UNIVERSIDAD NACIONAL DEL CALLAO

FACULTAD DE CIENCIAS ECONÓMICAS ESCUELA PROFESIONAL DE ECONOMÍA

"EFECTO DE LAS EXPORTACIONES DE PRODUCTOS NO TRADICIONALES EN EL CRECIMIENTO ECONÓMICO DEL PERÚ, 2005-2019"

TESIS PARA OPTAR EL TITULO PROFESIONAL DE ECONOMISTA

AUTORES

DIEGO RICARDO, CARRASCO NOA

ANDRES ELIAS, PONCE TORRES

ADALINDA JAYSELINA, QUISPE ARISACA

ASESOR DR. GRIMALDO PÉREZ BACA

LÍNEA DE INVESTIGACIÓN: ECONOMÍA GENERAL

Callao – 2023

PERÚ

INFORMACIÓN BÁSICA

FACULTAD : Ciencias Económicas

UNIDAD DE INVESTIGACIÓN: Facultad de Ciencias Económicas

TÍTULO : EFECTO DE LAS EXPORTACIONES DE

PRODUCTOS NO TRADICIONALES EN EL CRECIMIENTO ECONÓMICO DEL

PERÚ, 2005-2019

AUTORES : Diego Ricardo Carrasco Noa,

Andrés Elías Ponce Torres

Adalinda Jayselina Quispe Arisaca

CÓDIGO ORCID: 0009-0000-2729-4051 - DNI: 76012922

CÓDIGO ORCID: 0009-0000-4498-8063 - DNI: 76809281

CÓDIGO ORCID: 0009-0006-6844-9025 - DNI 74061279

ASESOR: Dr. Grimaldo Pérez Baca

CODIGO ORCID: 0000-0002-4639-4700 - DNI 74879563

LUGAR DE EJECUCIÓN: Universidad Nacional del Callao.

UNIDAD DE ANÁLISIS: Series económicas.

TIPO DE INVESTIGACIÓN: Aplicado, descriptivo y explicativo.

ENFOQUE DE INVESTIGACIÓN: Cuantitativo.

DISEÑO DE INVESTIGACIÓN: No experimental – Longitudinal.

TEMA OCDE: 5.2.1-Economia

Document Information

Analyzed document Archivo 1 1A, Carrasco Diego, Ponce Andres, Quispe Adalinda - TITULO-

2023.docx (D173422557)

Submitted 2023-09-04 17:44:00

Submitted by

Submitter email fce.investigacion@unac.edu.pe

Similarity 7%

Analysis address unidaddeinvestigacion.fce.unac@analysis.urkund.com

Sources included in the report

Dario Azogue .pdf

TESIS INCIDENCIA DEL SECTOR MINERO EN EL CRECIMIENTO ECONÓMICO DEL PERÚ 1993- 2019 OLINDA KATHERINE SÁNCHEZ CABRERA.docx

Document TESIS INCIDENCIA DEL SECTOR MINERO EN EL CRECIMIENTO ECONÓMICO DEL PERÚ 1993- 2019 OLINDA KATHERINE SÁNCHEZ CABRERA.docx (D171766926)

20

Document Dario Azogue .pdf (D109184722)

88 2

NFLUENCIA DEL GASTO PÚBLICO SOCIAL SOBRE EL ÍNDICE DE DESARROLLO HUMANO EN PERÚ. 1994 – 2017.docx

Document NFLUENCIA DEL GASTO PÚBLICO SOCIAL SOBRE EL ÍNDICE DE DESARROLLO HUMANO EN PERÚ, 1994 – 2017.docx (D109000405) # 1

TESIS VIANKA AMERICA MARIÑO CHUQUIMIA.pdf

Document TESIS VIANKA AMERICA MARIÑO CHUQUIMIA.pdf (D106552942)

BB 2

CA TESIS FINAL.docx

Document TESIS FINAL.docx (D141003841)

88 1

CA Tesis Janmer Rojas.docx

Document Tesis Janmer Rojas.docx (D139459668)

88 2

SA

TESIS-NATHALIA BARZOLA.docx

Document TESIS-NATHALIA BARZOLA.docx (D158277207)

BB 2

Entire Document

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIENCIAS ECONÓMICAS ESCUELA PROFESIONAL DE ECONOMÍA

TESIS DE INVESTIGACIÓN

EFECTO DE LAS EXPORTACIONES DE PRODUCTOS NO TRADICIONALES EN EL CRECIMIENTO ECONÓMICO DEL PERÚ, 2005-2019 Autores Carrasco Noa, Diego Ricardo Ponce Torres, Andres Elias Quispe Arisaca, Adalinda Jayselina Asesor Dr. Grimaldo Pérez Baca Línea de investigación: Economía general Callao – 2023 PERÚ

https://secure.urkund.com/view/165704109-871487-285349#/document?tab=findings

1/35

HOJA DE REFERENCIA DEL JURADO EVALUADOR

PRESIDENTE: Dr. Máximo Estanislao Calero Briones

SECRETARIO: Mg. David Dávila Cajahuanca

VOCAL: Mg. César Alberto Salinas Castañeda

MIEMBRO: Mg. José Asención Corbera Cubas

ASESOR: Dr. Grimaldo Pérez Baca

N° DE LIBRO 01

Nº DE FOLIO 276

Nº DE ACTA 21/23

ACTA DE SUSTENTACIÓN DE TESIS CON CICLO DE TESIS PARA LA OBTENCIÓN DEL TÍTULO PROFESIONAL DE ECONOMÍA

LIBRO 1 FOLIO №. 276 ACTA N° 21/23 DE SUSTENTACIÓN DE TESIS CON CICLO DE TESIS PARA LA OBTENCIÓN DEL TÍTULO PROFESIONAL DE ECONOMÍA

A los 07 días del mes de octubre del año 2023 siendo las 19.90 horas se reunió el JURADO DE SUSTENTACIÓN DE TESIS en la Facultad Ciencias Económicas de la Universidad Nacional del Callao, para la obtención del título profesional de Economista, designado por resolución N° 308-2023-CF/FCE, conformado por los siguientes docentes ordinarios de la Universidad Nacional del Callao:

Dr. Máximo Estanislao Calero Briones

: Presidente

Mg. David Dávila Cajahuanca

: Secretario

Mg. César Alberto Salinas Castañeda

: Vocal

Mg. José Asención Corbera Cubas

: Miembro(s)

Se dio inicio al acto de sustentación de la tesis de los Bachilleres, CARRASCO NOA DIEGO RICARDO, PONCE TORRES ANDRÉS ELÍAS, Y QUISPE ARISACA ADALINDA JAYSELINA, quienes habiendo cumplido con los requisitos para optar el Título Profesional de ECONOMIA, sustentan la tesis titulada "EFECTO DE LAS EXPORTACIONES DE PRODUCTOS NO TRADICIONALES EN EL CRECIMIENTO ECONÓMICO DEL PERÚ, 2005-2019", cumpliendo con la sustentación en acto público;

Con el quórum reglamentario de ley, se dio inicio a la sustentación de conformidad con lo establecido por el Reglamento de Grados y Títulos vigente. Luego de la exposición, y la absolución de las preguntas formuladas por el Jurado y efectuadas las deliberaciones pertinentes, acordó: Dar por con la escala de calificación cualitativa de Consejo. Y calificación cuantitativa de Grados y Títulos de la UNAC, aprobado por Resolución de Consejo Universitario N° 150-2023-CU del 15 de junio del 2023.

Se dio por cerrada la sesión a las 13.15 horas del día 07 de octubre del 2023.

Dr. Máximo Estanislao Calero Briones

Presidente

Mg.David Dávila Cajahuanca

Secretario

Mg. César Alberto Salinas Castañeda Vocal

(Miembro suplente)

osé Asención Corbera Cubas

Bellavista, 27 de octubre del 2023

SEÑOR

Dr. CARO ANCHAY AUGUSTO

Decano de la Facultad de Ciencias Económicas Universidad Nacional del Callao

De mi mayor consideración

Es grato dirigirnos a Usted a fin saludarlo e informarle lo siguiente:

Los miembros el Jurado hemos revisado el Informe que contiene la absolución de las observaciones que dimanaron del acto de sustentación de la tesis "EFECTO DE LAS EXPORTACIONES DE PRODUCTOS NO TRADICIONALES EN EL CRECIMIENTO ECONÓMICO DEL PERÚ, 2005-2019", de los señores: DIEGO RICARDO CARRASCO NOA, ANDRES ELIAS PONCE TORRES y ADALINDA JAYSELINA QUISPE ARISACA. Dicho acto se realizó el 07 de octubre del 2023.

Luego de la revisión del referido documento, los miembros del Jurado: Dr. Máximo Estanislao Calero Briones, Mg. David Dávila Cajahuanca, Mg. César Alberto Salinas Castañeda y el Mg. José Asención Corbera Cubas, hemos dado la conformidad respectiva. Por lo tanto, acordamos darle paso para que continúe el proceso administrativo que corresponda.

Sin otro particular, quedamos de Usted,

Atentamente

Dr. MÁXIMO ESTANISLAO CALERO BRIONES

Presidente

DEDICATORIA

Carrasco Noa Diego R.

A Dios, a mis padres, por estar siempre a mi lado apoyándonome incondicionalmente, pues son mi más grande fuente de motivación para seguir adelante y superarme.

A la UNAC, a mi Facultad de Ciencias Económicas que me recibieron para desempeñarme profesionalmente.

Ponce Torres Andres E.

Dedico la tesis a Dios, a mis padres por siempre apoyarme en todo y darme la fuerza para seguir adelante; también se la dedico a mi abuela que en paz descanse, y por último, a una persona muy especial que me ayudó mucho en mi etapa universitaria.

Quispe Arisaca, Adalinda J.

Dedico en primer lugar a Dios por brindarme salud y fuerza para realizar este proceso de investigación y en segundo lugar dedico esta tesis a mi familia por apoyarme en mi carrera universitaria y seguir apoyándome personalmente y brindarme su apoyo incondicional.

AGRADECIMIENTO

A la Universidad Nacional del Callao por forjarnos en sus aulas. a la Facultad de Economía, a la Escuela profesional de Economía por contribuir con nuestra formación profesional, a la comunidad educativa de la facultad de Ciencias Económicas por brindarnos sus conocimientos.

A la entidad pública BCRP, por brindarnos la información empírica para la realización del análisis teórico, estadístico y econométrico de la tesis.

A las personas que hicieron posible el desarrollo de la investigación, especialmete a nuestros padres que fueron los promotores de nuestros sueños durante este proceso y a nuestros profesores por el apoyo y tiempo brindado en la elaboración de la tesis.

A los asesores de tesis, por compartir su tiempo, conocimientos, consejos y experiencias para el desarrollo de la tesis, al jurado evaluador de la tesis por sus recomendaciones y valoración constructiva.

A los estudiantes interesados en el tema, a los investigadores que toman como referencia esta tesis para hacer un estudio comparativo de cómo cambian las variables a lo largo del tiempo, a la comunidada científica, ya que la ciencia hace posible el desarrollo de esta producción científica llamada tesis.

Y al público en general que nos brindó su apoyo, cariño, colaboración, ánimo, amistad y entusiasmo. Muchas Gracias.

ÍNDICE

Dedicatoria	8
Agradecimiento	9
Introducción	15
I. PLANTAMIENTO DEL PROBLEMA	17
1.1. Descripción de la realidad problemática	17
1.2 Formulación del problema	23
1.3 Objetivos	23
1.4 Justificación	24
1.5 Delimitantes de la investigación	26
II. MARCO TEÓRICO	28
2.1 Antecedentes	28
2.2 Bases teóricas	36
2.3 Marco conceptual	39
2.4 Definición de términos básicos	43
III. HIPÓTESIS Y VARIABLES	45
3.1 Hipótesis (general y específica)	45
3.1.1 Operacionalización de Variable	47
IV. METODOLOGÍA DEL PROYECTO	48
4.1 Diseño Metodológico	48
4.2 Método de investigación	48
4.3 Población y muestra	49
4.4 Lugar de estudio y periodo desarrollado	50
4.5 Técnicas e instrumentos para la recolección de la información	50
4.6 Análisis y procesamiento de datos	50
4.7 Aspectos éticos en investigación	52
V. RESULTADOS	53
VI. DISCUSIÓN DE RESULTADOS	91
VII. CONCLUSIONES	96
VIII. RECOMENDACIONES	99
IX. REFERENCIAS BIBLIOGRÁFICAS	101
Y ANEVOS	108

INDICE DE TABLAS

Tabla 1 Operacionalización de variables	47
Tabla 2 Estadistica Descriptiva PBI.	53
Tabla 3 Exportaciones Agropecuarias	54
Tabla 4 Exportaciones Pesqueras.	56
Tabla 5 Exportaciones Químicas	57
Tabla 6 Exportaciones Minerales No Metalicas	58
Tabla 7 Exportaciones Metalmecánicas	59
Tabla 8 Test de Hegy PBI	61
Tabla 9 Test de Hegy Agropecuario	63
Tabla 10 Test de Hegy Pesquero	64
Tabla 11 Test de Hegy Químico	65
Tabla 12 Test de Hegy Mineral	66
Tabla 13 Test de Hegy Metalmecánico	68
Tabla 14 Test de Hegy DLPBI	73
Tabla 15 Test de Hegy DLAGRO	74
Tabla 16 Test de Hegy DLPESQUERO	76
Tabla 17 Test de Hegy DLQUÍMICO	78
Tabla 18 Test de Hegy DLMINERAL	79
Tabla 19 Test de Hegy DLMETAL	81
Tabla 20 Estimación por defecto modelo VAR	82
Tabla 21 Prueba del número de rezagos óptimos	84
Tabla 22 Estimación del modelo VAR	84
Tabla 23 Prueba de normalidad	87
Tabla 24 Test de White	88
Tabla 25 Prueba de Autocorrelación	88

INDICE DE FIGURAS

Figura 1 Comportamiento estacional PBI	54
Figura 2 Comportamiento estacional Exportaciones Agropecuarias	55
Figura 3 Comportamiento estacional Exportaciones Pesqueras	56
Figura 4 Comportamiento estacional Exportaciones Químicas	58
Figura 5 Comportamiento estacional Exportaciones Minerales no metálicos	59
Figura 6 Comportamiento estacional Exportaciones Metalmecánicas	60
Figura 7 Filtro STL LPBI	69
Figura 8 Filtro STL LAGRO	70
Figura 9 Filtro STL LPESQUERO	70
Figura 10 Filtro STL LQUÍMICO	71
Figura 11 Filtro STL LMINERAL	71
Figura 12 Filtro STL LMETAL	72
Figura 13 Comportamiento DLPBI	72
Figura 14 Comportamiento DLAGRO	74
Figura 15 Comportamiento DLPESQUERO	75
Figura 16 Comportamiento DLQUÍMICO	77
Figura 17 Comportamiento DLMINERAL	79
Figura 18 Comportamiento DLMETAL	80
Figura 19 Función Impulso Respuesta del modelo VAR	89
Figura 20 Respuesta del PBI con respecto a las exportaciones de productos no	
tradicionales	90

RESUMEN

"Efecto de las Exportaciones de Productos No Tradicionales en el Crecimiento Econòmico del Perù, 2005-2019", la investigación tuvo como objetivo, analizar el efecto de las exportaciones de productos no tradicionales en el crecimiento económico del Perú, 2005-2019. El análisis de la investigación se fundamento en el procesamiento de la data secundaria fundamentada en los datos cuantitativos del PBI Real y los sectores económicos agropecuario, pesquero, quìmico, minerales no metàlicos y metalmecánicos para la economía peruana, la información de campo se fundamenta a partir de la tasa mensual publicado por el BCRP. Los resultados indican que utilizando un Modelo VAR y analizando con la función Impulso-Respuesta los 5 sectores tuvieron una influencia positiva en el crecimiento económico con medianamente nivel de significancia.

Se concluye que durante el periodo de análisis si existe relación positiva de las exportaciones no tradicionales en el Crecimiento Econòmico que marcaron la tendencia de la economía peruana.

Palabras Claves: Crecimiento Económico, Exportaciones No Tradicionales, Sectores Económicos, VAR.

ABSTRACT

"Effect of Exports of Non-Traditional Products on the Economic Growth of

Peru, 2005-2019", the objective of the research was to analyze the effect of exports of

non-traditional products on the economic growth of Peru, 2005-2019. The analysis of

the research is based on the processing of secondary data based on the quantitative data

of the Real GDP and the agricultural, fishing, chemical, non-metallic minerals and

metal-mechanical economic sectors for the Peruvian economy, the field information is

based on the monthly rate published by the BCRP.

The results indicate that using a VAR Model and analyzing with the Impulse-

Response function, the 5 sectors positively influence economic growth with a medium

level of significance.

It is concluded that during the period of analysis if there is a positive

relationship of non-traditional exports in the Economic Growth that marked the trend of

the Peruvian economy.

Keywords: Economic Growth, Non-Traditional Exports, Economic Sectors,

VAR.

14

INTRODUCCIÓN

La Tesis que ponemos a consideración, es con la finalidad de investigar la relación de las variables productos no tradicionales y crecimiento económico cuyo título es "Efecto de las exportaciones de productos no tradicionales en el crecimiento económico del Perú, 2005-2019".

La investigación es importante porque nos da a conocer cómo es que influyen las exportaciones no tradicionales en el crecimiento económico del Perú, además es importante de la aplicación de políticas económicas sectoriales y fomentar así el intercambio comercial.

Los principios fundamentales es la teoría económica del comercio basado que los bienes y servicios se pueden intercambiar entre diferentes naciones a costo de producción bajos. En relación al crecimiento, el principio fundamental es que todo país pueda tener un crecimiento a largo plazo para que pueda dinamizar su economía.

Los estudios previos en los que se fundamenta la tesis y en los que hay amplia investigación son: Pierina, 2022, en su tesis "El sector pesquero en el período 1990-2018 y su influencia en el crecimiento económico del Perú", Arrieta, 2020, en su tesis "Incidencias de las exportaciones no tradicionales agropecuarias y textiles en el crecimiento económico del Perú, período 2006-2017.

La hipótesis de la tesis a demostrar es: el efecto de las exportaciones de productos no tradicionales en el crecimiento económico del Perú, 2005-2019. La presente investigación tiene el objetivo de analizar cuál fue el efecto de las exportaciones de productos no tradicionales en el crecimiento económico del Perú, 2005-2019.

El propósito de la investigación se centra en el nivel de exportaciones no tradicionales que sostiene el Perú durante las últimas décadas, así como el análisis del comportamiento de los sectores productivos en la economía nacional tales como: agropecuario, pesquero, químicos, minerales no metálicos y metalmecánicos, los cuales tienen incidencia importante sobre el comportamiento de la economía peruana.

El método es de enfoque cuantitativo, con ello resulta ser un método hipotéticodeductivo, así mismo, el desarrollo de la tesis tiene la siguiente estructura, en el capítulo
I se discutirá la realidad problemática, problemas y objetivos de la investigación desde
perspectiva general y específicas; luego se presenta la justificación y limitaciones que
presenta el estudio. En el capítulo II se desarrolla el marco teórico, al mismo tiempo se
dará una selección de base teórica alineada a las variables que relacionamos en el
estudio. A continuación, el capítulo III presenta las hipótesis propuestas del problema
objeto de estudio, definiciones conceptuales y la operacionalización de las variables del
informe.

El capítulo IV proporciona el diseño metodológico sustenta el tipo, diseño y método de investigación. El capítulo V muestra los Resultados descriptivos e inferenciales obtenidos mediante el modelo VAR y un análisis de la función Impulso-Respuesta Durante el capítulo VI se realiza la Discusión de los Resultados y contrastación de las hipòtesis. El capítulo VII incluye las referencias bibliográficas y fuentes de información como apoyo para la elaboración del presente estudio. El capítulo VIII presentamos la matriz de consistencia y la base de datos. Los resultados obtenidos de las exportaciones de productos no tradicionales influyeron significativamente en el crecimiento peruano, 2005-2019.

