRA B-88	0.17	300	0.211	0.09	89.22
BARRA B-217	1.65	300	3.999	0.91	87.73
5ARRA B-221 BASRA B-81	0.15	300	0.3201	0.08	87.77 90.36
CARGA	MQ.Jon	h WH.	A=20(%)		0.08MVA
BARRA	THOM(%)	f(Hz)	v	u(%)	Ang.Tension
BARRA B-112	3.29	300	7.955	1.81	\$9,69
BAARA B-113	2.2	300	2.78	1.21	265.25
BARRA B-88	0.33	300	0.422	0.18	89.22
BARRA B-217	3.31	300	7,999	1.82	67,73
BARRA B-221	0.29	300	0.6402	0.16	87.77
BARRA B-51	0.38	300	47.176	0.21	50.35
CARGA	MO. Ion	h WH	A=30(%)		0.12MVA 3
BARRA	THOMAS	((142)	· · · · · · (/ · · /	u(%)	Ang.Tension
BARRA B-112	4.94	300	11.949	2.72	69.69
BARRA B-113	3.3	300	4.17	1.61	269.25
BARRA 8-85	0.44	300	0.9577	0.24	87.53
BARRA B-217	4.95	300	11.998	2.73	87.73
BARRA B-221	0.44	300	0.9603	0.24	87.77
BARRA B-81	0.56	300	70.764	0.31	90.36
r					2
CARGA	MQ.Jon	1 WH	A=40(%)		0.16MVA
CARGA BARBA	MQ.Jon	n WH/	A=40(%)	u[%}	0.16MVA
CARGA BARRA BARRA B-112	MQ.Joni	1 WH/	A=40(%)	u[%} 3.62	0.16MVA
CARGA BARRA PARRA B-112 BARRA B-113 PARRA B-83	MQ.Joni THDI(%) 4.4 0.55	1 WH/ ((Ha) 300 300 300	A=40(%) v 15.532 5.56 1.277	u[%} 3.62 2.42 0.32	0.16MVA Ang. Tensión 89.59 269.25 87.53
CARGA BARRA BARRA B-112 BARRA B-113 BARRA B-85 BARRA B-88	MQ.Jon THD(W) 6.59 4.4 0.58 0.67	1 WH/ ((Ha) 300 300 300 300	A=40(%) v 15.532 5.56 1.277 0.8441	v(%) 3.62 2.42 0.32 0.37	0.16MVA Ang.Tenuión 89.69 269.25 87.53 89.22
CARGA BARRA BARRA B-112 BARRA B-113 BARRA B-83 BARRA B-85 BARRA B-217	MQ.Jon THD(W) 6.59 4.4 0.58 0.67 6.62	1 WH/ (Hz) 300 300 300 300 300	A=40(%) v 15.532 5.56 1.277 0.8441 15.998	u[%} 3.62 2.42 0.32 0.37 3.54	0.16MVA Ang Tensión 89,769 209,25 87,53 89,22 87,73 87,73 87,73
CARGA BARRA BARRA D-112 BARRA D-113 BARRA D-113 BARRA D-85 BARRA D-85 BARRA D-81 BARRA D-81	MQ.Jonf THD(%) 6.59 4.4 0.58 0.67 6.62 0.55 0.75	1 WH/ 300 300 300 300 300 300 300	A=40(%) v 15.532 5.56 1.277 0.8441 13.998 1.28 94.352	e (%) 3.62 2.42 0.32 0.37 3.54 0.32 0.41	0.16MVA Ang. Tensión 89,69 209,25 87,53 89,23 87,73 87,77 90,36
CARGA BARRA RARRA D-112 BARRA D-113 BARRA D-85 BARRA D-85 BARRA D-82 BARRA D-217 BARRA D-217 BARRA D-211 BARRA D-81	MQ.Jon THD(%) 6.59 4.4 0.58 0.67 6.62 0.59 0.75	1 WH/ 300 300 300 300 300 300 300 300	A=40(%) v 15.532 5.56 1.277 0.8441 15.998 1.28 94.352	u[%} 3.62 2.42 0.32 0.37 3.54 0.32 0.41	0.16MVA Ang. Tension 89,69 269,25 87,53 89,23 87,73 87,77 90,36
CARGA BARRA BARRA B-112 BARRA B-113 BARRA B-13 BARRA B-13 BARRA B-217 BARRA B-217 BARRA B-218 BARRA B-21 BARRA B-21 BARRA B-21	MQ.Joni THD(M) 6.53 4.4 0.53 0.67 6.62 0.59 0.75 MQ.Joni	1 WH/ ((Hz) 300 300 300 300 300 300 300	A=40(%) v 15.532 3.56 1.277 0.8441 15.998 1.28 94.352 A=50(%)	u (%) 3.67 2.42 0.32 0.37 3.54 0.32 0.41	0.16MVA Ang.Tensión 89.59 209.25 87.53 89.21 87.73 87.77 90.36
CARGA BARRA BARRA B-112 BARRA B-113 BARRA B-13 BARRA B-13 BARRA B-217 BARRA B-217 BARRA B-218 BARRA B-31 CARGA BARRA	MQ.Joni THD(M) 6.53 4.4 0.53 0.67 6.62 0.53 0.75 0.75 MQ.Joni THD(N)	1 WH/ ((+12) 300 300 300 300 300 300 300 30	A=40(%) v 15.532 3.56 1.277 0.8441 15.998 1.28 94.352 A=50(%) v	u (%) 3.62 2.42 0.32 0.37 3.54 0.32 0.41	0.16MVA ² Ang Tensión 89.69 209.25 87.53 89.22 87.73 87.77 90.36 0.20MVA ² Ang Tensión
CARGA BARRA D-112 BARRA D-113 BARRA D-53 BARRA D-55 BARRA D-55 BARRA D-217 BARRA D-217 BARRA D-51 CARGA BARRA D-113	MQ.Joni THD(%) 6.59 4.4 0.58 0.67 0.59 0.75 0.75 MQ.Joni THD(%) 8.24	1 WH/ ((+a) 300 300 300 300 300 300 300 300	A=40(%) v 15.532 5.56 1.277 0.68441 15.998 1.28 94.352 A=50(%) v 19.915	u (%) 3.62 2.42 0.32 0.37 3.54 0.32 0.41	0.16M/VA ⁻² Ang.Tensión 85,56 87,53 87,53 87,53 87,73 80,35 0.35 0.35
CARGA BARRA D-112 BARRA D-113 BARRA D-55 BARRA D-55 BARRA D-217 BARRA D-217 BARRA D-112 BARRA D-112 BARRA D-113 BARRA D-113 BARRA D-133	MQ.Joni THD(%) 6.59 4.4 0.58 6.62 0.59 0.75 0.75 MQ.Joni THD(%) E24 5.5 0.73	1 WH/ ((H2) 300 300 300 300 300 300 300	A=40(%) v 15.532 3.56 1.277 0.8441 15.998 1.28 94.352 A=50(%) v 19.915 6.95 1.595	u[%} 3.62 2.42 0.32 0.32 0.32 0.41 0.32 0.41	0.16MVA ² Ang.Tensión 83,56 259,25 87,33 83,22 87,73 87,77 90,36 0.20MVA ² Ang.Tensión 85,69 265,25 87,33