LOS AUTORES

I. PLANTEAMIENTO DEL PROBLEMA

1.1. Descripción de la realidad problemática

En términos generales, el crecimiento econòmico es el incremento de producción de bienes y servicios producidos por una economía en un determinado periodo. Según Papadópolos (2016):

Es el incremento de Productos y Servicios de una Nación medido y comparado generalmente contra el año calendario anterior. La variable por excelencia que mide el Crecimiento Económico es el PBI (Producto Bruto Interno), el cual se expresa en cifra pecuniaria (dineraria).

En base a lo anterior, el PBI es un indicador que mide el valor de la actividad económica dentro de un territorio para un periodo de tiempo especifico, por lo tanto el PBI en la economía refleja la situación económica de la nación. Según MEF (2023), "El PBI es el valor monetario de los bienes y ser vicios finales producidos por una economía en un período determinado".

De otra parte, las exportaciones no tradicionales es una actividad para comercializar productos que cuentan con valor agregado, han pasado por un proceso de industrialización o que cuentan con manufactura. Según BCRP (2023), "Las exportaciones no tradicionales son productos que tienden a tener un mayor valor agregado. Para fines de presentación el BCRP los agrupa en agropecuarios, textiles, pesqueros, maderas y papeles, químicos, metal-mecánicos, sidero-metalúrgicos y joyería, minería no metálica y otros".

En el contexto internacional, el desarrollo del comercio exterior promueve la expansión global de la producción de bienes y servicios al reducir las barreras comerciales como los derechos de aduana, los impuestos a las exportaciones y las

cuotas de importación, y al reducir las restricciones a los bienes y servicios. El flujo de capitales y de inversiones, así como el desarrollo del comercio, contribuyen al crecimiento económico de los países.

Las exportaciones no tradicionales peruanas a Alemania tuvieron un destacado resultado en 2014, manteniendo la diversificación y consolidación de nuestra oferta exportable en este mercado, además del potencial comercial que existe entre ambos países.

Segùn MINCETUR (2014):

En el 2014, las exportaciones no tradicionales a Alemania alcanzaron los US\$ 242.6 millones, resultado que significó un incremento del 29.3% en comparación al año anterior. Estas exportaciones se concentraron mayormente en los sectores agropecuario (48.6%, con un total exportado de US\$), textil/confecciones (18.6%), pesca (11.5%) y químico (10.9%), sectores que a su vez lograron aumentar la presencia de sus productos en el mercado alemán. Destacados incrementos de exportaciones respecto del año anterior se dieron en los sectores de minería no metálica (+95.1%, con un total exportado de US\$ 6 millones) y sidero-metalúrgica (+73.1% con un total exportado de US\$ 12.4 millones). Cabe mencionar que en el 2014 las exportaciones no tradicionales representaron el 19% del total de las exportaciones a Alemania, lo cual significó un incremento del 19% en comparación al año 2013.

En un contexto latinoamericano, Fondo Monetario Internacional (2011) plantea que algunos países que más exportan en Latinoamérica son: Chile es conocido por su economía orientada al mercado caracterizada por un amplio comercio exterior. En este país, las exportaciones de bienes y servicios representan alrededor de un tercio del PIB, mientras que los productos básicos representan el 60% de las exportaciones totales. El

cobre es la mayor exportación de Chile y representa el 20% de los ingresos nacionales. En los últimos años, Chile ha profundizado constantemente su acuerdo de libre comercio con Estados Unidos y ha firmado más de 26 acuerdos con 60 países, entre ellos la UE, China, India, Corea del Sur y México.

Chile tuvo el valor de exportaciones de productos no tradicionales en el año 2006 de 25.180 millones de dólares teniendo un crecimiento en el año 2011 de 37.180 millones de dólares.

Colombia es una potencia exportadora dependiendo en gran medida de productos básicos como el petróleo en un 20% así como del café, carbón y niquel. En Colombia, empresas extranjeras están instalando fábricas para maximizar su posición geográfica como puerta de entrada de América Latina siendo este acceso a los océanos Atlántico y Pacifico una de las razones por las cuales el país se posiciona entre los 5 principales exportadores de productos como el café, plátano, entre otros productos. Tradicionalmente, el sector agropecuario ha sido una de las áreas económicas más relevantes y se conoce que el país destina más del 50% de su suelo a la producción agrícola.

Colombia tuvo el valor de exportaciones de productos no tradicionales en el año 2006 de 15.415 millones de dólares teniendo un crecimiento en el año 2011 de 23.130 millones de dólares.

En un contexto nacional, Según COMEX (2021), "Las exportaciones no tradicionales en los últimos años, registran un crecimiento anual del 5.6% y un aumento acumulado del 64.8%". Según MINCETUR (2019):

Las exportaciones no tradicionales marcaron un nuevo hito histórico en el 2019 al sumar 13,791 millones de dólares, lo que implica un incremento de 4.1% en relación

con lo registrado el 2018, informó el titular del Ministerio de Comercio Exterior y Turismo.

Según COMEX PERU (2020):

Los principales productos no tradicionales son: el agropecuario (7%) pesquero (18.5%) y el químico (3.5%), así mismo, minerales no metálicos y metal mecánicos que ha tenido un impacto significativo en el crecimiento económico la peruana en los últimas dos décadas y cabe destacar que el sector agropecuario representó casi el 50% del valor total de las exportaciones no tradicionales desde el 2017.

Perú es uno de los países con mayores volúmenes de exportación porque cuenta con tres regiones naturales con diferentes características geográficas y climáticas que le dan los mejores rendimientos y calidad de clase mundial. La exportación agrícola es una de las actividades más apremiantes en el país, ya que conduce a una mayor Población Económicamente Activa (PEA) formal e inclusiva entre hombres y mujeres con diferentes niveles de educación.

La agroexportación posiciona al Perú en el mercado mundial con productos de alta calidad, de igual manera, el agro se encuentra en el segundo puesto como el sector exportador más importante después de la minería, generando más de 3 millones 129 mil empleos directos e indirectos.

Según INEI (2019):

En diciembre, el grupo de exportaciones no tradicionales destacó la dinámica de los productos pesqueros (50,7%), agropecuarios (8,8%), químicos (16,0%) y siderometalúrgicos (14,4%) y en el segundo grupo figuraron los envíos de productos mineros (11,2%), como el cobre, zinc, plomo y hierro. El volumen de exportación de productos no tradicionales creció en 12,7% respecto a similar mes del año anterior.

Entre los sectores económicos que más incidieron en el resultado figuran el sector agropecuario, pesquero, químico y siderometalúrgico. Entre los países de destino que elevaron su demanda se encontraron Estados Unidos de América, Países Bajos y China.

El volumen exportado del sector agropecuario aumentó en 8,8%, por las mayores transacciones de arándanos (Estados Unidos de América y Países Bajos), mangos y mangostanes (Países Bajos, Estados Unidos de América y España) y espárragos (Estados Unidos de América).

Según COMEX (2020):

Las agroexportaciones no tradicionales se han convertido en el segundo sector más importante de nuestra canasta exportadora, únicamente por detrás de la minería tradicional. En 2019, el valor enviado sumó US\$ 6,317 millones, un 45.8% del rubro no tradicional y un 13.7% del total vendido. La tasa de crecimiento de este sector fue del 7% gracias al dinamismo de algunos de los productos más importantes, como las uvas frescas (US\$ 875 millones; +8%), los arándanos (US\$ 825 millones; +50.1%), las paltas (US\$ 752 millones; +4%) y los espárragos (US\$ 400 millones; +4.3%).

Según COMEX (2020):

Por el contrario, el volumen exportado del sector pesquero reportó una tasa de crecimiento de 9,8%, por la dinámica en los envíos de calamar, pota y jibias (China, España y Corea del Sur). Por otro lado, el sector pesquero acumuló US\$ 1,592 millones en 2019, un 18.5% más que el año anterior, y representó un 11.5% de la canasta no tradicional. Los productos más importantes del sector fueron las jibias y globitos congelados (US\$ 578 millones; +65%) y los moluscos, jibias y calamares (US\$ 262 millones; +5.6%). Los principales destinos de nuestros productos pesqueros no tradicionales fueron China (US\$ 314 millones; 19.7%; +100.7%), España (US\$ 250

millones; 15.7%%; -1.4%), Corea del Sur (US\$ 202 millones; 12.7%; +33.1%) y EE.UU. (US\$ 194 millones; 12.2%; -19.9%).

Según COMEX (2020):

El sector químico también registró una tasa de crecimiento positiva del 3.5% en 2019, con lo cual sumó US\$ 1,591 millones exportados. Esta categoría también representó un 11.5% de los envíos no tradicionales. Nuestra cartera de exportaciones químicas está distribuida entre varios productos, pero algunos de los más importantes son el ácido sulfúrico (US\$ 118 millones; +70.4%); las placas, láminas, hojas y tiras de plástico (US\$ 108 millones; -5.1%), y el alcohol etílico sin desnaturalizar (US\$ 106 millones; +80.4%). Nuestros principales compradores de productos químicos fueron países de la región, como Chile (US\$ 259 millones; 16.3%; +24.5%), Bolivia (US\$ 177 millones; 11.1%; +0.7%), Ecuador (US\$ 173 millones; 10.9%; -3.6%) y Colombia (US\$ 154 millones; 9.7%; -1.9%).

Según El Peruano (2023):

En el 2019, las ventas al exterior de productos de minería no metálica llegaron a 604 millones de dólares. Estados Unidos (117 millones), Brasil (104 millones), Chile (69 millones), Colombia (45 millones) y Ecuador (40 millones) fueron los principales destinos.

Los productos metalmecánicos alcanzaron los 566 millones de dólares, con la mayor demanda proveniente de los Estados Unidos (132 millones), Chile (99 millones), Bolivia (47 millones), Ecuador (45 millones) y Colombia (30 millones).

El TLC establece una estrategia comercial a largo plazo destinada a fortalecer el mercado de los productos peruanos para ampliar los suministros competitivos de exportación agrícola y, a su vez, crear más y mejores empleos.

Por consiguiente, El Perú y China iniciaron acuerdos comerciales de manera formal en el año 2010, este acuerdo para China fue el más importante durante la década pasada. El producto tradicional y no tradicional como la minería, agropecuario tal como los frutos y vegetales (mangos, arándanos, uvas, espárragos, cerezas, etc.), en la economía peruana representa el 90% de exportaciones a China, mientras que las importaciones que provienen de China a Perú son productos manufacturados de medio valor.

1.2. Formulación del problema

1.2.1. PROBLEMA GENERAL

PG: ¿Cuál fue el efecto de las exportaciones de productos no tradicionales en el crecimiento económico del Perú, 2005-2019?

1.2.2. PROBLEMAS ESPECIFÍCOS

PE1: ¿Cuál fue el efecto de las exportaciones de productos agropecuarios no tradicionales en el crecimiento económico del Perú, 2005-2019?

PE2: ¿Cuál fue el efecto de las exportaciones de productos pesqueros no tradicionales en el crecimiento económico del Perú, 2005-2019?

PE3: ¿Cuál fue el efecto de las exportaciones de productos químicos no tradicionales en el crecimiento económico del Perú, 2005-2019?

PE4: ¿Cuál fue el efecto de las exportaciones de productos minerales no metálicos no tradicionales en el crecimiento económico del Perú, 2005-2019?

PE5: ¿Cuál fue el efecto de las exportaciones de productos metalmecánicos no tradicionales en el crecimiento económico del Perú, 2005-2019?

1.3 Objetivos

1.3.1 OBJETIVO GENERAL

OG: Analizar el efecto de las exportaciones de productos no tradicionales en el

crecimiento económico del Perú, 2005-2019.

1.3.2 OBJETIVOS ESPECÍFICOS

OE1: Determinar el efecto de las exportaciones de productos agropecuarios no tradicionales en el crecimiento económico del Perú, 2005-2019.

OE2: Determinar el efecto de las exportaciones de productos pesqueros no tradicionales en el crecimiento económico del Perú, 2005-2019.

OE3: Determinar el efecto de las exportaciones de productos químicos no tradicionales en el crecimiento económico del Perú, 2005-2019.

OE4: Determinar el efecto de las exportaciones de productos minerales no metálicos no tradicionales en el crecimiento económico del Perú, 2005-2019.

OE5: Determinar el efecto de las exportaciones de productos metalmecánicos no tradicionales en el crecimiento económico del Perú, 2005-2019.

1.4 Justificación

1.4.1 Justificación científica

La investigación se basa científicamente por las siguientes razones:

Relevancia económica: Perú es conocido por su abundancia de recursos naturales y así mismo, la exportación de los productos de cada sector económico ha sido un importante fuente de ingresos para la economía peruana.

Analizar cómo estas exportaciones tienen efecto sobre el crecimiento económico, puede brindar información para la formulación de políticas económicas.

Importancia temporal: El periodo 2005 – 2019 es de particular interés debido a los cambios significativos en las exportaciones de productos no tradicionales impactados por los sectores económicos, los cuales han tenido un gran efecto e incidencia en el desarrollo a largo plazo de la economía nacional.

La investigación se justifica porque será de utilidad para que las autoridades estatales promuevan estrategias más eficientes para mejorar cada rubro económico.

Esta investigación permite contribuir a conocimientos existentes sobre la relación entre las exportaciones de productos no tradicionales y el crecimiento económico.

1.4.2 Justificación técnica

La justificación técnica que presenta la tesis de investigación deriva de la utilidad de un análisis de las exportaciones no tradicionales del Perú, de tal manera, que las siguientes investigaciones tengan la facultad de utilizar la información obtenida que expresa la tendencia positiva que dichas exportaciones presentan durante el periodo de estudio. Asimismo, conocer el comportamiento de las variables crecimiento y exportaciones no tradicionales de los productos en los sectores económicos no tradicionales a estudiar.

La implicancia política y económica que resulta ser que ambas variables son proporcionalmente y ambas se entrelazan para fomento de mejoras en los sectores económicos y la aplicación de políticas públicas y comerciales a favor de la economía nacional.

1.4.3 Justificación Institucional

La investigación está acorde en la línea de investigación de la UNAC dentro de las ciencias sociales, disciplina Economía a niveles agregados o macroeconómicos de la economía basado en Comercio Internacional y Crecimiento - Desarrollo Económico.

Los resultados de la presente investigación tienen un impacto significativo a nivel sectorial y agregado. Los hallazgos encontrados pueden ser de mucha utilidad para

la aplicación de diversas políticas que pueden tomar las entidades públicas o privadas para la toma de decisiones económicas.

1.4.4 Justificación personal

La investigación realizada nos motivó a profundizar en el conocimiento y sistematización de modelos econométricos, para fomentar la investigación científica que une la teoría económica y la economía aplicada, para poder ampliar la temática econométrica para futuros estudios. Por consiguiente, nos intriga conocer el comercio internacional de nuestro país con los países vecinos y el intercambio comercial de productos no tradicionales en los diversos sectores de la economía que son base para el crecimiento económico.

1.5 Delimitantes de la investigación

1.5.1 Teórica

Para la tesis, el sustento teórico se basa en las teorías neoclásicas del crecimiento económico y las teorías clásicas y neoclásicas del comercio internacional. La investigación se fundamenta en esas teorías que explicaran y serán soporte de las bases teóricas del problema de investigación.

La investigación está limitada por poca información teórica, metodológica de algunos conceptos referentes a los sectores mineros no metálicos y metalmecánicos que dificultad acceder a mayor información para la investigación.

1.5.2 Temporal

Para la tesis, la unidad temporal que se seleccionó consta de datos de series de tiempo con frecuencia mensual, que abarca el periodo 2005 hasta el periodo 2019. El periodo de tiempo en años es un periodo de 14 años.

El periodo de estudio es longitudinal ya que la recolección abarca una serie de

tiempo.

1.5.3 Espacial

Para la tesis, el alcance espacial abarca los productos no tradicionales del Perú, lo cual incluye el desempeño de los factores productivos de forma particular hacia una manera conjunta durante los años 2005 al 2019.

Se Realizará en la Universidad Nacional del Callao en la Facultad de Ciencias Económica.

II. MARCO TEÒRICO

2.1 Antecedentes

2.1.1 Antecedentes internacionales

Morales y Ramos (2016) en su tesis, "Las Exportaciones No Tradicionales y su contribución al Crecimiento Económico Ecuatoriano periodo 2007 - 2014: Análisis Comparativo Ecuador - Colombia", Universidad Nacional de Chimborazo, facultad de ciencias políticas y administrativas. El problema de investigación es en cuanto ha contribuido las exportaciones no tradicionales al crecimiento económico ecuatoriano en el periodo 2007 - 2014, en comparación con Colombia, el objetivo es determinar la contribución de las exportaciones no tradicionales al crecimiento económico ecuatoriano en el periodo 2007 - 2014, en comparación con Colombia, la población y muestra no fue necesario determinar, la metodología es descriptiva, explicativa y correlacionar con diseño no experimental. Los resultados obtenidos son que se evidencia una relación positiva entre las variables exportaciones y crecimiento económico y el análisis comparativo Ecuador - Colombia muestra comportamientos similares.

En referencia a lo citado se evidencia que, si existe relación entre las exportaciones y el crecimiento económico para Ecuador y Colombia, ya que ambos países tienen similar comportamiento, pero el crecimiento es de baja escala ya que ambos países son productores y extractores de materias primas.

Yugar (2015) en su tesis, "El aporte de las exportaciones de productos no tradicionales y su contribución al crecimiento Económico de La Paz (1994 - 2013)", Universidad Mayor de San Andrés, facultad de ciencias económicas y financieras, el problema es, por qué el conjunto de las exportaciones de productos no tradicionales no

han generado mayores niveles de crecimiento económico en el departamento de La Paz, el objetivo es analizar el comportamiento de los productos no tradicionales en el Departamento de La Paz y su contribución al crecimiento económico, teniendo como periodo de referencia entre 1994 - 2013, la población estudiada es la que radica en el Departamento de La Paz y utilizando el método estadístico inferencial. Los resultados a lo que se llega son que la contribución de los productos de exportación especialmente los no tradicionales ha ido en claro ascenso en el departamento de La Paz, especialmente a partir del año 2004, lo que favorece al Producto Bruto Interno del Departamento.

En referencia a lo citado, los productos no tradicionales inciden en el crecimiento económico del departamento de La Paz con ello permite de una manera positiva en la calidad de la población que lo habita.

Mendoza (2016) en su tesis "La incidencia de la exportación de los principales minerales en el crecimiento económico de Bolivia en el corto y largo plazo 1986-2016." realizada en la Universidad Mayor de San Andrés, facultad de ciencias económicas y ciencias financieras. El problema es cuál es la incidencia de la exportación de los principales minerales en el crecimiento económico de Bolivia en el corto y largo plazo 1986-2016. El objetivo general es analizar la incidencia de la exportación de los principales minerales en el crecimiento económico de Bolivia en el corto y largo plazo. El tipo de método que se utiliza en la investigación es el método deductivo, que parte de un caso particular a un caso general. El tipo de investigación es cuantitativo porque el autor realiza un análisis causa-efecto. El autor utiliza el modelo VAR en el corto plazo para dar seguimiento de las variables y su dinámica en el corto plazo. El autor utiliza el modelo VEC para corregir errores generados por presencia de integración entre las

variables.

En la referencia antes mencionada, se puede concluir que la minería en Bolivia se caracteriza por la exportación de materias primas y esto no permite un crecimiento a largo plazo, debido a la dependencia de la demanda externa, por consiguiente, se recomienda que en Bolivia se debe aprovechar el potencial geológico, que las creaciones de políticas llevan al aumento de las principales exportaciones de minerales con valor agregado.

Gutiérrez (2019) en su tesis "La producción minera y exportación de oro en el Ecuador, una aproximación empírica para el período 2000-2016" realizada en la Universidad Técnica de Ambato, facultad de contabilidad y auditoría, carrera de economía. El problema es ¿cómo influye la producción minera en la exportación de oro en el Ecuador en el periodo 2000-2016? El objetivo general es analizar la relación existente entre la producción minera y las exportaciones de oro en el Ecuador en el periodo 2000-2016. La presente investigación utiliza una población de cifras histórica acerca de la producción, comercialización y cotización del oro. El modelo econométrico que utiliza el autor es el método MCO. Como resultado se concluye los principales hallazgos suponen que en los últimos años el desempeño del sector minero ha sido estable, generado una participación promedio de 1,35% al PIB nacional.

En referencia a lo citado se recomienda priorizar aspectos como fortalecer relaciones empresariales con la idea de llegar a tener un desarrollo sostenido. En el ámbito político, recomienda que se promocione el sector minero con las alternativas de inversión extranjera.

Zurita (2020) en su tesis "El rol de las exportaciones no tradicionales en el crecimiento económico de Ecuador", facultad de contabilidad y auditoría. El problema

es cuál será la incidencia de las exportaciones no tradicionales en Ecuador durante los últimos diez años, su objetivo es analizar el aporte de las exportaciones no tradicionales en el crecimiento económico del Ecuador con el fin de determinar la importancia del desarrollo industrial en la capacidad productiva nacional, la población de estudio es serie de tiempo de la economía ecuatoriana, con estudio correlativo y análisis descriptivo y aplicación de un modelo VAR. Los resultados obtenidos muestran que las variables estudiadas PIB y Exportaciones No Tradicionales son directamente proporcionales porque un incremento en una variable afecta a la otra.

En referencia a lo citado se puede señalar que las exportaciones no tradicionales para él país representa un rubro pequeño que se ve afectado por cada problema ocurrido en el país.

Paredes (2016) en su tesis "Análisis de las exportaciones no tradicionales y su impacto en la economía de los últimos 5 años", Universidad Católica de Santiago de Guayaquil, facultad de Especialidades Empresariales. El problema es cual es comportamiento de las exportaciones no tradicionales en la economía ecuatoriana. El objetivo es analizar el comportamiento de las exportaciones no tradicionales de los últimos cinco años en el Ecuador y su impacto en la economía ecuatoriana, la población es la economía ecuatoriana, la metodología es un análisis descriptivo e inferencial mediante correlaciones y regresiones sobre las variables de estudio. Se llega a los resultados que en el Ecuador las exportaciones tradicionales constituyen un rubro importante, inyectando valores considerables a la economía con un crecimiento promedio anual de 10.45%.

Según lo citado, las exportaciones no tradicionales en el país de Ecuador, tienen mucha significancia económica ya que las exportaciones aumentan el PIB y ambas

variables aumentan de manera proporcional.

2.1.2 Antecedentes nacionales

Arrieta (2020) en su tesis "Incidencias de las exportaciones no tradicionales agropecuarias y textiles en el crecimiento económico del Perú, período 2006-2017", Universidad Nacional Hermilio Valdizán, facultad de ciencias económicas. El problema de investigación es cuál ha sido la incidencia de las exportaciones no tradicionales agropecuarias y textiles en el crecimiento económico del Perú durante los años 2006 – 2017, los objetivos es calcular la incidencia de las exportaciones no tradicionales agropecuarias y textiles en el crecimiento económico del Perú durante el periodo 2006 - 2017, la población que ha sido investigada es el territorio peruano, la metodología que se elaboró en la investigación es de tipo aplicada con el nivel de investigación correlativo y explicativo, el diseño de la investigación es no experimental de tipo longitudinal, el modelo econométrico utilizado es un modelo de Regresión Lineal Simple a través del método de estimación Mínimos Cuadrados Ordinarios, se llega a los resultados de que los productos no tradicionales en el sector agropecuario y textil, inciden directamente sobre el producto bruto del Perú en el periodo investigado.

La investigación de los sectores agropecuario y textil, confirman con la hipótesis que demuestra positivamente crecimiento económico peruano y que el gobierno debe de seguir trabajando en el fortalecimiento de estos sectores en el mercado internacional, de esa manera sacar todo el provecho y contribuir en mayor medida al PBI.

Balcázar (2017) en su tesis "Las exportaciones no tradicionales y su contribución al crecimiento económico de Tumbes, 1999-2014" Universidad nacional de Tumbes, facultad de ciencias económicas. El problema que ha contribuido las exportaciones no tradicionales de crecimiento económico de Tumbes de periodo 1999-

2014, objetivo de determinar que ha sido una tendencia del crecimiento de las exportaciones, la población estudiada de Tumbes, se centrará en la descripción, aplicación y correlación de los datos obtenidos de fuentes primarias y secundarias, las conclusiones que existe una relación positiva entre las exportaciones no tradicionales y producto bruto interno real en la región durante el periodo 1999-2014.

La investigación de las exportaciones no tradicionales y su contribución al crecimiento económico requiere impulsar nuevas acciones de política económica, orientadas a incrementar las exportaciones de manera que permitan la explotación de economías a escala, mayor entrada de divisas, eficiencia e innovación, que se traduzca en un crecimiento económico sostenido en el mediano y largo plazo.

Escobar (2022) en su tesis "Impacto de las Exportaciones No Tradicionales en el Crecimiento Económico de la Región Piura, Periodo 1983 – 2019" realizada en la Universidad Nacional de Frontera, facultad de Ciencias Económicas y Ambientales, el problema es cuál es el impacto de las exportaciones no tradicionales en el crecimiento económico de la región Piura, periodo 1983 – 2019, el objetivo es analizar el impacto de las exportaciones no tradicionales en el crecimiento económico de la Región Piura, periodo 1983 – 2019, la población estudiada es la Región de Piura y utiliza la metodología del Modelo de Vectores Autorregresivos con corrección del error.

Los resultados muestran que los efectos de las variables explicativas (exportaciones no tradicionales de Piura, crecimiento económico de Perú y Estados Unidos) divergen en el corto y largo plazo. Se concluye las exportaciones no tradicionales de la región Piura, explican las variaciones en la tasa de crecimiento económico de la región, pero no incide significativamente en su comportamiento de corto plazo. Además, el crecimiento de Perú y Estados Unidos están directamente

relacionados en el largo plazo con el crecimiento económico de Piura.

En referencia a lo citado, los productos no tradicionales y el crecimiento económico de Piura difieren en el tiempo, en el corto plazo no tiene incidencia, mientras que en el largo plazo si incide directamente en su variación.

Pierina (2022) en su tesis "El sector pesquero en el período 1990-2018 y su influencia en el crecimiento económico del Perú." realizada en la Universidad Nacional de Tumbes, facultad de ciencias económicas, escuela profesional de economía. El problema de investigación es ¿De qué manera influyó el Sector pesquero en el período 1990-2018 en el crecimiento económico del Perú? El objetivo general es determinar la influencia del sector pesquero en el período 1990-2018 en el crecimiento económico del Perú. La población que ha sido investigada son todas las series estadísticas de sector pesquero y crecimiento económico que son publicadas por BCRP. El tipo de investigación es cuantitativa y correlacionar. El diseño metodológico es longitudinal y no experimental. El modelo econométrico fue logarítmico para poder cumplir, probar los supuestos y desestacionalizar series de tiempo. Con todo lo anteriormente mencionado, se llega a los resultados que el sector pesquero en los años 1990-2018 tiene un impacto positivo en el crecimiento económico, confirmado con el modelo econométrico hecho.

En referencia a la tesis citada, mi análisis es que el estado peruano proporciona más facilidades en créditos o en subsidios para la industria pesquera, para que de esta manera aumente la extracción del sector pesquero y sea importante en el crecimiento económico, así también como que el estado debe implementar mejor a los puertos pesqueros para mayor facilidad en la exportación de los productos,

Aguirre y Méndez (2015) en su tesis "Incidencia del sector pesquero en el

crecimiento económico en el Perú durante el periodo 1970-2014", realizada en la Universidad Privada Antenor Orrego, facultad de ciencias económicas, escuela profesional de economía y finanzas. El problema de investigación es ¿Cómo ha incidido el Sector Pesquero en el Crecimiento Económico en el Perú durante el periodo 1970-2014? El objetivo es determinar la incidencia del Sector Pesquero en el Crecimiento Económico en el Perú durante el periodo 1970-2014. La población estará conformada por el valor de producción que genera el Sector Pesquero y el Crecimiento Económico del Perú. Los datos han sido recolectados de páginas del BCRP, e INEI y se empleó el programa Eviews 7.0. El modelo econométrico fue el MCO, tomando en cuenta el PIB nacional, PBI pesca e inversión bruta fija.

En relación a la tesis anteriormente mencionada, se concluye que el sector pesquero genera un impacto pequeño en el PBI real, ya que al correr el modelo econométrico se demuestra que si el sector pesquero crece 1% entonces el PIB real crece un 0,04%.

En referencia lo citado se recomienda que el estado debe invertir en mejores proyectos de inversión para el sector pesquero.

Bobadilla (2016) en su tesis "Recursos minerales: maldición o bendición para el crecimiento de la economía peruana: 1991tl-2015t2" realizada en la Universidad Nacional de Piura, en la facultad de ciencias económicas, escuela de economía. El problema de la investigación tiene como objetivo analizar el impacto de los recursos mineros sobre el crecimiento económico en la economía peruana durante el período 1991 Tl-2015T2, utilizando la metodología de los recursos naturales de Sachs & Warner en un modelo de series de tiempo con este análisis permite resolver el impacto positivo y significativo sobre el crecimiento económico de la economía peruana en los años

estudiados.

Huansha (2020) en su tesis "Incidencia de las exportaciones tradicionales y no tradicionales en el crecimiento económico del Perú, 1950-2018", realizada en la Universidad Nacional Santiago Antúnez de Mayolo" en la facultad de ciencias económicas y contabilidad. El problema es cuál es la incidencia de las Exportaciones tradicionales y no tradicionales en el Crecimiento Económico del Perú, 1950 -2018. El objetivo es determinar la incidencia de las exportaciones tradicionales y no tradicionales en el crecimiento económico del Perú, 1950-2018. El diseño metodológico que se aplico es no experimental y longitudinal, y el tipo de investigación es correlacional, descriptivo, y la muestra está conformada por los datos estadísticos de exportación y de PBI. Se concluye que de acuerdo al análisis y la estimación se comprobó que las exportaciones no tradicionales afectan positivamente al crecimiento económico en el periodo 1950 a 2018.

En referencia a lo citado, se concluye que los factores determinantes influyen en el crecimiento económico y apertura el intercambio comercial.

2.2 Bases teóricas

2.2.1 Teoría del comercio internacional

El comercio internacional hace referencia al intercambio de bienes y servicios entre dos o más países económicos diferentes.

2.2.1.1. La teoría de las ventajas absolutas

Según Smith (1776):

Explico en su libro "La riqueza de las naciones" que todos los bienes y servicios pueden compararse entre sí en términos de unidades de factores laborales. Estos

incluyen: Los factores tierra y capital son económicamente productivos siempre que sobre ellos actúe el factor trabajo.

Debido a las diferencias en los costos absolutos de producción, si un país se especializa en la producción de bienes y servicios cuyos costos absolutos son más bajos que los de otros países y se dedica a comprar los bienes o servicios producidos, obtendrá ventajas económicas absolutas. Otros países tienen costos absolutos más bajos que la economía nacional; podemos concluir que la teoría absoluta intenta especializar productos con ventajas respecto a otros países.

2.2.1.2. La teoría de las ventajas comparativas

Según David Ricardo (1817):

Nos explica en su libro "Principios de economía política y tributación", publicado en 1817, su teoría se basa en el hecho de que los países exportarán aquellos bienes y servicios que tengan una mayor ventaja interna en el costo de producción en comparación con los bienes o servicios producidos en otros sectores de la economía, e importarán aquellos bienes y servicios que tengan una mayor ventaja son los menores costos internos.

2.2.1.4. La teoría del modelo Heckscher - Ohlin

Según Heckscher y Ohlin (1977):

Explican una relacion positiva entre las exportaciones y la productividad. El modelo parte de la teoría de David Ricardo de la ventaja comparativa. El modelo afirma que las económias se centran en la exportación de los bienes de factor abundante; es decir, los países tenderían a exportar una parte de los recursos naturales disponibles dentro de su economía; y que tiende a importar aquellos bienes que utilizan factores de producción en los que son más escasos. Los países tendrían a exportar una parte de los

recursos naturales disponibles dentro de su economía y a importar aquellos recursos que carecen.

2.2.2. Teorías del crecimiento económico

El crecimiento económico es un tema amplio, durante la línea del tiempo los economistas analizaron cómo impulsar el crecimiento económico, ya que para que un país pueda tener un crecimiento a largo plazo, es necesario la exportación de productos con valor agregado.

2.2.2.1. Teoría keynesiana

Segùn Keynes (1936):

En su libro "Teoría general del empleo, el interés y el dinero", tiene como fin dar poder a las instituciones del estado para de este modo evitar la caída de la economía, ya que con esto se puede regular los procesos económicos y no dar pie a los fallos de mercado.

El principal postulado de la teoría de Keynes es que la demanda agregada la sumatoria del gasto de los hogares, las empresas y el gobierno es el motor más importante de una economía. Keynes sostenía asimismo que el libre mercado carece de mecanismos de auto-equilibrio que lleven al pleno empleo. Según Finanzas y Desarrollo (2014) "Los economistas keynesianos justifican la intervención del Estado mediante políticas públicas orientadas a lograr el pleno empleo y la estabilidad de precios" (p.53).

Indudablemente el comercio entre naciones tiene un gran impacto en el progreso de todos los países, no solamente en el ámbito económico sino también en el ámbito social y fortalece los acuerdos entre países. Además, también se puede compartir innovaciones entre países.

Los países participantes del comercio exterior lo hacen debido a que llegan a

tener muchos beneficios y esto se debe a las siguientes razones:

- La ventaja comparativa
- Variedad en condiciones de producción
- Diversidad en los gustos del consumo de las personas
- Economías de escala

2.3 Marco conceptual

La tesis presenta un marco conceptual que incluye las variables e indicadores estudiados, pero con la especificidad de definir estos términos, teniendo en cuenta la literatura revisada.

2.3.1. Crecimiento Económico

El crecimiento económico es una variable macroeconómica usada para medir el aumento de la producción de bienes y servicios de un país de un año a otro o un lapso de tiempo determinado, cabe destacar que estos términos fueron abordados por las primeras ideas de los pensadores que son pertenecientes de la escuela clásica, tales de estos trata de explicar los factores que contribuyen en el comportamiento positivo de estos métodos productivos, la cantidad de los bienes y servicios crezcan.

Segùn Larrain y Sachs (2004), "El crecimiento económico es el aumento sostenido del producto en una economía.

Usualmente se mide como el aumento del Producto Interno Bruto (PIB) real en un periodo de varios años o décadas".

2.3.1.1. Producto Bruto Interno (PBI)

El PIB es un indicador que es usado para medir el crecimiento económico de un país, por lo cual este indicador permite determinar el nivel de la riqueza de cada país y el cálculo nos permite mostrar el estado del crecimiento económico y evaluar los

siguientes comportamientos, en las cuatro fases, es así que, la primera es cuando su valor alcanza un auge o pico, la segunda es cuando comienza el proceso de declive " recesión", es decir. el valor tiende a disminuir respecto a años anteriores y el tercero es cuando alcanza la depresión, es decir el valor más bajo del ciclo, la cuarta es que se inicia el proceso de recuperación hasta alcanzar un nuevo pico, reiniciando así el ciclo, por lo que al comportamiento del PBI se le denomina ciclo económico.

Por último, el PBI puede ser calculado en términos nominales y en términos reales. En ese sentido, cuando se trata de términos nominales significa que el valor de la producción se calcula en función a precios corrientes, es decir, a precios de cada año. Mientras tanto, cuando se trata de términos reales, el valor de la producción se calcula en función a precios constantes, es decir, a precios de un año base.

Según Ministerio de Economia y Finanzas (2023):

EL producto se refiere al valor agregado; interno se refiere a que es la producción dentro de las fronteras de una economía; y bruto se refiere a que no se contabilizan la variación de inventarios ni las depreciaciones o apreciaciones de capital.

2.3.2 Exportaciones No Tradicionales

Cada país tiene productos de alto valor agregado en lo que se tratará de invertir progreso tecnológico para poder exportarlos y transformarlos en bienes de gran demanda, son estas exportaciones de productos no tradicionales impulsores del crecimiento económico del país.

Según BCRP (2023), "Productos de exportación que presentan un mayor nivel de valor agregado debido a su grado de transformación que originalmente no se transaba con las economías extranjeras en montos considerables".

2.3.2.1. Exportaciones No Tradicionales Agropecuarios

La ganadería y la agricultura son un pilar para la alimentación de una población, ya que cada región produce diferentes variedades de productos, lo que ha dado inicio a nuevos mercados y comercio entre países.

Según Orgaz (2014):

Hizo hincapié en que la industria agropecuaria es de las más vitales a nivel global, la cual ha ido cambiando con las nuevas tecnologías, las mejoras en la forma de gestionar y la explotación de recursos, dándose principalmente en países que se encuentran en desarrollo intermedio.

2.3.2.2. Exportaciones No Tradicionales Pesquero

Los productos no tradicionales en lo que destaca la economía peruana son el pescado congelado, los crustáceos y los moluscos congelados.

La pesquería es un sector importante dentro de la economía que contribuye en el crecimiento sostenible, genera empleo en las regiones pesqueras y es fuente de alimentación para la población.

Según Estudio de Desempeño Ambiental (2015):

La actividad pesquera comprende las actividades de extracción (actividad primaria) y transformación (actividad secundaria) de recursos hidrobiológicos, como peces, moluscos, crustáceos y otras especies, para el consumo humano directo (enlatado, fresco o congelado) e industrial (principalmente, en la harina y aceite de pescado).

2.3.2.3. Exportaciones No Tradicionales Químicos

La industria química en el Perú es sustancial para el desarrollo del país, es una industria clave para integrar cadenas productivas, ya que demanda insumos de más de 30 ramas industriales, y lo fundamental su importancia radica en la transformación del

petróleo y gas para producir una gran variedad de productos que son materiales de uso general hasta materiales de alta gama tecnológica y de vanguardia para otras industrias.

Según Posada (2018):

La industria química se ha convertido en una actividad indispensable para gran parte de los países en el mundo, principalmente porque ofrece una gran cantidad de productos, generando altos niveles de empleo, lo que expande el crecimiento económico. Este desarrollo se ha basado en la mayoría en la industria petrolera y sus derivados, aunque en los últimos años del siglo XX, nuevas industrias nacieron y dieron lugar a productos diferenciados como los farmacéuticos, polímeros y agroquímicos.

2.3.2.4. Exportaciones No Tradicionales Minerales No Metálicos

Estos materiales pueden ser utilizados para la construcción (como la arena o la piedra), para el sector agrícola (mediante insecticidas o fertilizantes a base de fosfatos) y para otros procesos industriales.

El valor económico de los productos mineros no metálicos está asociados a los múltiples usos que se le da en el sector industrial, debido a sus características particulares tales como la durabilidad, resistencia a la compresión, no reactividad química, composición uniforme y valor aislante.