CARGA BARRA BARRA B-112 BARRA B-113 BARRA B-58 BARRA B-68 BARRA B-217 BARRA B-68 BARRA B-61 BARRA B-61 BARRA B-112 BARRA B-113 BARRA B-58	MQ.Joni THD(%) 6.53 4.4 0.58 0.57 6.62 0.59 0.75 MQ.Joni THD(%) E.24 2.5 0.73 0.83	1 WH/ ((Ha) 300 300 300 300 300 300 300 300 300 30	A=40(%) v 15.532 5.56 1.277 0.8441 15.998 1.28 94.352 A=50(%) v 19.915 6.95 1.596 1.055	u[%] 3.62 2.42 0.32 0.32 0.32 0.41 0.32 0.41 0.45 3.02 0.4	0.16MV/A ⁻² Ang Tensión 259.25 87.35 85.22 87.37 90.36 0.20MV/A ⁻² Ang Tensión 89.69 206.25 87.33 87.33 87.37 90.36
CARGA BARRA - BARRA - BARA - BARRA - BARA	MQ. Joni THD(M) 6.53 4.4 0.58 0.67 6.62 0.55 0.75 MQ. Joni THD(M) E24 5.5 0.83 0.83 0.83 0.83	1 WH/ ((H4) 300 300 300 300 300 300 300 300 300 30	A=40(%) v 15.532 3.567 1.377 0.8441 15.998 4.28 94.352 V 19.915 6.957 15.997 15.9777 15.9777 15.9777 15.9777 15.9777 15.9777 15.9777 15.97777 15.9777 15.9777 15.97777 15.97777 15.9777 15.9	u[%} 3.62 2.42 0.32 0.37 3.54 0.32 0.41 u[%} 4.53 3.02 0.46 4.54	0.16MV/A ARC Tension 87.99 159.25 87.33 85.22 87.73 87.77 90.36 0.200/M/A ^{**} Are Tension 89.69 26.25 87.53 87.53 89.59 26.25 87.53 89.59 26.25 87.53 89.59 26.25 87.53 89.59 26.25 87.55
CARGA BARRA BARRA B-112 BARRA B-113 BARRA B-113 BARRA B-113 BARRA B-113 BARRA B-113 BARRA B-113 BARRA B-217 BARRA B-217 BARRA B-112 BARRA B-113 BARRA B-133 BARRA B-35 BARRA B-38 BARRA B-38	MQ.Jonł 140(4) 5.59 4.4 0.58 0.67 6.62 0.59 0.75 MQ.Jonł THDI(4) 8.24 5.5 0.73 0.83 8.27 0.73 0.53	1 WH/ ((Hz) 300 300 300 300 300 300 300 30	A=40(%) v 15.532 3.56 1.277 0.8441 15.598 54.352 $A=50(%)$ v 19.915 6.59 1.596 1.	u[%} 3.62 2.42 0.32 0.37 3.54 0.32 0.41 u[%} 4.53 3.02 0.46 4.54 0.46 4.54 0.52	0.16MV/A ⁻¹ Arg.Treutón 83,59 129,25 87,73 85,22 87,73 85,22 87,73 85,25 87,27 85,25 87,27 85,25 87,25 85,25 87,25 85,25 87,2
САRGА Валла Ралла 263 Валла 263 Вала 263 Вал	MQ.Jonł 4.4 0.59 6.62 0.58 0.73 MQ.Jonł THD(%) 8.24 5.5 0.73 0.83 8.27 0.73	1 WH/ ((Hz) 300 300 300 300 300 300 300 30	A=40(%) v 15.532 3.56 1.277 0.6441 15.598 1.28 54.352 $A=50(%)$ v 19.915 6.59 1.596 1.055 15.596 1.055 15.596 1.601 117.54	u[%) 3.62 2.42 0.32 0.37 3.54 0.32 0.41 0(%) 4.53 3.02 0.41 0.46 4.54 0.4 0.52	0.16MVA ⁻² Ang Tenulon 89.29 87.33 89.22 87.33 89.23 87.77 90.36 0.20MVA ⁻⁴ Ang Tenulon 85.69 265.25 87.33 87.27 90.36
САRGА вала вала 2-112 вала 2-112 вала 2-112 вала 2-112 вала 2-112 вала 2-112 вала 2-111 вала 2-113 вала 2-113	MQ.Jon THDI(%) 6.59 4.4 0.55 0.75 0.75 0.75 MQ.Jon THDI(%) 8.24 0.53 0.73 0.54 MQ.Jon MQ.Jon	1 WH/ ((+a) 300 300 300 300 300 300 300 30	A=40(%) v 15.532 1.277 0.8441 15.592 54.352 A=50(%) v 19.915 1.598 1.598 1.598 1.598 1.599 1.699 1	u[%] 3.62 2.42 0.32 0.37 3.54 0.32 0.41 0(%) 4.53 3.02 0.41 0(%) 4.53 3.02 0.46 4.54 0.42	0.16MV/A ² Ang Tensión 205.25 87.33 89.22 87.73 87.77 90.36 0.20MV/A ² Ang Tensión 85.25 87.73 87.75
САRGА ВАЯЛА ВАЛЛА АРАЛА В-112 ВАЛЛА В-113 ВАЛЛА В-113 ВАЛЛА В-112 ВАЛЛА В-132 ВАЛЛА В-45 ВАЛЛА В-45 ВАЛЛА В-211 ВАЛЛА В-35 ВАЛЛА В-35 ВАЛЛА В-321 ВАЛЛА В-21 БАЛЛА В-21 БАЛЛА В-21 БАЛЛА В-21 БАЛЛА В-21 БАЛЛА В-21 БАЛЛА В-21 БАЛЛА В-21 БАЛЛА В-21 БАЛЛА В-21	MQ. Jon THD(%) 5.53 4.4 6.62 0.55 6.62 0.55 0.57 0.	1 WH/ ((+a) 300 300 300 300 300 300 300 30	A=40(%) v 15.532 3.56 1.277 0.8441 15.598 94.352 V 19.915 6.95 1.595 1.595 1.595 1.595 1.595 1.595 1.595 1.597 1.595 1.597 1.595 1.597 1.595 1.597 1.595 1.597 1.595 1.597 1.595 1.597 1.595 1.597 1.595 1.597 1.595 1.597 1.595 1.597 1.595 1.597 1.595 1.597 1.597 1.595 1.597	u[%} 3.62 2.42 0.32 0.37 3.54 0.32 0.41 0.41 0.41 0.4 0.4 0.4 0.52 0.4	0.16MV/A ⁻² Ang.Tensión 89.20 87.33 89.22 87.37 90.36 0.20MV/A ⁻¹ Ang.Tensión 89.69 80.23 87.33 87.37 90.36 0.20MV/A ⁻¹ 87.33 87.35 87.55 87.
CARGA BARRA BARRA B-112 BARRA B-112 BARRA B-122 BARRA B-23 BARRA B-23 BARRA B-221 BARRA B-212 BARRA B-112 BARRA B-312 BARRA B-312 CARGA BARRA B-312	MQ. Jon THD(%) 559 4.4 0.59 6.62 0.79 MQ. Jon THD(%) 8.24 3.5 0.73 0.59 0.73 0.59 0.73 0.59 0.73 0.59 0.73 0.59 0.73 0.59 0.73 0.59 0.73 0.59 0.75 0.75 0.59	1 WH/ ((+a) 300 300 300 300 300 300 300 300 300 30	A=40(%) v 15.532 3.56 1.27 0.8441 15.938 1.28 95.352 V 19.915 6.95 1.599 1.599 1.599 1.599 1.599 1.599 1.599 1.599 1.599 1.599 1.599 1.597 1.597 1.27	u (%) 3.62 2.43 0.32 0.37 3.54 0.32 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41	0.16MVA ARTHUGO 0.25,25 87,53 89,22 87,73 89,22 87,73 89,23 89,23 89,23 89,23 89,23 89,23 89,23 89,23 89,23 89,23 89,25 80,25 80,
САRGА ВАКРА - 112 ВАКРА - 113 ВАКРА - 113	MQ.Jonł 4.4 0.59 6.52 0.58 0.75 MQ.Jonł THD(N) 8.24 5.5 0.73 0.54 MQ.Jonł THD(N) 8.24 5.5 0.73 0.54 MQ.Jonł	WH/ ((H2) 300 300 300 300 300 300 300 300 300 30	A=40(%) v 15.532 5.56 1.277 0.6441 15.598 1.28 54.352 V v 1.29 54.352 A=50(%) v 1.598 1.598 1.598 1.598 1.598 1.599	u (%) 3.62 2.42 0.32 0.32 0.32 0.41 0.41 4.53 3.02 0.4 4.53 3.02 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	0.16MVA ⁻² Ang Tenutón 85,96 269,25 87,53 89,22 87,73 89,23 87,77 90,36 0.20MVA ⁻⁴ Ang Tenutón 85,96 269,25 87,77 90,36 0.22MVA ⁻⁵ 0.22MVA ⁻⁵ 0.22MVA ⁻⁵ 0.22MVA ⁻⁵ 0.25 87,77 90,36
САRGА вала вала 2012 вала	MQ.Jonł #H0(%) 6.53 4.4 0.55 6.52 0.73 MQ.Jonł THD(%) 8.24 5.5 0.73 0.53 0.53 0.53 0.53 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.55 0.75 0.55 0.75 0.55 0.75 0.55	1 WH, ((iii) 300 300 300 300 300 300 300 30	A=40(%) v 15.532 1.277 0.8441 15.988 1.28 54.352 V V 19.915 0.958 1.055 1	u[%] 3.62 2.42 0.37 3.54 0.37 3.54 0.37 0.37 3.62 0.4 0.4 0.4 0.52 0.4 0.52 0.4 0.52 0.4 0.52	0.16MV/A ² Ang Tensión 209.25 87.33 87.27 90.35 0.35 0.35 0.35 0.35 0.35 0.35 87.77 90.35 87.77 90.35 87.73 87.77 90.36 0.20MV/A ² Ang Tensión 87.73 87.77 90.36 0.22MV/A ² 87.73 87.77 90.36 0.22MV/A ² 87.73 87.77 90.36 87.73 87.77 90.36 87.73 87.77 90.36 87.73 87.77 90.36 87.73 87.77 90.36 87.75
САЯСЯА ВАЯЛА ВАЛЛА АВАЛЛА В-112 ААЛЛА В-113 ВАЛЛА В-113 ВАЛЛА В-112 ВАЛЛА В-25 ВАЛЛА В-26 ВАЛЛА В-26 ВАЛЛА В-26 ВАЛЛА В-21 ВАЛЛА В-112 ВАЛЛА В-21 САЛКАВА ВАЛЛА В-112 ВАЛЛА В-112 ВАЛЛА В-112 ВАЛЛА В-112 ВАЛЛА В-112 ВАЛЛА В-112 ВАЛЛА В-112	MQ. Jon THD(%) 5.59 4.4 0.53 0.67 0.67 0.59 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.75 0.73 0.75 0.73 0.75 0.73 0.75 0.	1 WH, ((H2) 300 300 300 300 300 300 300 300 300 300	A=40(%) v 15.532 1.277 C.8441 15.598 1.28 54.355 4.550(%) v 19.915 6.95 1.599 1.	u(%) 3.62 2.42 0.37 3.54 0.37 0.32 0.41 0.42 0.41 0.43 0.44 0.45 0.4 0.52 0.41 0.45 0.43 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.16MV/A ARE, Tensión 87,99 209,25 87,39 89,22 87,73 87,77 87,57 87,77 87,57
	MQ. Joni THD(N) 559 4.4 0.59 6.62 0.79 MQ. Joni THD(N) 8.24 3.5 0.73 0.59 8.27 0.59 0.5	1 WH, (Irci) 300 300 300 300 300 300 300 300 300 300	A=40(%) v 15.532 3.56 1.27 0.8441 15.938 1.28 94.352 V 19.915 6.95 1.598 1.598 1.598 1.598 1.598 1.598 1.599 1.598 1.599 1.598 1.593 1.5932 1.	u(%) 3.62 2.43 0.32 0.32 0.43 0.43 3.02 0.41 0.52 0.41 0.52 0.44 0.52 0.52 0.54 0.545 0.545 0.545 0.545 0.545	0.16MV/A ⁻¹ ARTTRUGO 83,59 263,25 87,73 89,22 87,73 89,22 87,73 87,77 90,36 0.20MV/A ⁻¹ ARTTRUGO 85,69 269,25 87,73 87,77 90,36 0.24MV/A ⁻² ARTTRUGO 85,69 269,25 87,73 85,22 87,73 85,22 87,73 85,22 87,73 85,22 87,73 85,22 87,73 85,22 85,23 85,22 85,23 85,22 85,23 85,25 85,
САRGА ВАЯЛА ВАЯЛА НАЯЛА ВАЗІ ВАЯЛА ВАЗІ ВАЯЛА ВАЗІ ВАЯЛА ВАЗІ ВАЯЛА ВАЗІ ВАЯЛА ВАЗІ ВАЯЛА ВАЗІ ВАЯЛА ВАЗІ ВАЯЛА ВАЗІ ВАЯЛА ВАЗІ САЯGA ВАЯЛА ВАЯ	MQ.Jonł 4.4 0.59 4.65 0.58 0.75 0.58 0.73 0.54 MQ.Jonł THDI(%) 8.24 0.73 0.54 MQ.Jonł THDI(%) 9.33 6.6 0.87 1 9.94	WH, ([142] 300 300 300 300 300 300 300 30	A=40(%) v 15.532 5.56 1.27 5.541 15.598 1.28 54.352 v v 4.550(%) v 19.915 6.95 1.5596 1.5596 1.5596 1.5596 1.5595 1.606 11.794 A=60(%) v v 23.855 8.34 1.26 1.27 1.29 1.5998 1.5998 1.29 1.5998 1.599 1.29 1.2997 1.291 1.299 1.2997 1.291 1.2997 1.291 1.291 1.291 1.291 1.295 1.2957 1.291 1.295 1.291 1.295 1.291 1.291 1.295 1.291 1.295 1.295 1.291 1.295 1	u(%) 2,42 2,42 0,32 0,32 0,41 0,45 3,02 0,41 0,45 0,44 0,52 0,41 0,45 0,46 0,52 0,41 0,45 0,46 0,55 5,45 3,65 2,45 0,48 0,48 0,48 0,48 0,48 0,48	0.16MVA ² Ang Tenutón 85,96 269,25 87,73 87,77 89,25 87,77 90,36 0.20MVA ⁴ 0.20MVA ⁴ 0.20MVA ⁴ 0.25 87,77 89,25 87,77 90,36 0.24MVA ⁴ 89,29 87,73 87,77 90,36