Según OSINERGMIN (2016), "Los minerales no metálicos o también llamados minerales industriales, son aquellos elementos geológicos que poseen valor económico y que no son ni metales ni combustibles".

2.3.2.5. Exportaciones No Tradicionales Metalmecánica

La importancia del sector metalmecánico radica en que facilita la obtención de maquinarias y de insumos para la producción de las diferentes actividades económicas. El objetivo del sector metalmecánico es transformar materia prima para llegar a su

producto final.

Según Secretaría de Ambiente y Desarrollo Sustentable de la Nación (2019):

La industria metalmecánica comprende un conjunto heterogéneo de actividades manufactureras que, en mayor o menor medida, utilizan entre sus insumos principales productos de la siderurgia y metales no ferrosos a lo largo de toda la cadena productiva, al mismo tiempo que engloba la producción de un amplio abanico de bienes que resultan claves para el desarrollo del resto de las actividades económicas.

2.4 Definición de términos básicos

Exportación: Se define como aquella adquisición de bienes o servicios que provienen de otros estados, el cual es registrado como una compra que se hace al exterior por parte de una empresa residente mediante una transferencia de propiedad.

Exportaciones No Tradicionales: Son los productos de estudio agrupados que tienen mayor valor agregado y tienen un impacto positivo dentro de las economías nacionales.

Crecimiento Económico: Es el crecimiento o ampliación del PBI

PBI: Es la cantidad total de los bienes y servicios terminados, derivados de un territorio y en un periodo determinado de tiempo.

Sector Agropecuario: Es el sector donde hace referencia a los procesos productivos en el campo, estando compuesto por la agricultura y la ganadería, es decir la explotación animal y el cultivo de productos.

Sector Pesquera: Es el sector donde hace referencia a las actividades de extracción y transformación de recursos hidrobiológicos, para el consumo humano directo e industrial.

Sector Químico: Es el sector donde hace referencia a la industria petrolera y sus derivados.

Sector Minerales No Metálicos: Es el sector donde hace referencia al uso eficiente de energía y su debida implementación, para contribuir a reducir el consumo energético y las emisiones de gases de efecto invernadero.

Sector Metal Mecánicos: Es el sector responsable del suministro de diversas etapas de la cadena productiva, como maquinaria, consumibles y herramientas metálicas hechas a medida.

III. HIPÓTESIS Y VARIABLES

3.1 Hipótesis

3.1.1 Hipótesis General

HG: Las exportaciones de productos no tradicionales tuvieron un efecto

significativo en el crecimiento económico del Perú, 2005-2019.

3.1.2 Hipótesis Específicas

HE1: Las exportaciones de productos agropecuarios no tradicionales tuvieron un

efecto significativo en el crecimiento económico del Perú, 2005-2019.

HE2: Las exportaciones de productos pesqueros no tradicionales tuvieron un

efecto significativo en el crecimiento económico del Perú, 2005-2019.

HE3: Las exportaciones de productos químicos no tradicionales tuvieron un efecto

significativo en el crecimiento económico del Perú, 2005-2019.

HE4: Las exportaciones de productos minerales no metálicos no tradicionales

tuvieron un efecto significativo en el crecimiento económico del Perú, 2005-2019.

HE5: Las exportaciones de productos metalmecánicos no tradicionales tuvieron un

efecto significativo en el crecimiento económico del Perú, 2005-2019.

3.2 Definición conceptual de las variables

Variable dependiente: Crecimiento económico

El crecimiento económico es el aumento sostenido del producto en una

economía.

Medición: Variación % PBI Real

Variable independiente: Exportaciones no tradicionales

Son productos que tienden a tener un mayor valor agregado.

Medición: Valores FOB

45

Variable independiente 1: Exportación de producto no tradicional agropecuario

El sector agropecuario lo que tiene relación con la agricultura y ganadería

Medición: Producción de productos no tradicionales agropecuarias Factores productivos

Variable independiente 2: Exportación de producto no tradicional pesquero

El sector pesquero es un elemento estratégico de la economía peruana,

principalmente porque es una importante fuente de divisas después de la industria

minera.

 $\label{eq:medicion} \begin{tabular}{ll} Medición: & \frac{Producciòn & de & productos & no & tradicionales & pesquera}{Factores & productivos} \end{tabular}$

Variable independiente 3: Exportación de producto no tradicional químico

El sector químico es donde hace referencia a la industria petrolera y sus

derivados.

 $\label{eq:medicion} \begin{aligned} \text{Medición: } \frac{\textit{Producciòn de productos no tradicionales quìmico}}{\textit{Factores productivos}} \end{aligned}$

Variable independiente 4: Exportación de producto no tradicional mineral no

metálico

Es el sector mineral no metálico hace referencia al uso eficiente de energía y las

emisiones de gases de efecto invernadero.

 $\label{eq:medicion} \begin{tabular}{l} Medición: & \frac{Producción\ de\ productos\ no\ tradicionales\ minerales\ no\ metàlicos}{Factores\ productivos} \end{tabular}$

Variable independiente 5: Exportación de producto no tradicional metal mecánica

Es el sector donde hace referencia a una industria encargada de surtir los

eslabones de la cadena productiva como maquinaria, bienes de consumo, y herramientas

de carácter metálico hechas a la medida.

Medición: Producción de productos no tradicionales metal mecanica

Factores productivos

46

3.1.1 Operacionalización de Variable

Tabla 1 *Operacionalizacion de Variables*

VARIABLES	DEFINICIÒN OPERACIONAL	INDICADORES	ÍTEMS
Y:CRECIMIENTO ECONÓMICO	Es la variación porcentual del PIB Real	PBI Real	Medido en millones de dólares
		X1: Sector Agropecuario	Medido en millones de dólares
X: EXPORTACIONES NO TRADICIONALES	Valores FOB	X2: Sector Pesquero	Medido en millones de dólares
		X3: Sector Químico	Medido en millones de dólares
		X4: Sector minerales no metálicos	Medido en millones de dólares
		X5: Sector metalmecánico	Medido en millones de dólares

IV. METODOLOGÍA DEL PROYECTO

4.1 Diseño Metodológico

La investigación es de carácter no experimental ya que no se manipulan las variables estudiadas y de corte longitudinal porque la recolección de datos se llevó a cabo en diversos momentos del tiempo.

Según Hernández y Mendoza (2018):

El análisis del estudio se desarrolla una investigación descriptiva-explicativa.

Las investigaciones del tipo descriptivas resultan eficientes para precisar las propiedades a medir de los atributos, del problema objeto de estudio que ocurre, y que el investigador debe estar capacitado para medirlo y recolectar información para su análisis.

Según Hernández y Mendoza (2018):

El estudio sugiere examinar la certeza de las hipótesis, esto lleva a plantear un diseño de investigación no experimental de tipo longitudinal que realiza el análisis a través del tiempo que sugiere examinar los cambios o relaciones entre las variables de estudio, donde se recolectan datos de diferentes periodos para realizar inferencia consideran que "Podría definirse como la investigación que se realiza sin manipular deliberadamente variables".

4.2 Método de investigación

El método de investigación que se aplica es hipotético- deductivo, debido a que consiste en la recolección de datos con el objetivo de la comprobación de la hipótesis general. También cuenta con un enfoque cuantitativo por que se busca explicar los fenómenos estudiados bajo la relación entre las variables.

Según Cabezas et al. (2018), "Se sustenta en un proceso de medición numérico donde a través de la recolección de información se analiza para dar una hipótesis que responda las interrogantes planteadas en la investigación" (p. 66).

4.3 Población y muestra

4.3.1 Población

Para fines de esta investigación se utilizó como representación la población, compuesta por los datos referentes al crecimiento económico y los 5 sectores no tradicionales efectuada en el territorio peruano durante el periodo 2005-2019.

De acuerdo con Fráncica (1988), "La población se define como el conjunto de todos los elementos muéstrales a los que la investigación hace referencia" (p. 160).

4.3.2 Muestra

Considerando la información de carácter secundario, la muestra elegida está conformada por series de tiempo con una periodicidad mensual que abarca los periodos 2005 – 2019 donde aglomera un total de 14 años.

La muestra se basa en los 5 sectores productivos

- Productos no tradicionales Agropecuarios
- -Productos no tradicionales Pesquero
- -Productos no tradicionales Químicos
- -Productos no tradicionales Minerales no metálicos
- -Productos no tradicionales Metal mecánicos

Según Bernal (2010), "Es aquel conjunto representativo de la población de donde se extrae la información necesaria para efectos de desarrollo de la investigación

en donde se realizará la observación y medición de los fenómenos implicados en el estudio" (p.161).

4.4 Lugar de estudio y periodo desarrollado

El lugar de estudio para la presente investigación corresponde al territorio peruano, se desarrolla en la facultad de Ciencias Económicas de la Universidad Nacional del Callao, en la provincia constitucional del Callao.

4.5 Técnicas e instrumentos para la recolección de la información

4.5.1 Técnicas

La Técnica es el análisis documental: Se recolectó la información con análisis documental de data secundaria en una base de datos y una ficha que sintetiza la información recopilada y la tabulación de los datos.

Los datos cuantitativos que se utilizarán van de la mano con una técnica de sistematización bibliográfica, donde se realizará la recopilación, tabulación.

4.5.2 Instrumentos

Para la presente investigación se tomaron datos estadísticos publicados por el BCRP de los sectores productivos, y con dicha información se elaboraron los indicadores pertinentes para cada variable de la investigación.

4.6 Análisis y procesamiento de datos

4.6.1 Análisis de datos

Haciendo el análisis de datos, se recopilan datos de frecuencia mensual en un periodo que abarca los años 2005 al 2019, tomados de la base de datos oficial del BCRP, donde se recoge un total de 168 observaciones.

Para su análisis se utilizó el programa Eviews 12, donde primero se hará la media, mediana, desviación estándar, máximo y mínimo de cada variable.

Haciendo el análisis de las variables se nos mostraba que las variables de estudio eran estacionales y teniendo conocimiento de la teoría económica se debía aplicar la prueba de Test de Raíz Unitaria de Test de Hegy.

Por consiguiente, se mostraba que tenían raíces unitarias, se procesó a borrarlo mediante el filtro STL, para eliminar el componente estacional. Se log-linealizó y posterior a ello se hizo el diferencial logarítmico para ajustar los valores, y ahora trabajar con tasas,

En consecuencia, por los datos y para probar las hipótesis planteadas se utilizará la metodología de Vectores Autorregresivos (VAR).

El modelo econométrico, es el siguiente:

$$\begin{bmatrix} \ln(PBI_{t})^{D} \\ \ln(AGRO_{t})^{D} \\ \ln(METAL_{t})^{D} \\ \ln(MINERAL_{t})^{D} \\ \ln(QUIMICO_{t})^{D} \end{bmatrix} = \begin{bmatrix} \theta_{1} \\ \theta_{2} \\ \theta_{3} \\ \theta_{6} \end{bmatrix} + \begin{bmatrix} \rho_{1,1}\rho_{1,2} & \rho_{1,35} \\ \rho_{2,1}\rho_{2,2} & \dots & \rho_{2,35} \\ \rho_{3,1}\rho_{3,2} & \dots & \rho_{3,35} \\ \rho_{5,1}\rho_{5,2} & \rho_{5,35} \\ \rho_{6,1}\rho_{6,2} & \rho_{6,35} \end{bmatrix} \begin{bmatrix} \ln(BBI_{t-1})^{D} \\ \ln(AGRO_{t-1})^{D} \\ \vdots \\ \ln(METAL_{t-1})^{D} \\ \vdots \\ \ln(MINERAL_{t-1})^{D} \\ \vdots \\ \ln(MINERAL_{t-1})^{D} \\ \vdots \\ \ln(PESQUERO_{t-1})^{D} \\ \vdots \\ \ln(PESQUERO_{t-1})^{D} \\ \vdots \\ \ln(QUIMICO_{t-1})^{D} \\ \vdots \\ \ln(QUIMICO_{t-1})^{D} \\ \vdots \\ \ln(QUIMICO_{t-1})^{D} \end{bmatrix}$$

Donde:

- $ln(PBI_t)^D$: Diferencia logarítmica estacional del PBI
- $\ln(AGRO_t)^D$: Diferencia logarítmica estacional de las exportaciones no tradicionales agropecuarias.
- $ln(METAL_t)^D$: Diferencia logarítmica estacional de las exportaciones no tradicionales metalmecánicas.
- $\ln(MINERAL_t)^D$: Diferencia logarítmica estacional de las exportaciones no tradicionales minerales no metálicas

 $\ln(PESQUERO_t)^D$: Diferencia logarítmica estacional de las exportaciones no

tradicionales pesqueras

 $\ln(QUIMICO_t)^D$: Diferencia logarítmica estacional de las exportaciones no

tradicionales químicas.

4.6.2 Procesamiento de datos

Para el Procesamiento de los Datos, se realizaría los siguientes pasos:

Primero: Se Realizó la prueba de la raíz unitaria de Test de Hegy.

Segundo: Se hizo el Filtro STL, para eliminar el componente estacional.

Tercero: Se hizo la loglinealización de las variables.

Cuarto: Se hizo las diferencias logarítmicas de las variables para trabajar con

tasas.

Quinto: Se analizó los datos, y se efectuó el Modelo VAR.

Sexto: Se realizó el Rezago Optimo, para obtener su estabilidad.

Séptimo: Hacer la verificación de normalidad, multicolinealidad,

autocorrelación y heterocedasticidad.

Octavo: Se realizó la función impulso respuesta.

4.7 Aspectos éticos en investigación

El desarrollo de la investigación se alinea con el Informe de Principios éticos de

Belmont por respeto por las personas, beneficio y justicia.

El desarrollo de la investigación es fiel a la realidad económica de la economía

peruana, la información presentada cumple con la ética de los autores, pues con mucho

esfuerzo se elaboró la presente tesis de investigación con ayuda de los conocimientos y

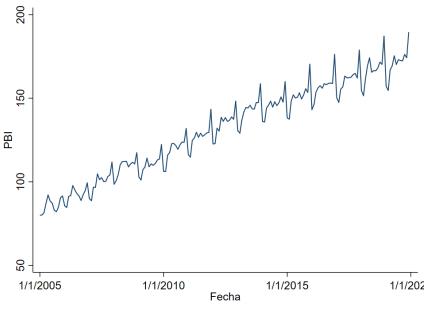
consejos de los profesores conocedores de la materia y el uso de las Normas APA.

52

V. RESULTADOS

5.1. Resultados descriptivos

Primero deben analizar esta estadística descriptiva por variable. Primero comienzan con el PBI, cuyas estadísticas son (pueden escoger los más relevantes, por ejemplo, el promedio, mediana, valor máximo, mínimo, asimetría y/o curtosis) y ello lo interpretan (el PBI está medido en millones de dólares). Normalmente sería primero la tabla y debajo una pequeña interpretación de los resultados.


Tabla 2 *Estadistica descriptiva PBI*

	PBI
Mean	131.6356
Median	135.9358
Máximum	189.6000
Mínimum	79.97916
Std. Dev.	27.79070
Skewness	-0.105698
Kurtosis	1.900089
Jarque-Bera	9.408695
Probability	0.009056
Sum	23694.42
Sum Sq. Dev.	138245.9
Observations	180

Nota. Eviews 12 - BCRP

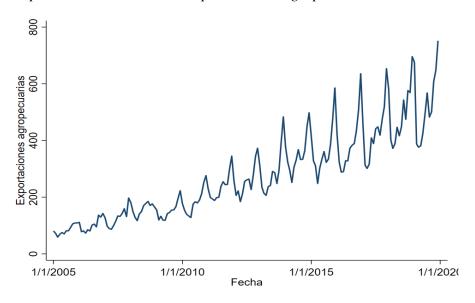
De la tabla 2, es de precisar que la media es el promedio de los datos, en este caso el PBI muestra 131.6356, la mediana es el valor medio de los datos, en este caso el PBI muestra el 135.9358, el máximo es el máximo valor de los datos, en este caso el PBI muestra el 189.6000 millones de dólares, el mínimo es el mínimo valor de los datos, en este caso el PBI muestra el 79.97916 millones de dólares, la desviación estándar es la raíz cuadrada de la varianza, en este caso el PBI muestra el 27.79070.

Figura 1
Comportamiento Estacional PBI

Nota. Eviews 12 - BCRP

La Figura 1, tiene un comportamiento estacional con tendencia creciente (positiva), es decir, el PBI incrementa en el tiempo, con un comportamiento cíclico a lo largo de los meses. Esto justifica el empleo de algún filtro para extraer el comportamiento estacional y alcanzar la estacionariedad (la serie no revierte hacia su valor promedio).

Tabla 3 EXPORTACIONES AGROPECUARIAS (medido en millones de dólares)


	AGRO
Mean	276.3616
Median	248.2900
Máximum	751.6427
Mínimum	59.06582
Std. Dev.	154.9160
Skewness	0.741748
Kurtosis	2.915818
Jarque-Bera	16.55887
Probability	0.000254
Sum	49745.08
Sum Sq. Dev.	4295818.
Observations	180

Nota. Eviews 12 - BCRP

De la tabla 3, es de precisar que la media es el promedio de los datos, en este caso el PBI muestra 276.3616 la mediana es el valor medio de los datos, en este caso el PBI muestra el 248.2900, el máximo es el máximo valor de los datos, en este caso el PBI muestra el 751.6427 millones de dólares, el mínimo es el mínimo valor de los datos, en este caso el PBI muestra el 59.06582 millones de dólares, la desviación estándar es la raíz cuadrada de la varianza, en este caso el PBI muestra el 154.9160.

Figura 2

Comportamiento Estacional Exportaciones Agropecuarias

Nota. Eviews 12 - BCRP

La Figura 2, tiene un comportamiento estacional con tendencia creciente (positiva), es decir, los productos no tradicionales de la variable EXPORTACIONES AGROPECUARIAS se incrementa en el tiempo, con un comportamiento cíclico a lo largo de los meses. Esto justifica el empleo de algún filtro para extraer el comportamiento estacional y alcanzar la estacionariedad (la serie no revierte hacia su valor promedio).

Tabla 4 EXPORTACIONES PESQUERAS (medido en millones de dólares)

	PESQUERO
Mean	73.14686
Median	71.31945
Máximum	185.2051
Mínimum	19.38138
Std. Dev.	32.81045
Skewness	0.745763
Kurtosis	3.448764
Jarque-Bera	18.19531
Probability	0.000112
Sum	13166.43
Sum Sq. Dev.	192698.0
Observations	180

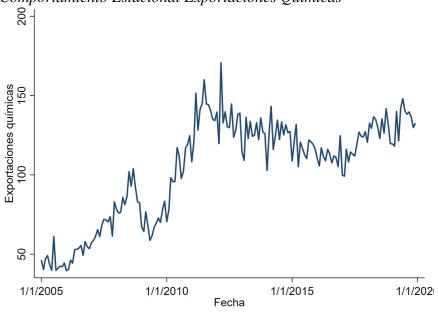
Nota. Eviews 12 - BCRP

De la tabla 4, es de precisar que la media es el promedio de los datos, en este caso el PBI muestra 73.14686, la mediana es el valor medio de los datos, en este caso el PBI muestra el 71.31945, el máximo es el máximo valor de los datos, en este caso el PBI muestra el 185.2051 millones de dólares, el mínimo es el mínimo valor de los datos, en este caso el PBI muestra el 19.38138 millones de dólares, la desviación estándar es la raíz cuadrada de la varianza, en este caso el PBI muestra el 32.81045.