САRGА вала чалаа 2012 валаа 2012 вала 2012 валаа 2012 валаа 2012 валаа 2012 валаа 2012 валаа 2012 вала	MQ.Joni #H0(%) 6.59 4.4 0.55 0.75 0.73 MQ.Joni #H0(%) 6.24 5.5 0.73 0.94 MQ.Joni	1 WH, (Irix) 300 300 300 300 300 300 300 30	A=40(%) v 15.532 1.277 0.6441 15.598 1.28 54.352 V v 19.515 6.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.556 1.557 1	u(%) 3.62 2.43 0.32 0.37 3.02 0.41 0.32 0.4 0.32 0.4 0.45 0.4 0.4 0.4 0.46 0.46 0.46 0.46 0.45 0.48 0.48 0.48 0.45 0.48 0.45 0.48 0.45 0.48 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.16MVA ² Ang.Tenuton 209.25 87.53 89.22 87.73 87.77 90.36 0.20MVA ⁴ Ang.Tenuton 85.59 265.25 87.73 87.77 90.36 0.20MVA ⁴ 0.22MVA ⁵ 0.22MVA ⁵ 87.53 87.27 90.36 0.22MVA ⁵ 87.53 87.55 87.5
САRGА ВАЯЛА ВАЯЛА ВАЯЛА В-112 ВАЯЛА В-113 ВАЯЛА В-113 ВАЯЛА В-132 ВАЯЛА В-231 ВАЯЛА В-231 ВАЯЛА В-313 ВАЯЛА В-313 ВАЯЛА В-312 ВАЯЛА В-312	MQ. Jon THD(%) 5.53 4.4 0.53 6.62 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.73 0.53 0.73 0.53 0.73 0.53 0.73 0.53 0.73 0.53 0.73 0.53 0.73 0.53 0.73 0.53 0.73 0.53 0.73 0.53 0.73 0.73 0.53 0.73 0.73 0.75 0.73 0.75 0.73 0.75 0.73 0.75 0.75 0.73 0.75 0.75 0.73 0.75 0.75 0.73 0.75 0.75 0.73 0.75 0.75 0.73 0.75 0.75 0.73 0.75 0.75 0.75 0.75 0.73 0.75 0.	1 WH, ([iti] 300 300 300 300 300 300 300 300	A=40(%) v 15.532 1.277 C.8441 15.598 A=50(%) v 19.915 6.95 1.5	u(%) 3,67 2,43 0,32 0,37 3,037 3,037 4,53 3,002 0,41 0,52 0,41 0,52 0,52 0,52 0,52 0,52 0,52 0,52 0,52	O.16MV/A ARG.Tensión 87.99 209.25 87.33 89.22 87.73 87.77 87.77 87.77 87.77 87.77 87.77 87.77 87.77 87.75 87.95 87.55
	MQ. Jon HD(M) 559 4.4 0.59 6.62 0.79 MQ. Jon HD(M) 5.35 0.73 0.83 8.27 0.59 0.73 0.83 8.27 0.59 0.73 0.83 8.27 0.59 0.73 0.83 8.27 0.73 0.85 0.77 0.85 0.77 0.85 0.77 0.85 0.77 0.85 0.77 0.85 0.77 0.85 0.77 0.85 0.77 0.85 0.77 0.85 0.77 0.85 0.77 0.85 0.77 0.85 0.77 0.85 0.77 0.95 0.77 0.95 0.77 0.95 0.77 0.95 0.77 0.95 0.77 0.95 0.77 0.95 0.95 0.95	1 WH, (iiii) 300 300 300 300 300 300 300 30	A=40(%) v 15.532 1.277 0.8441 15.598 1.28 54.355 1.599 1	u(%) 3,52 2,42 0,32 0,32 0,32 0,41 u(%) 3,02 0,41 u(%) 3,02 0,41 u(%) 3,02 0,41 u(%) 3,02 0,41 u(%) 3,62 u(%) 3,62 u(%) 3,62 u(%) 4,53 3,02 0,41 u(%) 4,53 3,02 0,42 0,43 0,43 0,43 0,43 0,43 0,43 0,43 0,43	0.16MV/A ARTTRUGO 83,59 25,73 85,25 87,73 85,25 87,73 87,77 80,35 0.20MV/A ARTTRUGO 85,59 269,25 87,73 87,77 87,73 87,75 87,
CARGA BARRA BARRA B-112 BARRA B-113 BARRA B-113 BARRA B-113 BARRA B-201 BARRA B-201 BARRA B-201 BARRA B-201 BARRA B-211 BARRA B-113 BARRA B-211 BARRA	MQ. Joni THD(M) 6.53 4.4 0.53 0.75 0.75 0.75 MQ. Joni THD(N) 9.83 6.6 0.87 1.33 MQ. Joni THD(N) 9.83 6.6 0.87 1.33 MQ. Joni THD(N) 9.83 6.6 0.87 1.33 1.53 7.0 1.53 1.55 1.55 1.55 1.55 1.55	1 WH. (1+2) 300 300 300 300 300 300 300 30	A=40(%) v 15.532 3.56 1.277 0.6441 15.598 1.28 54.352 V v v 4.550(%) v v 4.555 1.559 8.545 2.555 1.559 8.545 2.555 1.559 8.545 2.555 1.559 8.545 2.555 1.559 8.545 2.555 1.559 8.545 2.555 1.559 8.545 2.555 1.559 8.545 2.555 1.559 8.545 2.555 1.559 8.545 2.555 1.559 2.555 1.559 2.555 1.559 2.555 1.559 2.555 1.559 2.555 1.559 2.555 1.559 2.555 1.559 2.555 1.559 2.555 1.559 2.555 1.559 2.555 1.559 2.555 1.559 2.555 1.559 2.555 1.559 2.555 1.579 2.555 1.579 2.575 2	u(%) 3.62 2.43 0.32 0.32 0.43 0.32 0.43 0.32 0.43 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	0.16MVA ART FRUSO 85,99 269,25 87,73 85,22 87,73 85,22 87,73 85,22 87,73 85,23 85,23 85,23 85,25 85
CARGA BARAA BARAA BARAA D-132 BARAA D-132 BARAA D-132 BARAA D-132 BARAA D-132 BARAA D-133 BARAA D-133	MQ.Jonł #46 4.53 4.65 6.53 6.53 0.55 0.73 0.54 MQ.Jonł #10(%) 8.24 5.5 0.73 0.54 MQ.Jonł MQ.Jonł MQ.Jonł MQ.Jonł MQ.Jonł MQ.Jonł 113 MQ.Jonł 113 MQ.Jonł 113 115 7.7 1.02 1.17	1 WH, (I+ix) 300 300 300 300 300 300 300 30	A=40(%) v 15.532 5.56 1.277 0.6441 15.598 1.28 54.352 V v 54.352 A=50(%) v v A=50(%) v v 3.595 1.055 1.596 1.596 1.596 1.595 1.596 1.595 1.595 1.265 1.265 1.277 1.591 2.595 1.265 1.277 1.595 1.266 1.267 1.275 1.295 1.215 1.275 1.215 1.275	u(%) 2.42 2.42 0.32 0.32 0.41 0.32 0.41 0.45 0.42 0.46 0.42 0.46 0.52 0.41 0.55 5.45 5.45 5.45 5.45 5.45 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48	0.16MVA ² ARETERISON 269.25 87.53 89.22 87.73 87.77 90.36 0.20MVA ⁴ ARETERISON 89.26 269.25 87.77 90.36 0.20MVA ⁴ ARETERISON 89.29 20.35 87.77 90.36 0.22MVA ² 87.77 90.36 0.22MVA ² ARETERISON 89.29 87.73 87.77 90.36 0.22MVA ² 89.22 87.73 87.77 90.36
САRGА ВАЛЛА ВАЛЛА ВАЛЛА В-112 ВАЛЛА В-112 ВАЛЛА В-112 ВАЛЛА В-213 ВАЛЛА В-25 ВАЛЛА В-25 ВАЛЛА В-213 ВАЛЛА В-213 ВАЛЛА В-213 ВАЛЛА В-213 ВАЛЛА В-213 ВАЛЛА В-112 ВАЛЛА В-213 ВАЛЛА В-213	MQ. Jon THD(%) 5.59 4.4 0.59 4.4 0.59 4.4 0.59 0.67 0.59 0.73 0.59 0.57 0.59 0.73 0.59 0.57 0.57 0.59 0.57 0.59 0.57 0.59 0.57 0.59 0.57 0.59 0.57 0.59 0.57 0.59 0.57	1 WH, (iiii) 300 300 300 300 300 300 300 30	A=40(%) v 15.532 3.542 1.277 C.8441 15.998 1.28 94.350 v 19.915 6.95 1.596 1.596 1.597 1.601 15.997 1.597 1.601 15.997 1.597 1.601 15.997 1.597 1.601 1.597 1.597 1.601 1.597 1.601 1.597 1.	u(%) 3.67 2.43 0.32 0.32 0.37 3.02 0.41 0.32 0.41 0.45 4.53 3.02 0.41 0.45 4.54 0.45 0.55 0.45 0.55 0.45 0.45	0.16MV/A ARE, Tensión 83,59 20,33 83,59 20,33 83,22 87,73 87,77 87,77 87,77 87,77 87,77 87,77 87,77 87,77 87,77 87,53 87,555

CARGA	MQ.Jonh	WH/	(%) 4=80		0.32MVA
BARRA	THIN(%)	f(H2)	v	u(%)	Ang Tensión
BARRA B-112	13,18	300	31.864	7.24	89.69
ARRA B-113	5.8	300	11.12	4.23	269.25
ARRA B-85	1.16	300	2.554	0.64	87.53
ARSA B-88	1.34	300	2,663	0.73	89.22
ARRA 8-217	13.23	300	31.996	7.27	87,73
APRA 9.321	1.16	303	2.561	0.64	87.77
BARKA B-BI	1.5	300	188.704	0.82	90.36
CARGA	ng Jonh	300 WH/	188.704 A=90(%)	0.82	90,36
CARGA	1.5 MQ.Jonh	300 WH/ f(Hz)	188.704 A=90(%)	0.82 u(%)	90.36 O.36MVA
CARGA BARRA BARRA BARRA B-112	1.5 MQJonh THD(%) 14.53	300 WH/ f(Hz) 300	188.704 A=90(%) 35.847	0.82 0[%] 8.15	50.36 (0.36MVA Ang.Tension 89.69
CARGA BARRA B-112 BARRA B-112 BARRA B-113	1.5 MQJonh THD(%) 14.53 9.9	300 WH/ f(Hz) 300 309	188.704 A=90(%) v 35.847 12.51	0.82 0[%] 8.15 5.44	90.36 0.36MVA Ang.Tension 89.69 269.25
CARGA BARRA B-BI BARRA B-112 BARRA B-113 BARRA B-85	1.5 MQ.Jonh 14.63 9.9 1.31	300 WH/ f(Hz) 300 309 300	288.704 A=90(%) v 35.847 12.51 2.873	0.82 0[%] 8.15 5.44 0.72	90.36 0.36MVA Ang.Tenskon 89.69 269.25 87.53
CARGA BARRA B-SI BARRA BARRA B-112 BARRA B-113 BARRA B-85 BARRA B-85	1.5 MQ.Jonh 14.83 9.9 1.31 1.5	300 WH/ f(Hz) 300 309 300 300	188.704 A=90(%) v 35.847 12.51 2.873 1.899	0.82 0[%] 8.15 5.44 0.72 0.83	90.36 0.36MVA Ang.Tenskin 89.69 269.25 87.53 89.22
CARGA BARRA B-BI CARGA BARRA B-112 BARRA B-113 BARRA B-85 BARRA B-85 BARRA B-217	1.5 MQ.Jonh THD(N) 14.63 9.9 1.31 1.5 14.68	300 WH/ 1(42) 300 300 300 300 300	188.704 V 35.847 12.51 2.873 1.899 35.995	0.82 0[%] 8.15 5.44 0.72 0.83 8.18	90.36 0.36MVA Ang Tenskon 89.69 269.25 87.53 89.22 87.73
DARRA B-BI CARGA BARRA B-112 BARRA B-113 BARRA B-B5 BARRA B-217 BARRA B-221	1.5 MQ.Jonh THD(%) 14.83 9.5 1.31 1.5 14.88 1.31	300 WH/ f(Hz) 300 300 300 300 300 300	188.704 V 35.847 12.51 2.873 1.899 35.995 2.881	0.82 0[%] 8.15 5.44 0.72 0.83 8.18 0.72	90.36 0.36MVA Ang Tenskon 89.69 269.25 87.53 89.22 87.73 87.77

CARGA	MQ.Jonh	WH	A=80(%)		0.32MVA
BARRA	THO(%)	f(Hz)	v	u(%)	Ang.Tensión
BARRA B-112	13.15	300	32.854	7.24	60.65
BARRA B-113	5.8	300	11.12	4.83	269.25
BARRA D -85	1.15	300	2.554	0.64	87.53
BARRA B-85	1.34	300	1.68\$	0.73	89,22
BARRA 8-217	19.23	300	31.996	7,27	87.73
BARRA B-221	1.15	300	2.561	0.64	87.77
04004 9.91	1.5	300	188.704	0.82	90.35
Developed		000			
		14/1	A 00/0/)		1 1 ¹⁰ 1 10 2
CARGA	. MQ.Jonh	WH	A=90(%)		0.36MVA (
CARGA	MQ.Jonh	WH	A=90(%)	2 (%)	0.36MVA
CARGA	. MQ.Jonh тны(м) 14.83	WH	A=90(%)	थ(%) 8.15	D.36MVA [/] Ang.Tensión 89.69
CARGA BARRA BARRA B-112 BARRA B-113	МQ.Jonh тно(%) 14.53 9.9	WH (Hz) 300 300	A=90(%) v 35.847 12.51	u(%) 8.15 5.44	D.36MVA * Ang.Tensión 89.59 269.25
CARGA BARRA BARRA B-112 BARRA B-113 BARRA B-85	. MQ.Jonh тны(%) 14.83 9.9 1.31	WH f(Hz) 300 300	A=90(%) v 35.647 12.51 2.673	2(%) 8.15 5.44 6.72	D.36MVA * Ang.Tensión 89.69 269.25 87.53
CARGA BARRA B-112 BARRA B-113 BARRA B-85 BARRA B-85	МQ.Jonh тны(%) 14.83 9.9 1.31 1.5	WH f(Hz) 300 300 300 300	A=90(%) v 35.647 12.51 2.673 1.699	v(%) 8-15 5-44 6.72 0.83	D.36MVA * Ang.Tensión 89.59 269.25 87.53 89.22
CARGA BARRA BARRA B-112 BARRA B-113 BARRA B-85 BARRA B-85 BARRA B-217	тны(%) 14.53 9.9 1.31 1.5 14.85	WH f(Hz) 300 300 300 300 300	× 35.847 12.51 2.873 1.699 25.895	v(%) 8.25 5.44 6.72 0.83 8.18	0.36MVÅ ⁴ Arg.Tensión 89.59 269.25 87.53 89.22 87.73
CARGA BARRA BARRA B-112 BARRA B-113 BARRA B-85 BARRA B-85 SARRA B-227 BARRA B-221	MQ.Jonh тны(%) 14.83 9.9 1.33 1.5 14.88 1.31	WH f(Hz) 300 300 300 300 300	A=90(%) v 35.847 12.51 2.873 1.899 25.395 2.881	2(%) 8.15 5.44 6.72 0.83 8.18 0.72	0.36MVA * Ang Tensión 89,25 87.53 89,22 87,73 87,77

ANÁLISIS EN 420HZ (7MO ARMÓNICO)

CARGA	MQ.Jonl	h WH/	4=100(%	}	0.4MVA
BARRA	THDI(%)	f(Hz)	v	u(%)	Ang.Tensión
BARRA B-112	16.47	300	39.83	9.05	89.69