Figura 3 *Comportamiento Estacional Exportaciones Pesqueras*

Nota. Eviews 12 - BCRP

La Figura 3, tiene un comportamiento estacional de los productos no tradicionales de la variable EXPORTACIONES PESQUERAS se observa que presenta fluctuaciones en todos los meses del periodo de estudio, desde el 2015 hay mayor variabilidad por lo que la serie presenta no estacionariedad. Esto justifica el empleo de algún filtro para extraer el comportamiento estacional y alcanzar la estacionariedad (la serie no revierte hacia su valor promedio). por lo que debe ser tratado a través de un filtro.


Tabla 5EXPORTACIONES QUÍMICAS (medido en millones de dólares)

	QUIMICO
Mean	103.7254
Median	114.3830
Máximum	170.6859
Mínimum	39.64374
Std. Dev.	32.36203
Skewness	-0.538463
Kurtosis	2.081482
Jarque-Bera	15.02585
Probability	0.000546
Sum	18670.58
Sum Sq. Dev.	187466.9
Observations	180

Nota. Eviews 12 - BCRP

De la tabla 5, es de precisar que la media es el promedio de los datos, en este caso el PBI muestra 103.7254, la mediana es el valor medio de los datos, en este caso el PBI muestra el 114.3830, el máximo es el máximo valor de los datos, en este caso el PBI muestra el 170.6859 millones de dólares, el mínimo es el mínimo valor de los datos, en este caso el PBI muestra el 39.64374 millones de dólares, la desviación estándar es la raíz cuadrada de la varianza, en este caso el PBI muestra el 32.36203.

Figura 4 Comportamiento Estacional Exportaciones Químicas

Nota. Eviews 12 - BCRP

La Figura 4, tiene un comportamiento estacional de los productos no tradicionales de la variable EXPORTACIONES QUÍMICAS se observa que presenta fluctuaciones en todos los meses del periodo de estudio por lo que debe ser tratado a través de un filtro.

Tabla 6 EXPORTACIONES MINERALES NO METÁLICAS (medido en millones de dólares)

	MINERAL
Mean	37.54868
Median	46.70199
Máximum	74.26892
Mínimum	7.150059
Std. Dev.	20.76002
Skewness	-0.196627
Kurtosis	1.383933
Jarque-Bera	20.74741
Probability	0.000031
Sum	6758.763
Sum Sq. Dev.	77145.10
Observations	180

Nota. Eviews 12 - BCRP

De la tabla 6, es de precisar que la media es el promedio de los datos, en este caso el PBI muestra 37.54868, la mediana es el valor medio de los datos, en este caso el PBI muestra el 46.70199, el máximo es el máximo valor de los datos, en este caso el PBI muestra el 74.26892 millones de dólares, el mínimo es el mínimo valor de los datos, en este caso el PBI muestra el 7.150059 millones de dólares, la desviación estándar es la raíz cuadrada de la varianza, en este caso el PBI muestra el 20.76002.

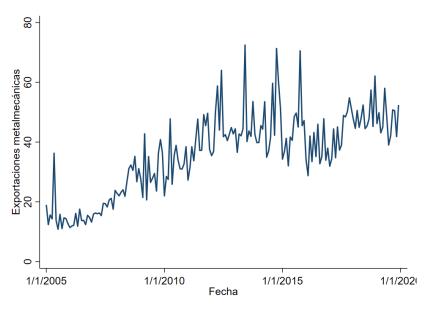
Figura 5

Comportamiento Estacional Exportaciones Minerales No Metalicos

La Figura 5, tiene un comportamiento estacional de los productos no tradicionales de la variable EXPORTACIONES MINERALES NO METÁLICAS se observa que presenta fluctuaciones en todos los meses del periodo de estudio por lo que debe ser tratado a través de un filtro.

Tabla 7EXPORTACIONES METALMECÁNICAS (medido en millones de dólares)

	METAL
Mean	35.95980
Median	37.28541
Máximum	72.46745
Mínimum	10.83603
Std. Dev.	13.69653
Skewness	-0.047980


Motor Engineers 12 DCB	D	
Observations	180	
Sum Sq. Dev.	33579.51	
Sum	6472.764	
Probability	0.452097	
Jarque-Bera	1.587716	
Kurtosis	2.550014	

Nota. Eviews 12 - BCRP

De la tabla 7, es de precisar que la media es el promedio de los datos, en este caso el PBI muestra 35.95980 la mediana es el valor medio de los datos, en este caso el PBI muestra el 37.28541, el máximo es el máximo valor de los datos, en este caso el PBI muestra el 72.46745 millones de dólares, el mínimo es el mínimo valor de los datos, en este caso el PBI muestra el 10.83603 millones de dólares, la desviación estándar es la raíz cuadrada de la varianza, en este caso el PBI muestra el 13.69653.

Figura 6

Comportamiento Estacional Exportaciones Metalmecanicas

Nota. Eviews 12 - BCRP

La Figura 6, tiene un comportamiento estacional de los productos no tradicionales de la variable EXPORTACIONES METALMECÁNICAS se observa que presenta fluctuaciones en todos los meses del periodo de estudio por lo que debe ser tratado a través de un filtro.

5.2. Resultados inferenciales

En los resultados inferenciales, primero se debe analizar las pruebas de raíz unitaria, con la prueba de Hegy Test Statistic.

Prueba Hegy

Las hipótesis de la prueba son:

H0: La serie presenta raíz unitaria

H1: La serie no presenta raíz unitaria

La prueba se concluye con el p – valor de las pruebas, versus un nivel de significancia del 5%. Debemos recordar la regla de decisión: Si el p – valor es mayor al 5% de significancia, se acepta H0, caso contrario, se rechaza.

Variable: PBI

Hegy test statistic

La Ho nos dice que tiene presencia de raíz unitaria, para un valor de 5% el valor crítico es de 7.21 y el valor calculado 0.601921, por lo tanto se concluye que la serie tiene raíz unitaria.

Tabla 8 Test de Hegy PBI

		Significance Level		
	Test Stat.	1%	5%	10%
	2.2113			
Frequency 0	36			

n=160 n=180 n=165*		-2.55 -2.59 -2.56	-1.91 -1.93 -1.91	-1.60 -1.62 -1.60
Frequency 2PI/12 and 22PI/12 n=160 n=180 n=165*	0.646 368	30.50 31.46 30.74	8.34 8.64 8.41	3.87 3.87 3.87
Frequency 4PI/12 and 20PI/12 n=160 n=180 n=165*	0.054 643	30.50 31.46 30.74	8.34 8.64 8.41	3.87 3.87 3.87
Frequency 6PI/12 and 18PI/12 n=160 n=180 n=165*	0.075 819	30.50 31.46 30.74	8.34 8.64 8.41	3.87 3.87 3.87
Frequency 8PI/12 and 16PI/12 n=160 n=180 n=165*	0.038 424	30.50 31.46 30.74	8.34 8.64 8.41	3.87 3.87 3.87
Frequency 10PI/12 and 14PI/12 n=160 n=180 n=165*	0.034 315	30.50 31.46 30.74	8.34 8.64 8.41	3.87 3.87 3.87
Frequency PI n=160 n=180 n=165*	0.9339 62	-2.55 -2.59 -2.56	-1.91 -1.93 -1.91	-1.60 -1.62 -1.60
All seasonal frequencies n=160 n=180 n=165*	0.234 363	27.79 29.04 28.10	7.68 7.97 7.75	3.60 3.60 3.60
All frequencies n=160 n=180 n=165*	0.601 921	25.64 26.72 25.91	7.14 7.42 7.21	3.40 3.40 3.40

Nota. Eviews 12 - BCRP

Variable: AGRO

Hegy test statistic

La Ho nos dice que tiene presencia de raíz unitaria, para un valor de 5% el valor crítico es de 7.23 y el valor calculado 4.177061, por lo tanto se concluye que la serie tiene raíz unitaria.

Tabla 9 *Test de Hegy Agropecuario*

	Significance Level			
	Test Stat.	1%	5%	10%
Frequency 0	-3.891166			
n=160		-2.55	-1.91	-1.60
n=180		-2.59	-1.93	-1.62
n=166*		-2.56	-1.91	-1.60
Frequency 2PI/12 and 22PI/12	0.317542			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=166*		30.78	8.43	3.87
Frequency 4PI/12 and 20PI/12	1.016380			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=166*		30.78	8.43	3.87
Frequency 6PI/12 and 18PI/12	2.408064			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=166*		30.78	8.43	3.87
Frequency 8PI/12 and 16PI/12	0.904346			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=166*		30.78	8.43	3.87
Frequency 10PI/12 and 14PI/12	3.938714			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=166*		30.78	8.43	3.87
Frequency PI	-3.632570			
n=160		-2.55	-1.91	-1.60
n=180		-2.59	-1.93	-1.62
n=166*		-2.56	-1.91	-1.60
All seasonal frequencies	2.476262			
n=160	2, 0202	27.79	7.68	3.60
n=180		29.04	7.97	3.60
n=166*		28.17	7.77	3.60
All frequencies	4.177061			
n=160	1.177001	25.64	7.14	3.40
n=180		26.72	7.42	3.40
n=166*		25.97	7.23	3.40

*Note: Obtained using linear interpolation. *Nota*. Eviews 12 - BCRP

Variable: PESQUERO

Hegy test statistic

La Ho nos dice que tiene presencia de raíz unitaria, para un valor de 5% el valor crítico es de 7.26 y el valor calculado 2.55203, por lo tanto, se concluye que la serie tiene raíz unitaria.

Tabla 10 Test de Hegy Pesquero

	Significance Level			
	Test Stat.	1%	5%	10%
Frequency 0	-1.595397			
n=160		-2.55	-1.91	-1.60
n=180		-2.59	-1.93	-1.62
n=168*		-2.56	-1.92	-1.61
Frequency 2PI/12 and 22PI/12	4.595937			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=168*		30.88	8.46	3.87
Frequency 4PI/12 and 20PI/12	1.07420			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=168*		30.88	8.46	3.87
Frequency 6PI/12 and 18PI/12	1.95136			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=168*		30.88	8.46	3.87
Frequency 8PI/12 and 16PI/12	6.647971			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=168*		30.88	8.46	3.87
Frequency 10PI/12 and 14PI/12	7.803844			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=168*		30.88	8.46	3.87
Frequency PI	-0.573323			
n=160		-2.55	-1.91	-1.60
n=180		-2.59	-1.93	-1.62
n=168*		-2.56	-1.92	-1.61

All seasonal frequencies	2.40473			
n=160		27.79	7.68	3.60
n=180		29.04	7.97	3.60
n=168*		28.29	7.80	3.60
All frequencies	2.55203			
n=160		25.64	7.14	3.40
n=180		26.72	7.42	3.40
n=168*		26.07	7.26	3.40
n=168* All frequencies n=160 n=180	2.55203	28.29 25.64 26.72	7.80 7.14 7.42	3.40 3.40

*Note: Obtained using linear interpolation.

Nota. Eviews 12 - BCRP

Variable: QUÍMICO

Hegy test statistic

Para esta serie el test nos dice que no hay problema del componente estacional, pero si existe problema de raíz unitaria.

La Ho nos dice que tiene presencia de raíz unitaria, para un valor de 5% el valor crítico es de 7.24 y el valor calculado 3.588801, por lo tanto, se concluye que la serie tiene raíz unitaria.

Significance Level

Tabla 11Test de Hegy Quimico

	Significance Ecver			
	Test Stat.	1%	5%	10%
Frequency 0	-0.616801			
n=160		-2.55	-1.91	-1.60
n=180		-2.59	-1.93	-1.62
n=167*		-2.56	-1.92	-1.60
Frequency 2PI/12 and 22PI/12	1.35782			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=167*		30.83	8.44	3.87
Frequency 4PI/12 and 20PI/12	1.71229			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=167*		30.83	8.44	3.87
Frequency 6PI/12 and 18PI/12	4.682668			
n=160		30.50	8.34	3.87

n=180 n=167*		31.46 30.83	8.64 8.44	3.87 3.87
Frequency 8PI/12 and 16PI/12	5.145272			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=167*		30.83	8.44	3.87
Frequency 10PI/12 and 14PI/12	4.498729			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=167*		30.83	8.44	3.87
Frequency PI	-0.587296			
n=160		-2.55	-1.91	-1.60
n=180		-2.59	-1.93	-1.62
n=167*		-2.56	-1.92	-1.60
All seasonal frequencies	1.30136			
n=160		27.79	7.68	3.60
n=180		29.04	7.97	3.60
n=167*		28.23	7.78	3.60
All frequencies	3.588801			
n=160		25.64	7.14	3.40
n=180		26.72	7.42	3.40
n=167*		26.02	7.24	3.40

*Note: Obtained using linear interpolation.

Nota. Eviews 12 - BCRP

Variable: MINERAL

Hegy test statistic

Para esta serie el test nos dice que no hay problema del componente estacional, pero si existe problema de raíz unitaria.

La Ho nos dice que tiene presencia de raíz unitaria, para un valor de 5% el valor crítico es de 7.24 y el valor calculado 3.43993, por lo tanto se concluye que la serie tiene raíz unitaria.

Tabla 12 *Test de Hegy Mineral*

		Significance Level			
	Test Stat.	1%	5%	10%	
Frequency 0	-0.184368				

n=160 n=180 n=167*		-2.55 -2.59 -2.56	-1.91 -1.93 -1.92	-1.60 -1.62 -1.60
Frequency 2PI/12 and 22PI/12 n=160 n=180 n=167*	1.64208	30.50 31.46 30.83	8.34 8.64 8.44	3.87 3.87 3.87
Frequency 4PI/12 and 20PI/12 n=160 n=180 n=167*	2.15777	30.50 31.46 30.83	8.34 8.64 8.44	3.87 3.87 3.87
Frequency 6PI/12 and 18PI/12 n=160 n=180 n=167*	5.615688	30.50 31.46 30.83	8.34 8.64 8.44	3.87 3.87 3.87
Frequency 8PI/12 and 16PI/12 n=160 n=180 n=167*	3.15433	30.50 31.46 30.83	8.34 8.64 8.44	3.87 3.87 3.87
Frequency 10PI/12 and 14PI/12 n=160 n=180 n=167*	6.174074	30.50 31.46 30.83	8.34 8.64 8.44	3.87 3.87 3.87
Frequency PI n=160 n=180 n=167*	-0.645411	-2.55 -2.59 -2.56	-1.91 -1.93 -1.92	-1.60 -1.62 -1.60
All seasonal frequencies n=160 n=180 n=167*	4.55142	27.79 29.04 28.23	7.68 7.97 7.78	3.60 3.60 3.60
All frequencies n=160 n=180 n=167*	3.43993	25.64 26.72 26.02	7.14 7.42 7.24	3.40 3.40 3.40

*Note: Obtained using linear interpolation. *Nota*. Eviews 12 - BCRP

Variable: METALMECÁNICO

Hegy test statistic

Para esta serie el test nos dice que no hay problema del componente estacional, pero si existe problema de raíz unitaria.

La Ho nos dice que tiene presencia de raíz unitaria, para un valor de 5% el valor crítico es de 7.26 y el valor calculado 1.98336, por lo tanto se concluye que la serie tiene raíz unitaria.

Tabla 13 *Test de Hegy Metalmecanico*

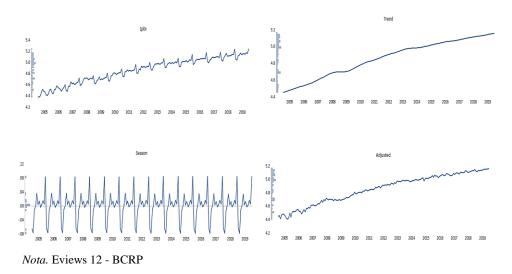
	Significance Level			
	Test Stat.	1%	5%	10%
Frequency 0	-1.352159			
n=160		-2.55	-1.91	-1.60
n=180		-2.59	-1.93	-1.62
n=168*		-2.56	-1.92	-1.61
Frequency 2PI/12 and 22PI/12	5.546271			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=168*		30.88	8.46	3.87
Frequency 4PI/12 and 20PI/12	2.202643			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=168*		30.88	8.46	3.87
Frequency 6PI/12 and 18PI/12	5.609207			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=168*		30.88	8.46	3.87
Frequency 8PI/12 and 16PI/12	2.34602			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=168*		30.88	8.46	3.87
Frequency 10PI/12 and 14PI/12	6.726717			
n=160		30.50	8.34	3.87
n=180		31.46	8.64	3.87
n=168*		30.88	8.46	3.87
Frequency PI	-0.193456			
n=160		-2.55	-1.91	-1.60
n=180		-2.59	-1.93	-1.62
n=168*		-2.56	-1.92	-1.61
All seasonal frequencies	1.09495			
n=160		27.79	7.68	3.60
n=180		29.04	7.97	3.60
n=168*		28.29	7.80	3.60
All frequencies	1.98336			
n=160		25.64	7.14	3.40
n=180		26.72	7.42	3.40
n=168*		26.07	7.26	3.40

*Note: Obtained using linear interpolation.

Nota. Eviews 12 - BCRP

En Conclusión se observa que se acepta la hipòtesis que la serie no es estacionaria, es decir, que presentan raíz unitaria tal como se muestra en las tablas presentadas.

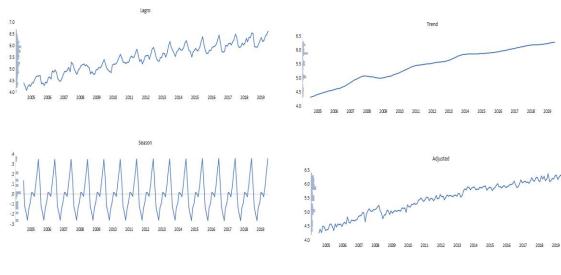
El siguiente paso sería realizar la diferenciación y transformar las variables.


- Se toma logaritmos a las variables
- Se aplica el filtro STL para extraer el componente estacional y se toma el valor ajustado de la variable
- Luego se aplica esta diferencia: Δy_t = y_t y_{t-12}, ya que se diferencia respecto al mes del año pasado [por ejemplo, diferenciamos enero del 2007 respecto a enero del 2006, febrero del 2007 a febrero del 2006, y así sucesivamente].
 Ahora, en Eviews se muestra como imagen la descomposición.

Variable: PBI

Las figuras season nos muestra el componente estacional que indica el comportamiento cíclico.

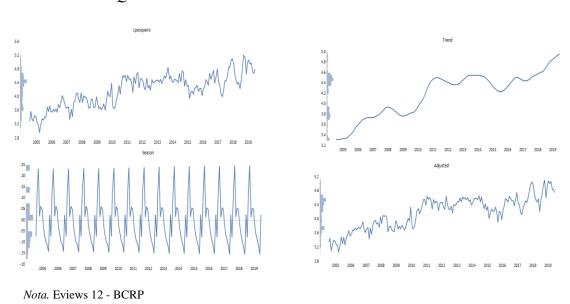
Figura 7


Filtro STL LPBI

Variable: Agro

Figura 8

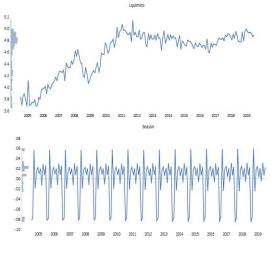
Filtro STL LAGRO

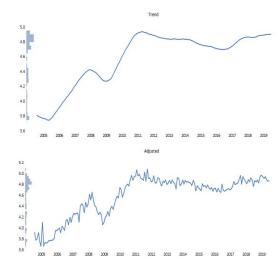


Nota. Eviews 12 – BCRP

Variable: Pesquero

Figura 9

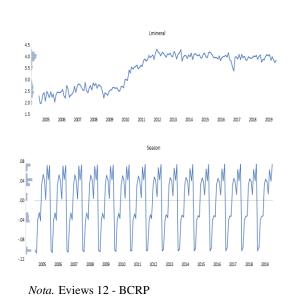

Filtro STL LPESQUERO

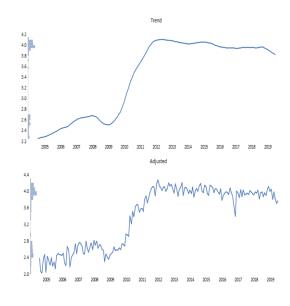


Variable: Quimico

Figura 10

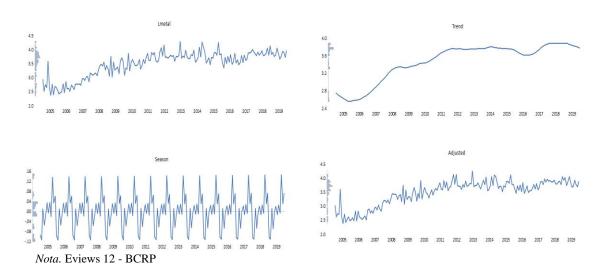
Filtro STL LQUÍMICO




Nota. Eviews 12 - BCRP

Variable: Mineral

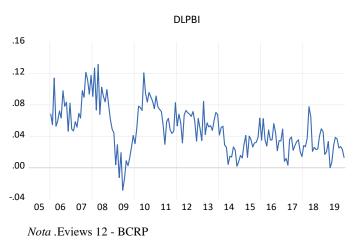
Figura 11


Filtro STL LMINERAL

Variable: Metal

Figura 12
Filtro STL LMETAL

Luego de este proceso de transformación se vuelve aplicar la pruebas de Raìz Unitaria para la evaluación en tasas.


Hegy test statistic

La Ho nos dice que tiene presencia de raíz unitaria, para un valor de 5% el valor crítico es de y el valor calculado, por lo tanto se concluye que la serie no tiene raíz unitaria.

Variable: PBI

Figura 13

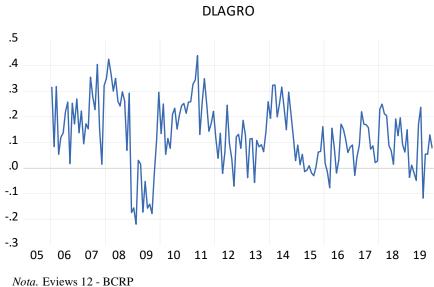
Comportamiento DLPBI

Variable: PBI

Hegy test statistic

La Ho nos dice que no tiene presencia de raíz unitaria, para un valor de 5% el valor crítico es de 7.04 y el valor calculado 27.73736, por lo tanto se concluye que la serie no tiene raíz unitaria.

Tabla 14 *Test de Hegy DLPBI*


	Significance Level			
	Test Stat.	1%	5%	10%
Frequency 0	-1.664011			
n=140		-2.55	-1.93	-1.60
n=160		-2.55	-1.91	-1.60
n=145*		-2.55	-1.92	-1.60
Frequency 2PI/12 and 22PI/12	11.33014			
n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=145*		30.48	8.20	3.80
Frequency 4PI/12 and 20PI/12	9.084013			
n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=145*		30.48	8.20	3.80
Frequency 6PI/12 and 18PI/12	5.457536			
n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=145*		30.48	8.20	3.80
Frequency 8PI/12 and 16PI/12	8.835987			
n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=145*		30.48	8.20	3.80
Frequency 10PI/12 and 14PI/12	20.78049			
n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=145*		30.48	8.20	3.80
Frequency PI	-3.319325			
n=140		-2.55	-1.93	-1.60
n=160		-2.55	-1.91	-1.60
n=145*		-2.55	-1.92	-1.60
All seasonal frequencies	29.48120			
n=140		27.88	7.51	3.51
n=160		27.79	7.68	3.60
n=145*		27.86	7.56	3.54

All frequencies	27.73736			
n=140		25.66	7.00	3.30
n=160		25.64	7.14	3.40
n=145*		25.65	7.04	3.33
		25.65	7.04	

*Note: Obtained using linear interpolation. *Nota*. Eviews 12 - BCRP

Variable: Agro

Figura 14 Comportamiento DLAGRO

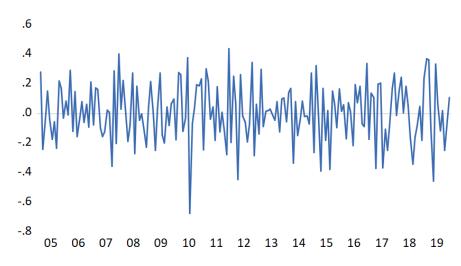
Hegy test statistic

La Ho nos dice que no tiene presencia de raíz unitaria, para un valor de 5% el valor crítico es de 7.11 y el valor calculado 30.75673, por lo tanto se concluye que la serie no tiene raíz unitaria.

Tabla 15 Test de Hegy DLAGRO

	Significance Level			
	Test Stat.	1%	5%	10%
Frequency 0	-1.937591			
n=140		-2.55	-1.93	-1.60
n=160		-2.55	-1.91	-1.60
n=155*		-2.55	-1.91	-1.60
Frequency 2PI/12 and 22PI/12	34.47878			

n=140 n=160 n=155*		30.48 30.50 30.49	8.15 8.34 8.29	3.77 3.87 3.84
Frequency 4PI/12 and 20PI/12 n=140 n=160 n=155*	26.90913	30.48 30.50 30.49	8.15 8.34 8.29	3.77 3.87 3.84
Frequency 6PI/12 and 18PI/12 n=140 n=160 n=155*	22.12105	30.48 30.50 30.49	8.15 8.34 8.29	3.77 3.87 3.84
Frequency 8PI/12 and 16PI/12 n=140 n=160 n=155*	32.39005	30.48 30.50 30.49	8.15 8.34 8.29	3.77 3.87 3.84
Frequency 10PI/12 and 14PI/12 n=140 n=160 n=155*	31.45772	30.48 30.50 30.49	8.15 8.34 8.29	3.77 3.87 3.84
Frequency PI n=140 n=160 n=155*	-5.556964	-2.55 -2.55 -2.55	-1.93 -1.91 -1.91	-1.60 -1.60 -1.60
All seasonal frequencies n=140 n=160 n=155*	32.89218	27.88 27.79 27.81	7.51 7.68 7.64	3.51 3.60 3.58
All frequencies n=140 n=160 n=155*	30.75673	25.66 25.64 25.64	7.00 7.14 7.11	3.30 3.40 3.38


^{*}Note: Obtained using linear interpolation. *Nota*. Eviews 12 - BCRP

Variable: Pesquero

Figura 15

 $Comportamiento\ DLPESQUERO$

DLPESQUERO

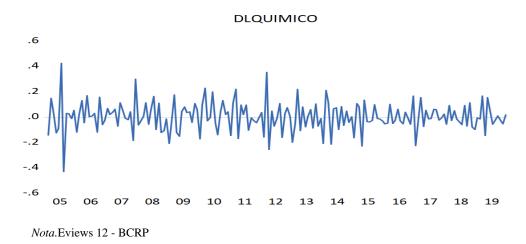
Nota. Eviews 12 - BCRP

Hegy test statistic

La Ho nos dice que tiene presencia de raíz unitaria, para un valor de 5% el valor crítico es de 7.11 y el valor calculado 32.39203, por lo tanto se concluye que la serie no tiene raíz unitaria.

Tabla 16 *Test de Hegy DLPESQUERO*

		Significance Level		
	Test Stat.	1%	5%	10%
Frequency 0	-2.832935			
n=140		-2.55	-1.93	-1.60
n=160		-2.55	-1.91	-1.60
n=155*		-2.55	-1.91	-1.60
Frequency 2PI/12 and 22PI/12	19.34167			
n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=155*		30.49	8.29	3.84
Frequency 4PI/12 and 20PI/12	28.94878			
n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=155*		30.49	8.29	3.84
Frequency 6PI/12 and 18PI/12	35.56259			
n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=155*		30.49	8.29	3.84


Frequency 8PI/12 and 16PI/12 n=140 n=160 n=155*	33.39896	30.48 30.50 30.49	8.15 8.34 8.29	3.77 3.87 3.84
Frequency 10PI/12 and 14PI/12	32.41430			
n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=155*		30.49	8.29	3.84
Frequency PI	-5.905734			
n=140		-2.55	-1.93	-1.60
n=160		-2.55	-1.91	-1.60
n=155*		-2.55	-1.91	-1.60
All seasonal frequencies	33.43088			
n=140		27.88	7.51	3.51
n=160		27.79	7.68	3.60
n=155*		27.81	7.64	3.58
All frequencies	32.39203			
n=140		25.66	7.00	3.30
n=160		25.64	7.14	3.40
n=155*		25.64	7.11	3.38

^{*}Note: Obtained using linear interpolation.

Nota. Eviews 12 - BCRP

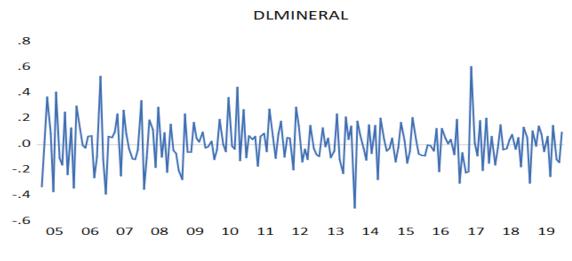
Variable: QUÍMICO

Figura 16Comportamiento DLQUÍMICO

Hegy test statistic

La Ho nos dice que tiene presencia de raíz unitaria, para un valor de 5% el valor crítico es de 7.08 y el valor calculado 34.22464, por lo tanto se concluye que la serie no tiene raíz unitaria.

Tabla 17 Test de Hegy DLQUÍMICO


Frequency 0 -2.804155 n=140			Signif	icance Level	
n=140 n=160 n=151* -2.55 -1.93 -1.60 n=151* -2.55 -1.91 -1.60 n=151* -2.55 -1.92 -1.66 Frequency 2PI/12 and 22PI/12 n=140 n=160 n=151* 30.48 n=151* 30.49 8.25 3.85 Frequency 4PI/12 and 20PI/12 29.06059 n=140 30.48 8.15 3.77 n=160 30.50 8.34 3.87 n=160 30.50 8.34 3.87 3.8906 n=151* 30.49 8.25 3.86 Frequency 6PI/12 and 18PI/12 n=160 n=160 n=151* 30.48 8.15 3.77 n=160 30.50 8.34 3.87 solution of the property of		Test Stat.	1%	5%	10%
n=160 n=151*	Frequency 0	-2.804155			
n=151* -2.55 -1.92 -1.66 Frequency 2PI/12 and 22PI/12 32.27090 n=140 30.48 8.15 3.77 n=160 30.50 8.34 3.8 n=151* 30.49 8.25 3.85 Frequency 4PI/12 and 20PI/12 29.06059 n=140 30.48 8.15 3.77 n=160 30.50 8.34 3.8 n=160 30.50 8.34 3.8 Frequency 6PI/12 and 18PI/12 17.38906 n=140 30.48 8.15 3.77 n=160 30.50 8.34 3.8 n=151* 30.49 8.25 3.85 Frequency 8PI/12 and 16PI/12 8.122855 n=140 30.49 8.25 3.85 Frequency 8PI/12 and 16PI/12 8.122855 n=140 30.49 8.25 3.85 Frequency 10PI/12 and 14PI/12 25.39552 n=140 30.49 8.25 3.85 Frequency 10PI/12 and 14PI/12 25.39552 n=140 30.49 8.25 3.85 Frequency PI -3.307147 n=160 30.50 8.34 3.8 Frequency PI -3.307147 n=160 30.50 8.34 3.8 All seasonal frequencies 32.81984 n=160 27.79 7.68 3.60 n=151* 35.66 7.00 3.36 All frequencies 34.22464 n=140 27.83 7.60 3.56 All frequencies 34.22464 n=140 27.83 7.60 3.56	n=140		-2.55	-1.93	-1.60
Frequency 2PI/12 and 22PI/12 32.27090 n=140 30.48 8.15 3.7 n=160 30.50 8.34 3.8 n=151* 30.49 8.25 3.8 Frequency 4PI/12 and 20PI/12 29.06059 n=140 30.50 8.34 3.8 n=150 30.49 8.25 3.8 Frequency 6PI/12 and 18PI/12 17.38906 n=140 30.50 8.34 3.8 Frequency 6PI/12 and 18PI/12 17.38906 n=140 30.50 8.34 3.8 n=151* 30.49 8.25 3.8 Frequency 8PI/12 and 16PI/12 8.122855 n=140 30.50 8.34 3.8 n=151* 30.49 8.25 3.8 Frequency 10PI/12 and 14PI/12 25.39552 n=140 30.50 8.34 3.8 n=151* 30.49 8.25 3.8 Frequency 10PI/12 and 14PI/12 25.39552 n=140 30.50 8.34 3.8 n=151* 30.49 8.25 3.8 Frequency 10PI/12 and 14PI/12 25.39552 n=140 30.50 8.34 3.8 n=151* 30.49 8.25 3.8 Frequency 10PI/12 and 14PI/12 25.39552 n=140 30.50 8.34 3.8 n=151* 30.49 8.25 3.8 Frequency PI -3.307147 n=160 2.55 -1.93 -1.66 n=151* -2.55 -1.91 -1.66 n=151* -2.55 -1.92 -1.66 All seasonal frequencies 32.81984 n=140 27.88 7.51 3.5 and All frequencies 34.22464 n=140 27.83 7.60 3.56 All frequencies 34.22464 n=140 25.66 7.00 3.36	n=160		-2.55	-1.91	-1.60
n=140 n=160 n=151* 30.48 n=151* 30.50 n=3.44 3.8 30.49 n=25 3.8 Frequency 4PI/12 and 20PI/12 29.06059 n=140 30.50 n=151* 30.48 8.15 3.7 n=160 30.50 8.34 3.8 n=151* 30.49 8.25 3.8 Frequency 6PI/12 and 18PI/12 17.38906 n=140 30.50 n=140 30.48 8.15 3.7 n=160 30.50 8.34 3.8 n=151* 30.49 8.25 3.8 Frequency 8PI/12 and 16PI/12 8.122855 n=140 30.50 30.48 8.15 3.7 n=160 30.50 8.34 3.8 n=151* 30.49 8.25 3.8 Frequency 10PI/12 and 14PI/12 25.39552 n=140 30.48 8.15 3.7 n=160 30.50 8.34 3.8 3.8 3.8 Frequency 10PI/12 and 14PI/12 25.39552 n=140 30.48 8.15 3.7 n=160 30.50 8.34 3.8 3.8 Frequency 10PI/12 and 14PI/12 25.39552 n=140 30.48 8.15 3.7 n=160 30.50 8.34 3.8 3.8 Frequency 10PI/12 and 14PI/12 25.39552 n=140 30.48 8.15 3.7 n=160 30.50 30.49 8.25 3.8 All seasonal frequencies 32.81984 n=140 27.88 7.51 3.5 a.6 a.6 a.151* 27.88 7.51 3.5 a.6 a.6 a.151* 37.7 a.7 a.7 a.8 a.8 a.9	n=151*		-2.55	-1.92	-1.60
n=160 n=151* 30.50 8.34 3.87 Frequency 4PI/12 and 20PI/12 29.06059 n=140 30.48 8.15 3.77 n=160 30.50 8.34 3.87 Frequency 6PI/12 and 18PI/12 17.38906 n=151* Frequency 6PI/12 and 18PI/12 17.38906 n=151* 30.49 8.25 3.87 Frequency 8PI/12 and 16PI/12 8.122855 n=140 30.49 8.25 3.87 Frequency 8PI/12 and 16PI/12 8.122855 n=140 30.49 8.25 3.87 Frequency 10PI/12 and 14PI/12 25.39552 n=140 30.48 8.15 3.77 n=160 30.50 8.34 3.87 3.87 Frequency 10PI/12 and 14PI/12 25.39552 n=140 30.48 8.15 3.77 n=160 30.50 8.34 3.87 Frequency 10PI/12 and 14PI/12 25.39552 n=140 30.48 8.15 3.77 n=160 30.50 8.34 3.87 Frequency PI n=140 2-2.55 1-9.91 1-1.61 n=160 n=151* 27.88 7.51 3.5. All seasonal frequencies n=140 27.88 7.51 3.5. 3.64 3.64 3.760 3.56 All frequencies n=140 27.83 7.60 3.56 All frequencies n=140 27.83 7.60 3.56	Frequency 2PI/12 and 22PI/12	32.27090			
n=151* 30.49 8.25 3.85 Frequency 4PI/12 and 20PI/12 29.06059 30.48 8.15 3.7 n=140 30.50 8.34 3.8* n=151* 30.49 8.25 3.8* Frequency 6PI/12 and 18PI/12 17.38906 30.48 8.15 3.7 n=140 30.50 8.34 3.8* n=151* 30.49 8.25 3.8* Frequency 8PI/12 and 16PI/12 8.122855 30.48 8.15 3.7 n=160 30.50 8.34 3.8* n=151* 30.48 8.15 3.7 n=160 30.50 8.34 3.8* Frequency 10PI/12 and 14PI/12 25.39552 30.48 8.15 3.7 n=160 30.50 8.34 3.8* Frequency PI -3.307147 -2.55 -1.93 -1.60 n=151* -2.55 -1.91 -1.60 n=151* -2.55 -1.92 -1.60 n=160 27.79 7.68 3.60 n=151* 27.83 7.60 3.50 All frequencies 34.22464 25.66 7.00 3.36	n=140		30.48	8.15	3.77
Frequency 4PI/12 and 20PI/12	n=160		30.50	8.34	3.87
n=140 n=160 n=160 n=151* Frequency 6PI/12 and 18PI/12 n=160 n=140 n=160 n=160 n=151* 17.38906 n=151* 30.48 8.15 3.7 30.49 8.25 3.82 Frequency 6PI/12 and 18PI/12 n=160 n=151* 30.48 8.15 3.7 3.7 30.49 8.25 3.82 Frequency 8PI/12 and 16PI/12 8.122855 n=140 30.50 8.34 3.8' 30.49 8.25 3.82 Frequency 10PI/12 and 14PI/12 25.39552 n=140 30.48 8.15 3.7 n=160 30.50 8.34 3.8' 3.8' 30.49 8.25 3.82 Frequency 10PI/12 and 14PI/12 25.39552 n=140 30.48 8.15 3.7 n=160 30.50 8.34 3.8' 3.8' 3.8' 3.8' 3.8' 3.8' 3.8' 3.8'	n=151*		30.49	8.25	3.82
n=140 n=160 n=160 n=151* 30.48 n=151* 30.50 n=3.44 3.8' 30.49 n=151* 30.49 n=160 n=140 n=160 n=160 n=151* 30.48 n=151* 30.49 n=160 30.50 n=3.43 3.8' 3.8' 3.8' 3.8' 3.8' 3.8' 3.8' 3.8	Frequency 4PI/12 and 20PI/12	29.06059			
n=151* 30.49 8.25 3.83 Frequency 6PI/12 and 18PI/12 17.38906 30.48 8.15 3.7 n=160 30.50 8.34 3.8 n=151* 30.49 8.25 3.83 Frequency 8PI/12 and 16PI/12 8.122855 8.15 3.7 n=160 30.50 8.34 3.8 n=151* 30.49 8.25 3.83 Frequency 10PI/12 and 14PI/12 25.39552 30.48 8.15 3.7 n=160 30.50 8.34 3.8 n=151* 30.49 8.25 3.83 Frequency PI -3.307147 -2.55 -1.93 -1.60 n=160 -2.55 -1.91 -1.60 n=151* 27.83 7.60 3.50 All seasonal frequencies 32.81984 7.51 3.5 n=160 27.79 7.68 3.60 n=151* 27.83 7.60 3.50 All frequencies 34.22464 25.66 7.00 3.30			30.48	8.15	3.77
Frequency 6PI/12 and 18PI/12	n=160		30.50	8.34	3.87
n=140 30.48 8.15 3.7 n=160 30.50 8.34 3.8 n=151* 30.49 8.25 3.8 Frequency 8PI/12 and 16PI/12 8.122855 n=140 30.50 8.34 3.8* n=160 30.50 8.34 3.8* n=151* 30.48 8.15 3.7* n=160 30.50 8.34 3.8* n=151* 30.48 8.15 3.7* n=160 30.50 8.34 3.8* solution of the properties of the p	n=151*		30.49	8.25	3.82
n=140 30.48 8.15 3.7 n=160 30.50 8.34 3.8 n=151* 30.49 8.25 3.8 Frequency 8PI/12 and 16PI/12 8.122855 30.48 8.15 3.7 n=160 30.50 8.34 3.8' n=151* 30.49 8.25 3.8' Frequency 10PI/12 and 14PI/12 25.39552 30.48 8.15 3.7' n=160 30.50 8.34 3.8' n=151* 30.49 8.25 3.8' Frequency PI -3.307147 -2.55 -1.93 -1.60 n=140 -2.55 -1.91 -1.60 n=151* -2.55 -1.91 -1.60 n=160 27.79 7.68 3.60 n=151* 27.83 7.60 3.50 All frequencies 34.22464 25.66 7.00 3.30	Frequency 6PI/12 and 18PI/12	17.38906			
n=160 30.50 8.34 3.8° n=151* 30.49 8.25 3.8° Frequency 8PI/12 and 16PI/12 8.122855 30.48 8.15 3.7° n=160 30.50 8.34 3.8° n=151* 30.49 8.25 3.8° Frequency 10PI/12 and 14PI/12 25.39552 30.48 8.15 3.7° n=160 30.50 8.34 3.8° n=151* 30.49 8.25 3.8° Frequency PI -3.307147 -2.55 -1.93 -1.60 n=160 -2.55 -1.91 -1.60 n=151* -2.55 -1.91 -1.60 n=151* 27.88 7.51 3.5 All seasonal frequencies 32.81984 27.88 7.51 3.5 n=160 27.79 7.68 3.60 n=151* 27.83 7.60 3.50 All frequencies 34.22464 25.66 7.00 3.30			30.48	8.15	3.77
n=151* 30.49 8.25 3.83 Frequency 8PI/12 and 16PI/12 8.122855 30.48 8.15 3.7 n=160 30.50 8.34 3.8 n=151* 30.49 8.25 3.8 Frequency 10PI/12 and 14PI/12 25.39552 30.48 8.15 3.7 n=160 30.50 8.34 3.8 n=151* 30.49 8.25 3.8 Frequency PI -3.307147 -2.55 -1.93 -1.60 n=160 -2.55 -1.91 -1.60 n=151* -2.55 -1.91 -1.60 All seasonal frequencies 32.81984 7.51 3.5 n=160 27.79 7.68 3.60 n=151* 27.83 7.60 3.50 All frequencies 34.22464 25.66 7.00 3.30					3.87
n=140 30.48 8.15 3.7 n=160 30.50 8.34 3.8° n=151* 30.49 8.25 3.8° Frequency 10PI/12 and 14PI/12 25.39552					3.82
n=140 30.48 8.15 3.7 n=160 30.50 8.34 3.8° n=151* 30.49 8.25 3.8° Frequency 10PI/12 and 14PI/12 25.39552	Frequency 8PI/12 and 16PI/12	8.122855			
n=151* 30.49 8.25 3.82 Frequency 10PI/12 and 14PI/12 25.39552 30.48 8.15 3.7 n=160 30.50 8.34 3.8 n=151* 30.49 8.25 3.8 Frequency PI -3.307147 -2.55 -1.93 -1.60 n=160 -2.55 -1.91 -1.60 n=151* -2.55 -1.92 -1.60 All seasonal frequencies 32.81984 7.51 3.5 n=140 27.88 7.51 3.5 n=160 27.79 7.68 3.60 n=151* 27.83 7.60 3.50 All frequencies 34.22464 25.66 7.00 3.30			30.48	8.15	3.77
Frequency 10PI/12 and 14PI/12 25.39552 n=140 30.48 8.15 3.77 n=160 30.50 8.34 3.87 n=151* 30.49 8.25 3.82 Frequency PI -3.307147 n=140 -2.55 -1.93 -1.60 n=160 -2.55 -1.91 -1.60 n=151* -2.55 -1.92 -1.60 All seasonal frequencies 32.81984 n=140 27.88 7.51 3.50 n=160 27.79 7.68 3.60 n=151* 34.22464 n=140 25.66 7.00 3.36	n=160		30.50	8.34	3.87
n=140 30.48 8.15 3.7 n=160 30.50 8.34 3.8° n=151* 30.49 8.25 3.8° Frequency PI -3.307147 -2.55 -1.93 -1.60 n=160 -2.55 -1.91 -1.60 n=151* -2.55 -1.92 -1.60 All seasonal frequencies 32.81984 7.51 3.5 n=160 27.79 7.68 3.60 n=151* 27.83 7.60 3.50 All frequencies 34.22464 25.66 7.00 3.30	n=151*		30.49	8.25	3.82
n=140 30.48 8.15 3.7 n=160 30.50 8.34 3.8° n=151* 30.49 8.25 3.8° Frequency PI -3.307147 -2.55 -1.93 -1.60 n=160 -2.55 -1.91 -1.60 n=151* -2.55 -1.92 -1.60 All seasonal frequencies 32.81984 7.51 3.5 n=160 27.79 7.68 3.60 n=151* 27.83 7.60 3.50 All frequencies 34.22464 25.66 7.00 3.30	Frequency 10PI/12 and 14PI/12	25.39552			
n=160 30.50 8.34 3.8° n=151* 30.49 8.25 3.8° Frequency PI -3.307147 -2.55 -1.93 -1.60 n=160 -2.55 -1.91 -1.60 n=151* -2.55 -1.92 -1.60 All seasonal frequencies 32.81984 7.51 3.5 n=140 27.88 7.51 3.5 n=160 27.79 7.68 3.60 n=151* 27.83 7.60 3.50 All frequencies 34.22464 25.66 7.00 3.30			30.48	8.15	3.77
n=151* 30.49 8.25 3.82 Frequency PI -3.307147 -2.55 -1.93 -1.60 n=160 -2.55 -1.91 -1.60 n=151* -2.55 -1.92 -1.60 All seasonal frequencies 32.81984 7.51 3.5 n=140 27.88 7.51 3.5 n=160 27.79 7.68 3.60 n=151* 27.83 7.60 3.50 All frequencies 34.22464 25.66 7.00 3.30					3.87
n=140 -2.55 -1.93 -1.60 n=160 -2.55 -1.91 -1.60 n=151* -2.55 -1.92 -1.60 All seasonal frequencies 32.81984 27.88 7.51 3.5 n=140 27.79 7.68 3.60 n=151* 27.83 7.60 3.50 All frequencies 34.22464 25.66 7.00 3.30					3.82
n=140 -2.55 -1.93 -1.60 n=160 -2.55 -1.91 -1.60 n=151* -2.55 -1.92 -1.60 All seasonal frequencies 32.81984 27.88 7.51 3.5 n=140 27.79 7.68 3.60 n=151* 27.83 7.60 3.50 All frequencies 34.22464 25.66 7.00 3.30	Frequency PI	-3 307147			
n=160 -2.55 -1.91 -1.60 n=151* -2.55 -1.92 -1.60 All seasonal frequencies 32.81984 27.88 7.51 3.5 n=140 27.79 7.68 3.60 n=151* 27.83 7.60 3.50 All frequencies 34.22464 25.66 7.00 3.30		3.307147	-2.55	-1 93	-1.60
n=151* -2.55 -1.92 -1.60 All seasonal frequencies 32.81984 n=140 27.88 7.51 3.5 n=160 27.79 7.68 3.60 n=151* 27.83 7.60 3.50 All frequencies 34.22464 n=140 25.66 7.00 3.30					-1.60
n=140 27.88 7.51 3.5 n=160 27.79 7.68 3.60 n=151* 27.83 7.60 3.50 All frequencies 34.22464 n=140 25.66 7.00 3.30					-1.60
n=140 27.88 7.51 3.5 n=160 27.79 7.68 3.60 n=151* 27.83 7.60 3.50 All frequencies 34.22464 n=140 25.66 7.00 3.30	All seasonal frequencies	32 81984			
n=160 27.79 7.68 3.60 n=151* 27.83 7.60 3.50 All frequencies 34.22464 n=140 25.66 7.00 3.30		32.01704	27.88	7.51	3 51
n=151* 27.83 7.60 3.50 All frequencies 34.22464 n=140 25.66 7.00 3.30					3.60
n=140 25.66 7.00 3.30					3.56
n=140 25.66 7.00 3.30	All frequencies	34 22464			
	=	JT.22404	25.66	7.00	3 30
	n=140 n=160		25.64	7.14	3.40
					3.36