BARRA 8-113	11	300	13.9	6.04	269.25
BARRA B-85	1.45	300	3.192	0.2	67.53
BARRA B-85	1.67	300	2.11	0.92	69.22
BARRA 8-217	16.54	300	39.995	9.09	87.73
BARRA 8-221	1.46	300	3.201	3.0	87 <i>.</i> 77
BARRA B-81	1.65	300	235.88	1.03	90.36
CARGA	MQ.Jon	h WH/	4=10(%)		0.04MVA
BARRA	THD(%)	f(912)	v	u(%)	Ang.Tensión
BARRA B-112	1.65	300	3.983	0.91	89.59
BARRA B-113	1.1	300	1.39	0.6	259.25
BARRA B-85	0.15	300	0.3192	0.08	87.53
BARRA B-88	0.17	300	0.211	0.09	89.22
PARRA 8-217	1.85	300	3.999	0.91	87.73
BARRA 9-221	0.15	300	0.3201	0.06	87.77
BARRA 8-81	0.19	900	23.588	0.1	90 36
					···-
CARGA	MQ.Jon	h WH/	4=20(%)		0.08MVA
CARGA BARRA	MQ.Jon	h WH/ n(Ha)	4=20(%) v	a(%)	0.08MVA Ang.Tensión
CARGA BARRA BARRA B-112	MQ.Jon	h WH/ 1(Hz) 300	4=20(%) ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	a(%) 1.81	0.08MVA Ang.Tensión \$9.69
CARGA BARRA BARRA B-112 BARRA B-113	MQ.Jon THDI(%) 3.29 2.2	h WH/ 1(Hz) 300 300	4=20(%) v 7.965 2.78	a(%) 1.81 1.21	0.08MVA Ang.Tension \$9.69 269.25
CARGA BARRA BARRA B-112 BARRA B-113 BARRA B-85	MQ.Jon THDI(%) 3.29 2.2 0.29	h WH/ 1(H2) 300 300 300	A=20(%) v 7.965 2.78 0.6384	a(%) 1.81 1.21 0.16	0.08MVA Ang.Tensión 89.69 269.25 87.53
CARGA BARRA B-112 BARRA B-113 BARRA B-83 BARRA B-88	MQ.Jon THD(N) 3.29 2.2 0.29 0.33	h WH/ 1(Hz) 300 300 300 300	A=20(%) v 7.965 2.78 0.6384 0.422	u(%) 1.81 1.21 0.16 0.18	0.08MVA Ang.Tension \$9.69 269.25 87.53 89.22
CARGA BARRA B-112 BARRA B-113 BARRA B-113 BARRA B-113 BARRA B-217	MQ.Jon THD3(%) 3.29 2.2 0.33 3.31	h WH/ 300 300 300 300 300	A=20(%) v 7.965 2.78 0.6384 0.422 7.999	u(%) 1.81 1.21 0.16 0.18 1.82	0.08MVA Ang.Tenstón 89.69 269.25 87.53 89.22 87.73
CARGA BARRA B-112 BARRA B-113 BARRA B-45 BARRA B-45 BARRA B-88 BARRA B-217 BARRA B-221	MQ.Jon THD3(%) 3.29 2.2 0.33 3.31 0.29	h WH/ 300 300 300 300 300 300 300	A=20(%) v 2.78 0.6384 0.422 7.999 0.6432	a(%) 1.81 1.21 0.16 0.18 1.82 0.16	0.08MVA Ang.Tension 89.69 269.25 87.53 89.27 87.73 87.77
CARGA BARRA B-112 BARRA B-113 BARRA B-113 BARRA B-113 BARRA B-113 BARRA B-113 BARRA B-217 BARRA B-221 BARRA B-51	MQ.Jon THD(%) 3.29 2.2 0.29 0.33 3.31 0.29 0.38	h WH/ 300 300 300 300 300 300 300 300	A=20(%) v 7.965 2.78 0.6384 0.422 7.999 0.6452 47.176	u(%) 1.81 1.21 0.16 0.18 1.82 0.16 0.21	0.08MVA Ang.Tenstón 89.69 209.25 87.53 89.22 87.73 87.77 80.36
CARGA BARRA B-112 BARRA B-113 BARRA B-38 BARRA B-38 BARRA B-38 BARRA B-217 BARRA B-221 BARRA B-211	MQ.Jon тнр!(м) 3.29 0.29 0.33 3.31 0.29 0.38	h WH/ 1(H2) 300 300 300 300 300 300 300 300	A=20(%) v 7,966 2,78 0,6384 0,6384 0,422 7,999 0,6402 47,176	u[%] 1.81 1.21 0.16 0.18 1.82 0.16 0.21	0.08MVA Ang.Tenston 29.69 209.25 87.53 89.22 87.73 87.77 80.36
CARGA BARRA B-112 BARRA B-113 BARRA B-35 BARRA B-35 BARRA B-3217 BARRA B-221 BARRA B-321 BARRA B-31 CARGA	MQ.Jon THDI(%) 2.2 0.29 0.33 3.31 0.29 0.38	h WH/ 1(H2) 300 300 300 300 300 300 300 300 300	A=20(%) v v v v v v v v v v v v v	u[%] 1.81 1.21 0.16 0.18 1.82 0.16 0.21	0.08MVA Ang.Tension 89.69 209.25 87.33 89.22 87.73 87.77 80.36
CARGA BARRA B-112 BARRA B-113 BARRA B-85 BARRA B-85 BARRA B-85 BARRA B-221 BARRA B-21 BARRA B-21 BARRA B-21 BARRA B-21	MQ.Jon THDI(%) 3.29 0.33 3.31 0.29 0.38 0.38 MQ.Jon THDI(%)	h WH/ (142) 300 300 300 300 300 300 300 100 142 142	A=20(%) v 7.966 2.78 0.6384 0.422 7.999 0.6432 47.176 A=30(%) v	u(%) 1.81 1.21 0.16 0.18 1.82 0.16 0.21	0.08MVA AR: Tenson 259.25 87.53 87.23 87.73 87.77 80.35 0.12MVA Arg: Tension
CARGA BARRA B-112 BARRA B-113 BARRA B-113 BARRA B-85 BARRA B-85 BARRA B-85 BARRA B-221 BARRA B-61 CARGA BARRA BARRA B-112	MQ.Jon THD(%) 2.2 0.29 0.33 3.31 0.29 0.38 MQ.Jon THDI(%) 4.94	h WH/ f(Hz) 300 300 300 300 300 300 300 30	A=20(%) v 7,566 2,78 0,6384 0,6432 47,176 A=30(%) v 11,349	u[%] 1.81 1.21 0.16 0.18 1.82 0.16 0.21 u[N] 2.72	0.08MVA Arg.7en360 89.69 269.25 87.73 89.22 87.73 80.36 0.12MVA Arg.7en360 89.65
CARGA BARRA B-112 BARRA B-113 BARRA B-113 BARRA B-113 BARRA B-1217 BARRA B-2217 BARRA B-2217 BARRA B-2217 BARRA B-217 BARRA B-112 BARRA B-112 BARRA B-113	MQ.Jon THD(%) 3.23 0.29 0.33 3.31 0.29 0.38 MQ.Jon THDI(%) 4.94 3.3	h WH/ (Hz) 300 300 300 300 300 300 300 30	A=20(%) v 7,566 2,76 0,6394 0,422 7,599 0,6402 47,176 A=30(%) v 11,549 4,17	u[%] 1.81 1.21 0.16 0.18 1.82 0.16 0.21 v(%) 2.72 1.81	0.08MVA Are, Tension 89.69 259.25 87.73 87.77 80.36 0.12MVA Arg, Tension 89.69 20.925