*Note: Obtained using linear interpolation. *Nota*. Eviews 12 - BCRP

Variable: MINERAL

Figura 17

Comportamiento DLMINERAL

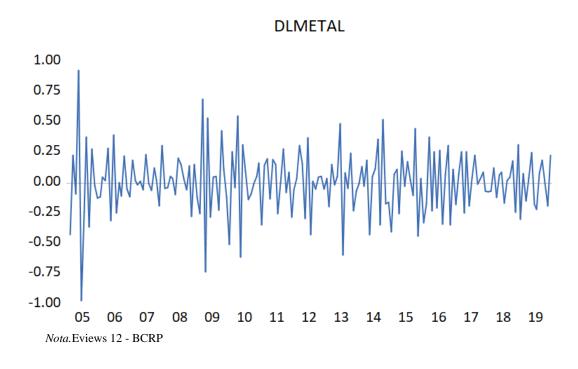
Nota. Eviews 12 - BCRP

Hegy test statistic

La Ho nos dice que tiene presencia de raíz unitaria, para un valor de 5% el valor crítico es de 7.10 y el valor calculado 39.99765, por lo tanto se concluye que la serie no tiene raíz unitaria.

Tabla 18 *Test de Hegy DLMINERAL*

	Significance Level			
	Test Stat.	1%	5%	10%
Frequency 0	-1.945027			
n=140		-2.55	-1.93	-1.60
n=160		-2.55	-1.91	-1.60
n=154*		-2.55	-1.91	-1.60
Frequency 2PI/12 and 22PI/12	25.74772			
n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=154*		30.49	8.28	3.84
Frequency 4PI/12 and 20PI/12	31.89999			
n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=154*		30.49	8.28	3.84
Frequency 6PI/12 and 18PI/12	31.28802			


n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=154*		30.49	8.28	3.84
Frequency 8PI/12 and 16PI/12	41.04627			
n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=154*		30.49	8.28	3.84
Frequency 10PI/12 and 14PI/12	18.62000			
n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=154*		30.49	8.28	3.84
Frequency PI	-3.937960			
n=140		-2.55	-1.93	-1.60
n=160		-2.55	-1.91	-1.60
n=154*		-2.55	-1.91	-1.60
All seasonal frequencies	42.70546			
n=140		27.88	7.51	3.51
n=160		27.79	7.68	3.60
n=154*		27.82	7.63	3.58
All frequencies	39.99765			
n=140		25.66	7.00	3.30
n=160		25.64	7.14	3.40
n=154*		25.65	7.10	3.37

^{*}Note: Obtained using linear interpolation. *Nota*. Eviews 12 - BCRP

Variable: METALMECÁNICO

Figura 18

Comportamiento DLMETAL

Hegy test statistic

La Ho nos dice que tiene presencia de raíz unitaria, para un valor de 5% el valor crítico es de 7.10 y el valor calculado 34.14306, por lo tanto se concluye que la serie no tiene raíz unitaria.

Tabla 19 *Test de Hegy DLMETAL*

	Significance Level			
	Test Stat.	1%	5%	10%
Frequency 0	-2.073292			
n=140		-2.55	-1.93	-1.60
n=160		-2.55	-1.91	-1.60
n=154*		-2.55	-1.91	-1.60
Frequency 2PI/12 and 22PI/12	24.53072			
n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=154*		30.49	8.28	3.84
Frequency 4PI/12 and 20PI/12	26.03522			
n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=154*		30.49	8.28	3.84
Frequency 6PI/12 and 18PI/12	24.12989			
n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=154*		30.49	8.28	3.84
Frequency 8PI/12 and 16PI/12	32.78776			
n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=154*		30.49	8.28	3.84
Frequency 10PI/12 and 14PI/12	27.26615			
n=140		30.48	8.15	3.77
n=160		30.50	8.34	3.87
n=154*		30.49	8.28	3.84
Frequency PI	-4.773615			
n=140		-2.55	-1.93	-1.60
n=160		-2.55	-1.91	-1.60
n=154*		-2.55	-1.91	-1.60
All seasonal frequencies	36.35797			
n=140		27.88	7.51	3.51
n=160		27.79	7.68	3.60
n=154*		27.82	7.63	3.58
All frequencies	34.14306			

n=140	25.66	7.00	3.30
n=160	25.64	7.14	3.40
n=154*	25.65	7.10	3.37

*Note: Obtained using linear interpolation.

Nota. Eviews 12 - BCRP

CONCLUSIÓN GENERAL DE LAS PRUEBAS DE RAÍZ UNITARIA:

Se rechaza la hipótesis de presencia de raíz unitaria. Por consiguiente, las series son estacionarias. Ahora, se debe realizar el proceso de estimación a través de los siguientes pasos:

- Estimación del modelo VAR por defecto
- Prueba de número de rezagos óptimos
- Estimación del modelo VAR con el número de rezagos óptimos
- Prueba de normalidad de los residuos
- Prueba de heterocedasticidad de los residuos
- Prueba de autocorrelación de los residuos
- Análisis de estabilidad del VAR (gráfica de raíz unitaria)
- Gráfica de función de impulso respuesta
- Descomposición histórica de la varianza

Primero se comienza con la estimación por defecto

Tabla 20Estimación por defecto modelo VAR

	DLPBI	DLAGRO	DLMETAL	DLMINERAL	DLPESQUERO	DLQUIMICO
DLPBI(-1)	0.317711	0.205110	0.760454	0.609784	-0.555920	0.648344
	(0.07872)	(0.45185)	(1.07124)	(0.84688)	(0.96906)	(0.50102)
	[4.03612]	[0.45393]	[0.70989]	[0.72004]	[-0.57367]	[1.29406]
DLPBI(-2)	0.386288	0.033947	-0.254492	-0.873845	0.224604	-0.087082
	(0.07645)	(0.43883)	(1.04036)	(0.82247)	(0.94113)	(0.48658)
	[5.05292]	[0.07736]	[-0.24462]	[-1.06246]	[0.23865]	[-0.17897]
DLAGRO(-1)	-0.004375	0.350120	-0.038811	-0.331585	0.036291	-0.087949
	(0.01616)	(0.09279)	(0.21998)	(0.17391)	(0.19900)	(0.10289)

	[-0.27062]	[3.77327]	[-0.17643]	[-1.90663]	[0.18237]	[-0.85482]
DLAGRO(-2)	0.026648	0.180050	0.068531	0.077234	0.188913	0.131373
	(0.01591)	(0.09130)	(0.21645)	(0.17112)	(0.19581)	(0.10124)
	[1.67538]	[1.97206]	[0.31661]	[0.45134]	[0.96479]	[1.29770]
DLMETAL(-1)	-0.008024	-0.021363	0.025672	-0.177653	-0.092777	-0.053282
	(0.00581)	(0.03335)	(0.07908)	(0.06251)	(0.07153)	(0.03698)
	[-1.38096]	[-0.64048]	[0.32465]	[-2.84178]	[-1.29697]	[-1.44069]
DLMETAL(-2)	0.007175	-0.000919	0.250998	0.089557	-0.025560	0.029982
DEMILITAL(-2)	(0.007173)	(0.03312)	(0.07851)	(0.06207)	(0.07103)	(0.03672)
	[1.24363]	[-0.02775]	[3.19683]	[1.44282]	[-0.35987]	[0.81648]
	[1.24303]	[-0.02773]	[3.17063]	[1.44262]	[-0.33987]	[0.61046]
DLMINERAL(-1)	0.015220	0.097750	0.007604	0.547099	0.082416	0.018969
	(0.00748)	(0.04295)	(0.10183)	(0.08050)	(0.09212)	(0.04762)
	[2.03404]	[2.27585]	[0.07467]	[6.79616]	[0.89470]	[0.39831]
DLMINERAL(-2)	-0.009980	-0.111860	-0.093732	0.154194	-0.116471	-0.021004
DEMINICER IE(2)	(0.00734)	(0.04214)	(0.09989)	(0.07897)	(0.09037)	(0.04672)
	[-1.35953]	[-2.65474]	[-0.93831]	[1.95249]	[-1.28887]	[-0.44956]
	[1.55755]	[2.05474]	[0.73031]	[1.75247]	[1.20007]	[0.44250]
DLPESQUERO(-1)	-0.014491	-0.028232	-0.056870	-0.113865	0.511664	0.023923
	(0.00706)	(0.04051)	(0.09603)	(0.07592)	(0.08687)	(0.04491)
	[-2.05354]	[-0.69699]	[-0.59220]	[-1.49984]	[5.88990]	[0.53265]
DI DEGOLIEDO (A)	0.007.472	0.010054	0.022050	0.024002	0.070457	0.000750
DLPESQUERO(-2)	-0.007473	0.019054	0.032959	0.034903	0.079457	-0.008750
	(0.00721)	(0.04140)	(0.09815)	(0.07759)	(0.08879)	(0.04590)
	[-1.03619]	[0.46023]	[0.33580]	[0.44981]	[0.89490]	[-0.19060]
DLQUIMICO(-1)	0.025246	0.013129	0.280224	0.318740	0.112388	0.502114
	(0.01393)	(0.07995)	(0.18955)	(0.14985)	(0.17147)	(0.08865)
	[1.81249]	[0.16421]	[1.47836]	[2.12703]	[0.65543]	[5.66382]
DLQUIMICO(-2)	0.004691	0.137824	0.169947	0.198818	0.178530	0.296382
	(0.01441)	(0.08270)	(0.19607)	(0.15500)	(0.17737)	(0.09170)
	[0.32556]	[1.66652]	[0.86678]	[1.28266]	[1.00656]	[3.23206]
С	0.010830	0.041532	0.010905	0.054428	0.027442	-0.015893
	(0.00339)	(0.01947)	(0.04615)	(0.03648)	(0.04175)	(0.02158)
	[3.19366]	[2.13368]	[0.23631]	[1.49189]	[0.65735]	[-0.73636]
R-squared	0.679741	0.434125	0.218774	0.629501	0.490682	0.698606
Adj. R-squared	0.654622	0.389743	0.157502	0.600442	0.450736	0.674968
Sum sq. resids	0.048511	1.598407	8.984015	5.614936	7.351947	1.965193
S.E. equation	0.017806	0.102211	0.242320	0.191570	0.219208	0.113333
F-statistic	27.06147	9.781485	3.570504	21.66302	12.28349	29.55350
Log likelihood	439.9068	149.8236	6.529102	45.54048	23.16908	132.6772
Akaike AIC	-5.143455	-1.648477	0.077963	-0.392054	-0.122519	-1.441894
Schwarz SC	-4.899745	-1.404767	0.321673	-0.148344	0.121191	-1.198184
Mean dependent	0.049184	0.129506	0.085690	0.118258	0.114013	0.080401
S.D. dependent	0.030299	0.130840	0.264001	0.303066	0.295777	0.198790
				-	-	

Determinant resid covariance (dof adj.)