CARGA BARRA B-112 BARRA B-112 BARRA B-113 BARRA B-113 BARRA B-113 BARRA B-217 BARRA B-221 BARRA B-217 BARRA B-112 BARRA B-112 BARRA B-112 BARRA B-112 BARRA B-112	MQ.Jon THDI(%) 3.29 0.33 3.31 0.29 0.38 MQ.Jon THDI(%) 4.94 3.3 0.49	h WH/ 1(H2) 300 300 300 300 300 300 300 300 300 30	A=20(%) v 7,566 2,78 0,6334 0,422 7,599 0,6402 47,176 A=30(%) v 11,349 4,17 0,9577	u[%] 1.81 7.21 0.16 0.18 1.82 0.16 0.21 u(N) 2.72 1.81 0.24	0.08MVA Arg.7ension 89.69 209.25 87.73 87.73 87.73 87.77 80.36 0.12MVA Arg.7ension 89.69 2669.25 87.23
CARGA BARRA B-112 BARRA B-113 BARRA B-113 BARRA B-112 BARRA B-85 BARRA B-85 BARRA B-85 BARRA B-85 BARRA B-112 BARRA B-113 BARRA B-113 BARA B-113 BA	MQ.Jon THD(%) 3.29 0.28 0.33 3.31 0.31 0.38 MQ.Jon THD(%) 4.94 3.3 0.44 0.5	h WH/ 1(Hz) 300 300 300 300 300 300 300 30	A=20(%) v 7.966 2.78 0.6384 0.422 7.999 0.6402 47.176 A=30(%) v 11.549 4.17 0.6331	u[%] 1.81 1.21 0.16 0.18 1.82 0.16 0.21 u(%) 2.72 1.81 0.24 0.28	0.08MVA Arg. Tension 89.69 259.25 87.25 87.27 87.77 87.77 87.77 87.77 87.77 87.77 87.77 87.77 87.77 87.77 87.77 87.77 87.77 87.77 87.77 87.77 87.77 87.75 87.25 87
CARGA BARRA B-113 BARRA B-113 BARRA B-13 BARRA B-23 BARRA B-231 BARRA B-231 CARGA BARRA B-132 BARRA B-132 BARRA B-132 BARRA B-132 BARRA B-132 BARRA B-132	MQ.Jon THD(%) 3.29 0.33 3.31 0.29 0.38 MQ.Jon THDI(%) 4.94 3.3 0.44 0.5 4.96	h WH/ 1(Hz) 300 300 300 300 300 300 300 300 300 30	A=20(%) v 7,565 2,78 0,6384 0,422 7,999 0,6492 47,176 A=30(%) v 11,349 4,17 0,6517 0,6311 11,395	u[%] 1.81 1.21 0.16 0.18 1.82 0.16 0.21 0.21 0.21 0.21 0.21 0.21 0.22 0.22	0.08MVA Arg.Tension 89.69 87.33 87.73 87.73 87.77 80.85 0.12MVA Arg.Tension 89.69 266.25 87.53 89.22 87.53 89.23 89.23 89.23 89.23 89.23
CARGA BARRA B-112 BARRA B-113 BARRA B-13 BARRA B-13 BARRA B-217 BARRA B-217 BARRA B-217 BARRA B-112 BARRA B-112 BARRA B-112 BARRA B-217 BARRA B-217 BARRA B-217	MQ.Jon THD(%) 3.25 0.23 0.33 3.31 0.29 0.38 MQ.Jon THDI(%) 4.94 3.3 0.44 0.5 4.56 0.44	h WH/ f(Hz) 300 300 300 300 300 300 300 30	A=20(%) v 7.956 2.78 0.6384 0.422 7.999 0.6432 47.176 A=30(%) v 11.349 4.17 0.6531 0.6331 11.996 0.5633 0.56331 0.56331 0.56331 0.56331 0.56331 0.56331 0.56331 0.56331 0.56331 0.56331 0.56331 0.56331 0.56331 0.56331 0.56332 0.56334 0.56334 0.56334 0.56334 0.56334 0.56334 0.56334 0.56334 0.56334 0.56334 0.56334 0.56334 0.56334 0.56334 0.56334 0.56355 0.56355 0.565555 0.555555 0.555555 0.5555555555	u[%] 1.81 1.21 0.16 0.18 1.82 0.16 0.21 U[%] 2.72 1.81 0.24 0.24	0.08MVA Arg. Tension 25.69 257.25 87.25 87.27 87.27 80.35 0.12MVA Arg. Tension 85.69 269.25 87.23 87.27 85.25 85.25 85.25 85.25 87.25 85.25 87.25 85.25 87.25 85.2

CARGA	MQ.Jon	n WH/	A=40(%)		0.16MVA
BARRA	7HDI(%)	f(Hz)	v	u(%)	Ang.Tension
BARRA 8-122	5.59	300	15.932	3.62	89.69
BARKA B-113	4,4	300	5.56	2.42	269.25
BARRA B-85	0.58	300	1.277	0.32	87.53
BARRA B-88	0.67	300	0.8441	0.37	89.22
BARKA B-217	6.62	300	15.998	3.54	87,73
BARRA B-221	0.58	300	1.18	0.32	87,37
SARRA B-81	0.75	300	94.352	0.42	90.36
CARGA	MQ.Jon	h WH/	A=50(%)		0.20MVA
BARRA	THDI(%)	1(Hz)	v	v(%)	Ang.Tension
BARRA 8-112	8.24	300	19.915	4.53	69.69
SARRA 8-113	5.5	300	6.95	3.02	269.25
BARRA 8-85	0.73	300	1.596	0.4	87.53
BARKA B-85	0.63	300	1.055	0.46	89.22
BARRA B-217	8.27	300	19.997	4.54	87.73
BARRA B-222	0.73	300	1.601	0.4	.87,77
BARKA D-02	0.94	300	117.54	0.52	90.36
					L
CARGA	MQ.Jon	h WH	A=60(%)	••	0.24MVA
CARGA BARRA	MQ.Jon	h WH/	A=60(%)	v !% }	0.24MVA Ang.Tensión
CARGA BARRA BARRA B-112		h WH.	A=60(%) v 23.898	v(%) 5,43	0.24MVA Ang.Tension \$9.69
CARGA BARRA BARRA B-112 BARRA B-113	MQ.Jon TROINS 9.55 6.5	h WH/ (1H2) 300 300	A=60(%) 23.898 8.34	u(%) 5,43 3,63	0.24MVA Ang.Tension 59.69 269.25
CARGA BARRA BARRA B-112 BARRA B-113 BARRA 8-65	MQ.Jon THON(%) 9.88 6.5 0.87	h WH/ f(Hz) 300 300	A=60(%) v 23.898 8.34 1.515	u(%) 5,43 3,63 0,48	0.24MVA Ang.Tensión 89.69 269.25 87.53
CARGA BARRA B-112 BARRA B-113 BARRA B-85 BARRA B-88	MQ.Jon THDI(N) 9,85 6.5 0,87 1	h WH/ 300 300 300 300	A=60(%) v 23.898 8.34 1.515 1.266	U[%} 5.43 3.63 0.46 0.55	0.24MVA Ang.Tensión 89.59 269.25 87.53 89.22
CARGA BARRA BARRA B-112 BARRA B-113 BARRA B-313 BARRA B-317	MQ.Jon TRD(%) 9.85 6.5 0.87 1 9.52	h WH/ 300 300 300 300 300	A=60(%) v 23.898 8.34 1.915 1.266 23.997	U[%} 5,43 3,63 0,46 0,55 5,45	0.24MVA Ang.Tensión 89.59 269.25 87.53 89.22 87.73
CARGA BARRA B-112 BARRA B-113 BARRA B-113 BARRA B-313 BARRA B-317 BARRA B-217 BARRA B-221	MQ.Jon TRD(%) 9.88 6.5 0.87 1 9.52 0.87	h WH/ 300 300 300 300 300 300 300	A=60(%) v 23.898 8.34 1.915 1.266 23.997 1.921	u(%) 5,43 3,63 0,46 0,55 5,45 0,48	0,24MVA Ang,Tensión 89,69 269,25 87,53 89,22 87,73 87,73 87,77
CARGA BARRA BARRA B-112 BARRA B-113 BARRA B-85 BARRA B-85 BARRA B-217 BARRA B-221 BARRA B-81	MQ.Jon TRD(%) 9.88 6.5 0.87 1 9.92 0.87 1.13	h WH/ 300 300 300 300 300 300 300 300 300	A=60(%) v 23.898 8.34 1.515 1.266 23.557 1.921 1.921 1.41.528	u(%) 5,43 3,63 0,46 0,55 5,45 0,48 0,62	0.24MVA Ang.Tensión 89.69 269.25 87.53 89.22 87.73 87.77 90.36
CARGA BARRA BARRA B-112 BARRA B-113 BARRA B-13 BARRA B-35 BARRA B-35 BARRA B-217 BARRA B-217 BARRA B-211 BARRA B-211	MQ.Jon THD(%) 9.55 6.5 0.87 1 9.92 0.87 1.13	h WH/ f(H2) 300 300 300 300 300 300 300 30	A=60(%) v 23.898 8.34 1.315 1.266 23.957 1.921 141.528	u[%} 5,43 3,63 0,46 0,55 5,45 0,48 0,62	0.24MVA Ang.Tensión 59.69 269.25 87.53 89.22 87.73 87.73 87.73 87.73 87.73
CARGA BARRA B-112 BARRA B-113 BARRA B-13 BARRA B-35 BARRA B-35 BARRA B-217 BARRA B-221 BARRA B-81 CARGA	MQ.Jon TRO(N) 2,88 6,5 0,87 1 9,92 0,87 1,13 MQ.Jon	h WH/ (Hr) 300 300 300 300 300 300 300 300	A=60(%) v 23.898 8.34 1.515 1.266 23.597 1.921 1.41.528 A=70(%)	u(%) 5,43 3,63 0,46 0,55 5,45 0,48 0,62	0,24MVA Ang,Tensión 89.69 209.25 87.53 89.22 87.73 87.73 87.77 90.36
CARGA BARRA B-112 BARRA B-153 BARRA B-85 BARRA B-85 BARRA B-85 BARRA B-221 BARRA B-51 CARGA BARRA	MQ.Jon TRO(N) 9,85 6,5 0,87 1,13 9,92 0,87 1,13 MQ.Jon THO(N)	h WH/ (Hz) 300 300 300 300 300 300 300 400 300 300	A=60(%) v 23.898 8.34 1.315 1.266 23.957 1.921 141.528 A=70(%) v	U(%) 5,43 3,63 0,46 0,55 5,45 0,48 0,62	0.24MVA Ang,Tendon 85.69 269.35 87.53 87.53 87.73 87.73 87.77 90.36 0.2BMVA Ang,Tendon
CARGA BARRA BARRA B-113 BARRA B-113 BARRA B-65 BARRA B-65 BARRA B-217 BARRA B-217 BARRA B-51 CARGA BARRA B-132	MQ.Jon THO(%) 9.85 0.87 1.11 0.87 1.11 MQ.Jon THD(%) 11.53	h WH/ (Hz) 300 300 300 300 300 300 300 300 300 30	A=60(%) v 23.898 8.34 1.915 1.266 23.557 1.921 141.528 A=70(%) v 27.851	U(%) 5,43 3,63 0,46 0,55 5,45 0,52 U(%) 6,34	0,24MVA Ang.Tension 89.59 269.25 87.73 87.73 87.77 90.36 0.26MVA Ang.Tension 85.65
CARGA BARRA B-112 BARRA B-113 BARRA B-113 BARRA B-113 BARRA B-133 BARRA B-217 BARRA B-217 BARRA B-1132 BARRA B-1132	MQ.Jon THD(%) 9,58 6,5 0,87 1,13 9,92 0,87 1,13 MQ.Jon THD(%) 11,53 7,7	h WH/ (Hz) 300 300 300 300 300 300 300 30	A=60(%) v 23.898 8.34 1.226 23.557 1.41.528 A=70(%) v 27.881 9.73	u(%) 5,43 3,63 0,55 5,45 0,55 0,48 0,62 u(%) 6,34 4,23	0,24MWA Ang.Tensión 85,69 269,25 87,23 85,22 87,73 87,77 90,36 0.28MWA Ang.Tensión 85,69 269,25
CARGA BARA B-112 BARA B-113 BARA 8-68 BARA 8-68 BARA 8-68 BARA 8-217 BARA 8-217 BARA 8-217 BARA 8-31 CARGA BARA B-132 BARA B-132 BARA 8-65	MQ.Jon THD(%) 9.55 6.5 0.87 1.13 MQ.Jon THD(%) 21.53 7.7 1.02	h WH/ (Hz) 300 300 300 300 300 300 300 30	A = 60(%) v 23.898 B.34 1.315 1.226 23.957 1.921 141.528 $A = 70(%)$ v 27.881 9.73 2.235	u(%) 5,43 3,63 0,55 5,45 0,62 0,62 0,62	0,24MWA Ang.Tension 89,69 269,25 87,73 87,73 87,77 90,36 0,28MWA Ang.Tension 89,69 259,25 87,23
CARGA BARRA B-112 BARRA B-113 BARRA B-68 BARRA B-68 BARRA B-68 BARRA B-512 BARRA B-512 BARRA B-112 BARRA B-113 BARRA B-513	MQ.Jon TRD(N) 9,85 6.5 0.87 9,93 0.87 1.13 MQ.Jon THD(N) 11.53 7.7 1.02 1.17	h WH/ (Hz) 300 300 300 300 300 300 300 30	A = 60(%) v 23.898 8.34 1.535 1.266 23.557 1.41.528 A = 70(%) v 27.881 9.73 2.235 1.477	u(%) 5,43 3,63 0,46 0,55 5,45 0,62 u(%) 6,34 4,23 0,56 0,54	0.24MVA Ang.Tensión 85.69 265.25 87.53 83.22 87.53 87.25 87.
CARGA BARRA 51 BARRA 61 BARRA 6-113 BARRA 8-65 BARRA 8-65 BARRA 8-65 BARRA 8-51 BARRA 6-51 BARRA 8-55 BARRA 8-65 BARRA 8-65	MQ.Jon TREMINS 2.85 6.5 0.87 1 1.13 MQ.Jon TH(DI(N) 1.15 7.7 1.02 1.17 1.15	h WH/ (ive) 300 300 300 300 300 300 300 30	A = 60(%) v 23.898 B.34 1.515 1.266 23.957 1.921 141.528 A = 70(%) v 27.881 9.73 2.235 1.477 27.396	U(%) 5.45 0.46 0.55 5.45 0.62 U(%) 6.34 4.23 0.64 0.64 6.35	0.24MVA Ang.Tension 85.69 253.35 87.33 87.33 87.73 90.26 0.72BMVA Arg.Tension 85.69 259.05 87.33 83.12 87.33 83.12 87.33
CARGA BARRA BARRA B-113 BARRA B-113 BARRA B-13 BARRA B-217 BARRA B-217 BARRA B-217 BARRA B-132 BARRA B-132 BARRA B-132 BARRA B-217 BARRA B-217 BARRA B-217 BARRA B-217	MQ.Jon TRD(N) 9.85 6.5 0.87 1.13 0.87 1.13 MQ.Jon THD(N) 1.153 7.7 1.02 1.17 1.155 1.02	h WH/ (141) 300 300 300 300 300 300 300 30	A = 60(%) v 23.898 A34 1.915 1.266 23.597 1.921 141.528 A=70(%) v 27.851 9.73 2.315 1.477 27.996 2.241	u(%) 5.49 3.63 0.46 0.55 5.45 0.62 0.62 0.62 0.63 4.23 0.56 0.56 0.56	0,24MVA Aq;Tension 35.69 265.35 87.53 83.22 87.73 87.73 80.36 0.28MVA Ag;Tension 85.69 265.25 87.33 85.22 87.73 87.73 87.73 87.73 87.73 87.77