Determinant resid covariance
Log likelihood
Akaike information criterion
Schwarz criterion

2.31E-12
851.1212
9.314713
-7.852454

Nota. Eviews 12 - BCRP

Prueba del número de Rezagos Óptimos

En esta tabla tenemos diversos criterios, pero vamos a elegir el criterio LR que es criterio de razón de verisimilitud que nos dice que el número óptimo de rezagos es 5.

Tabla 21 *Prueba del número de rezagos óptimos*

Lag	LogL	LR	FPE	AIC	SC	HQ
0	560.0927	NA	3.96e-11	-6.926158	-6.810839	-6.879331
1	803.4487	465.4184	2.96e-12	-9.518108	-8.710875*	-9.190319*
2	852.3310	89.82128	2.53e-12*	-9.679138*	-8.179990	-9.070386
3	876.7775	43.08687	2.93e-12	-9.534718	-7.343657	-8.645004
4	896.5093	33.29745	3.63e-12	-9.331366	-6.448390	-8.160689
5	928.7376	51.96811*	3.85e-12	-9.284220	-5.709330	-7.832581
6	952.9927	37.29229	4.56e-12	-9.137409	-4.870605	-7.404808
7	981.3625	41.49075	5.17e-12	-9.042031	-4.083313	-7.028467
8	1010.854	40.91992	5.84e-12	-8.960679	-3.310047	-6.666153

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion SC: Schwarz information criterion HQ: Hannan-Quinn information criterion

Nota. Eviews 12 - BCRP

De acuerdo con los criterios de información, se tiene que el LR es 5, FPE es 2, AIC 2, SC 2, HQ es 2. Uno de los criterios más robustos es el LR, por lo que se realiza la estimación utilizando 5 rezagos y luego su validación.

MODELO VAR
Tabla 22
Estimación del modelo VAR

	DLPBI	DLAGRO	DLMETAL	DLMINERAL	DLPESQUERO	DLQUIMICO
DLPBI(-1)	0.286144	-0.014559	0.163796	0.488407	-0.142306	0.691094
	(0.09324)	(0.53406)	(1.18564)	(0.92787)	(1.18444)	(0.58391)
	[3.06885]	[-0.02726]	[0.13815]	[0.52637]	[-0.12015]	[1.18355]
DLPBI(-2)	0.370703	-0.662715	1.232839	-0.505150	-0.742866	-0.634305
	(0.09640)	(0.55214)	(1.22579)	(0.95929)	(1.22455)	(0.60369)

	[3.84552]	[-1.20026]	[1.00575]	[-0.52659]	[-0.60664]	[-1.05072]
DLPBI(-3)	0.151792	0.669980	0.525720	-0.437305	-0.694910	1.090706
(- /	(0.09953)	(0.57005)	(1.26555)	(0.99040)	(1.26426)	(0.62326)
	[1.52517]	[1.17531]	[0.41541]	[-0.44154]	[-0.54966]	[1.74999]
	[1.32317]	[1.17551]	[0.41541]	[-0.44134]	[-0.54700]	[1./4///]
DLPBI(-4)	-0.018233	1.023923	-0.272601	-0.406493	0.375441	-0.558340
	(0.09266)	(0.53073)	(1.17825)	(0.92209)	(1.17706)	(0.58027)
	[-0.19677]	[1.92928]	[-0.23136]	[-0.44084]	[0.31897]	[-0.96220]
DLPBI(-5)	-0.009693	-0.467852	-0.499655	-0.243790	0.812234	-0.352868
	(0.08945)	(0.51235)	(1.13746)	(0.89016)	(1.13631)	(0.56018)
	[-0.10836]	[-0.91315]	[-0.43927]	[-0.27387]	[0.71480]	[-0.62992]
DLAGRO(-1)	0.000758	0.396758	-0.040088	-0.133689	0.028244	-0.021843
	(0.01762)	(0.10092)	(0.22404)	(0.17533)	(0.22382)	(0.11034)
	[0.04302]	[3.93153]	[-0.17893]	[-0.76248]	[0.12619]	[-0.19796]
DLAGRO(-2)	0.016568	0.128330	0.237475	-0.147442	0.140130	0.044639
	(0.01836)	(0.10515)	(0.23344)	(0.18269)	(0.23320)	(0.11497)
	[0.90249]	[1.22045]	[1.01728]	[-0.80707]	[0.60089]	[0.38828]
DLAGRO(-3)	0.007658	0.108822	-0.507035	0.595757	0.092805	-0.002179
()	(0.01853)	(0.10613)	(0.23563)	(0.18440)	(0.23539)	(0.11604)
	[0.41328]	[1.02532]	[-2.15186]	[3.23080]	[0.39426]	[-0.01877]
DLAGRO(-4)	-0.015036	-0.024884	0.426831	-0.354783	0.067952	0.064684
	(0.01883)	(0.10783)	(0.23939)	(0.18735)	(0.23915)	(0.11790)
	[-0.79867]	[-0.23077]	[1.78296]	[-1.89371]	[0.28414]	[0.54864]
DLAGRO(-5)	-0.011051	-0.054452	0.087298	-0.283939	-0.164667	0.079782
	(0.01745)	(0.09996)	(0.22192)	(0.17367)	(0.22169)	(0.10929)
	[-0.63322]	[-0.54474]	[0.39338]	[-1.63492]	[-0.74277]	[0.72999]
DLMETAL(-1)	-0.005095	-0.014398	0.035338	-0.212889	-0.061558	-0.029805
	(0.00620)	(0.03554)	(0.07890)	(0.06175)	(0.07882)	(0.03886)
	[-0.82105]	[-0.40513]	[0.44788]	[-3.44779]	[-0.78100]	[-0.76703]
DLMETAL(-2)	0.012360	0.012680	0.183017	0.087760	-0.026141	0.034369
	(0.00631)	(0.03615)	(0.08026)	(0.06281)	(0.08018)	(0.03953)
	[1.95816]	[0.35073]	[2.28026]	[1.39719]	[-0.32602]	[0.86949]
DLMETAL(-3)	-0.008110	-0.036243	0.067268	0.063637	-0.119337	-0.069712
	(0.00650)	(0.03721)	(0.08260)	(0.06464)	(0.08252)	(0.04068)
	[-1.24847]	[-0.97414]	[0.81439]	[0.98447]	[-1.44624]	[-1.71372]
DLMETAL(-4)	-0.001447	-0.022914	0.029009	0.001579	0.034285	0.012577
, ,	(0.00652)	(0.03734)	(0.08289)	(0.06487)	(0.08280)	(0.04082)
	[-0.22200]	[-0.61375]	[0.34998]	[0.02435]	[0.41405]	[0.30811]
DLMETAL(-5)	0.005183	-0.030796	0.150736	-0.050103	-0.114873	-0.060149
(U)	(0.00630)	(0.03609)	(0.08013)	(0.06271)	(0.08005)	(0.03946)
	[0.82246]	[-0.85325]	[1.88117]	[-0.79899]	[-1.43505]	[-1.52422]
DLMINERAL(-1)	0.018052	0.102241	-0.043741	0.372287	-0.021768	0.054713
	(0.00909)	(0.05209)	(0.11564)	(0.09050)	(0.11553)	(0.05695)
	[1.98495]	[1.96276]	[-0.37824]	[4.11357]	[-0.18843]	[0.96066]
	[1.70773]	[1.702/0]		[T.1133/]		[0.70000]
DLMINERAL(-2)	-0.004055	-0.117143	-0.062163	0.039566	-0.156556	-0.065604

	(0.00963)	(0.05514)	(0.12241)	(0.09579)	(0.12228)	(0.06028)
	[-0.42129]	[-2.12463]	[-0.50785]	[0.41303]	[-1.28029]	[-1.08826]
DLMINERAL(-3)	-0.004255	-0.020481	0.075179	0.112311	0.028915	0.068065
` '	(0.00911)	(0.05215)	(0.11579)	(0.09061)	(0.11567)	(0.05702)
	[-0.46735]	[-0.39271]	[0.64930]	[1.23946]	[0.24999]	[1.19365]
DLMINERAL(-4)	-0.001594	-0.061965	0.196367	0.070406	-0.018522	-0.019390
	(0.00910)	(0.05215)	(0.11577)	(0.09060)	(0.11565)	(0.05701)
	[-0.17506]	[-1.18832]	[1.69625]	[0.77713]	[-0.16016]	[-0.34010]
DLMINERAL(-5)	-0.001320	0.107142	-0.229530	0.230561	0.156606	-0.051456
	(0.00833)	(0.04774)	(0.10599)	(0.08294)	(0.10588)	(0.05220)
	[-0.15840]	[2.24431]	[-2.16568]	[2.77975]	[1.47912]	[-0.98581]
DLPESQUERO(-1)	-0.010723	-0.026158	-0.020786	-0.107621	0.505753	0.026123
	(0.00728)	(0.04171)	(0.09260)	(0.07247)	(0.09251)	(0.04560)
	[-1.47251]	[-0.62714]	[-0.22447]	[-1.48510]	[5.46730]	[0.57282]
DLPESQUERO(-2)	-0.010811	0.001682	0.043757	0.000501	0.048218	-0.006131
	(0.00828)	(0.04741)	(0.10526)	(0.08238)	(0.10516)	(0.05184)
	[-1.30604]	[0.03548]	[0.41569]	[0.00608]	[0.45854]	[-0.11827]
DLPESQUERO(-3)	0.004343	0.034031	0.003256	0.030186	-0.015273	-0.043238
	(0.00828)	(0.04743)	(0.10529)	(0.08240)	(0.10518)	(0.05185)
	[0.52450]	[0.71756]	[0.03092]	[0.36634]	[-0.14520]	[-0.83384]
DLPESQUERO(-4)	0.005588	-0.083266	-0.087853	-0.019912	-0.032566	-0.060219
	(0.00834)	(0.04776)	(0.10602)	(0.08297)	(0.10592)	(0.05222)
	[0.67024]	[-1.74353]	[-0.82860]	[-0.23998]	[-0.30746]	[-1.15327]
DLPESQUERO(-5)	-0.002405	0.056805	0.190017	-0.001610	0.062498	0.054855
	(0.00748)	(0.04282)	(0.09506)	(0.07439)	(0.09497)	(0.04682)
	[-0.32165]	[1.32660]	[1.99887]	[-0.02164]	[0.65811]	[1.17168]
DLQUIMICO(-1)	0.031647	0.007468	0.246823	0.290498	0.173634	0.437135
	(0.01565)	(0.08964)	(0.19902)	(0.15575)	(0.19881)	(0.09801)
	[2.02202]	[0.08331]	[1.24022]	[1.86519]	[0.87335]	[4.45999]
DLQUIMICO(-2)	0.023064	0.205184	0.170543	0.329017	0.125160	0.290711
	(0.01680)	(0.09622)	(0.21360)	(0.16717)	(0.21339)	(0.10520)
	[1.37302]	[2.13255]	[0.79840]	[1.96821]	[0.58653]	[2.76347]
DLQUIMICO(-3)	-0.033217	-0.114471	0.014969	-0.193724	0.088235	0.133162
	(0.01663)	(0.09525)	(0.21146)	(0.16549)	(0.21125)	(0.10414)
	[-1.99739]	[-1.20178]	[0.07079]	[-1.17061]	[0.41768]	[1.27864]
DLQUIMICO(-4)	0.002892	0.046378	-0.414775	-0.002162	0.080376	0.062274
	(0.01688)	(0.09670)	(0.21469)	(0.16801)	(0.21447)	(0.10573)
	[0.17130]	[0.47959]	[-1.93199]	[-0.01287]	[0.37477]	[0.58899]
DLQUIMICO(-5)	-0.006322	-0.021415	0.043607	0.194187	-0.019410	-0.060887
	(0.01544)	(0.08846)	(0.19639)	(0.15369)	(0.19619)	(0.09672)
	[-0.40934]	[-0.24208]	[0.22204]	[1.26347]	[-0.09894]	[-0.62952]
C	0.009545	0.028584	-0.040258	0.084504	0.036147	-0.007239
	(0.00386)	(0.02213)	(0.04912)	(0.03844)	(0.04907)	(0.02419)
	[2.47081]	[1.29190]	[-0.81958]	[2.19827]	[0.73663]	[-0.29924]

R-squared	0.721017	0.516240	0.330797	0.729267	0.537471	0.751065
Adj. R-squared	0.657612	0.406294	0.178706	0.667736	0.432350	0.694489
Sum sq. resids	0.041041	1.346389	6.635980	4.064191	6.622527	1.609511
S.E. equation	0.017633	0.100995	0.224215	0.175469	0.223988	0.110423
F-statistic	11.37158	4.695410	2.174990	11.85215	5.112911	13.27529
Log likelihood	444.0990	159.6134	29.61439	69.57316	29.77978	145.0654
Akaike AIC	-5.068699	-1.578079	0.017001	-0.473290	0.014972	-1.399575
Schwarz SC	-4.480317	-0.989697	0.605383	0.115092	0.603354	-0.811193
Mean dependent	0.048702	0.128878	0.094933	0.117039	0.110482	0.081400
S.D. dependent	0.030134	0.131073	0.247409	0.304410	0.297293	0.199777
Determinant resid cova	riance (dof adi.)	1.46E-12				
Determinant resid cova	` ' '	4.11E-13				
Log likelihood		936.7667				
Akaike information cri	terion	-9.211862				
Schwarz criterion		-5.681570				
Number of coefficients	1	186				

Nota. Eviews 12 - BCRP

PRUEBA DE NORMALIDAD

La prueba de normalidad del modelo se realiza a través de la prueba Jarque –

Bera:

Tabla 23Prueba de normalidad

Component	Jarque-Bera	df	Prob.
1	2.705537	2	0.2585
2	1.770015	2	0.4127
3	5.505258	2	0.0638
4	0.603567	2	0.7395
5	0.010430	2	0.9948
6	0.395805	2	0.8204
Joint	10.99061	12	0.5297

Nota. Eviews 12 - BCRP

La prueba de Jarque – Bera tiene las siguientes hipótesis:

H0: Los residuos siguen una distribución normal

H1: Los residuos no siguen una distribución normal

Para un nivel de significancia del 5% se acepta H0, dado que el p – valor es mayor al 5% de significancia. La prueba de normalidad, se puede fundamentar tanto a nivel de asimetría como kurtosis. En este caso la prueba nos muestra un p-valor de 0.5297 por lo que se concluye que los términos residuales son normales.

PRUEBA DE HETEROCEDASTICIDAD

Luego se realiza la prueba de heterocedasticidad a través del test del White:

Tabla 24 *Test de White*

Chi-sq	df	Prob.
1242.804	1260	0.6296

Nota. Eviews 12 - BCRP

Las hipótesis son:

H0: Los residuos son homocedásticos

H1: Los residuos son heterocedásticos

Para un nivel de significancia del 5% se acepta H0, dado que el p – valor es mayor al 5% de significancia. Este test nos muestra un valor de 0.6296 que para un nivel de significancia del 5% se acepta la H0 de la homocedasticidad.

Por consiguiente, se concluye que los residuos son homocedásticos.

PRUEBA DE AUTOCORRELACIÓN

Luego se realiza la prueba de autocorrelación:

Tabla 25Prueba de Autocorrelación

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1	30.69523	36	0.7188	0.849790	(36, 534.1)	0.7192
2	31.29687	36	0.6918	0.866923	(36, 534.1)	0.6922
3	39.82396	36	0.3038	1.111783	(36, 534.1)	0.3043
4	46.46305	36	0.1136	1.305069	(36, 534.1)	0.1140
5	44.29472	36	0.1615	1.241686	(36, 534.1)	0.1619

Nota. Eviews 12 - BCRP

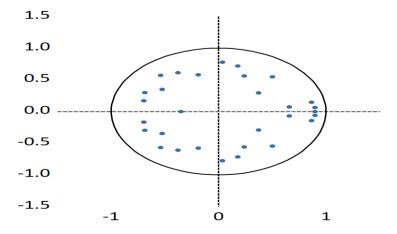
Las hipótesis son:

H0: En el rezago h no existe autocorrelación

H1: En el rezago h existe autocorrelación

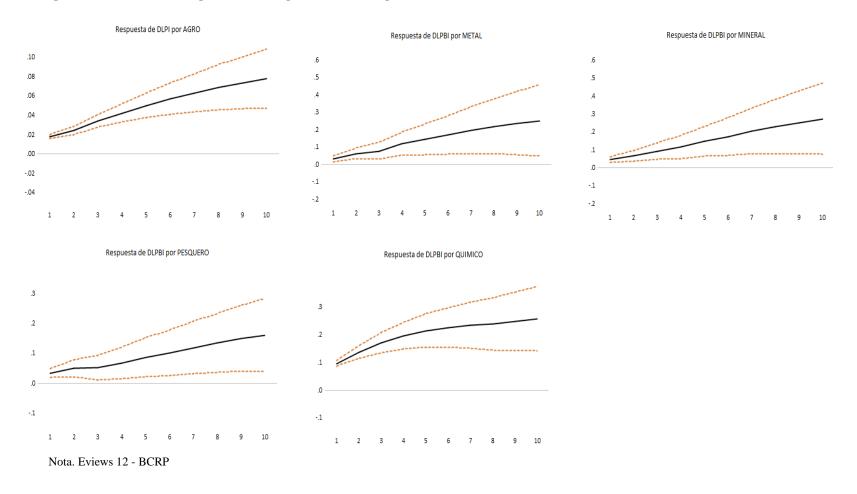
Se evidencia que, para los 5 rezagos, para un nivel de significancia del 5%, se debe aceptar H0, dado que el p – valor es mayor al 5%. La primera tabla está en función de correlación hasta un número dado de rezagos, que en este caso serían 5 y el p-valor es 0.1619, por lo tanto se concluye que no existen problemas de autocorrelacion.

ESTABILIDAD DEL MODELO


El análisis de estabilidad del modelo se realiza a través del círculo unitario:

La siguiente figura nos muestra que no existen raíces fuera del círculo unitario, por lo que el modelo VAR satisface la condición de estabilidad.

Figura 19


Función Impulso Respuesta del modelo VAR

Se evidencia que la inversa de las raíces del polinomio característico tiene un módulo menor a 1; por lo que, se evidencia que el modelo VAR satisface las condiciones de estabilidad. Luego se analiza la función de impulso respuesta.

Nota. Eviews 12 - BCRP

Figura 20Respuesta del PBI con respecto a las exportaciones de productos no tradicionales

VI. DISCUSIÓN DE RESULTADOS

6.1 Contrastación y demostración de la hipótesis con los resultados

En este capítulo, para la comprobación de las hipótesis, se requirió los datos del PBI y las exportaciones de productos no tradicionales como son el agropecuario, pesquero, químico, minerales no metálicos y metalmecánicos, los resultados a los que se ha llegado a través del Modelo Vectorial Autoregresivo (VAR) son significativos que permite contrastar las hipótesis planteadas.

La hipótesis general de la presente investigación es las exportaciones de productos no tradicionales tuvieron un efecto significativo en el crecimiento económico del Perú, 2005-2019. Con los resultados obtenidos en la función impulso respuesta podemos decir que en general, las exportaciones de productos no tradicionales tuvieron un efecto significativo sobre el crecimiento económico peruano. Por lo tanto, se contrasta la hipótesis general.

La hipótesis especifica 1, Las exportaciones de productos agropecuarios no tradicionales tuvieron un efecto significativo en el crecimiento económico del Perú, 2005-2019. En la figura 20, podemos visualizar que los primeros tres meses tiene un impulso más creciente con respecto a los siguientes meses donde el impulso es menor, pero sigue siendo significativo. Los efectos de las exportaciones de productos no tradicionales agropecuarios son directamente proporcionales con el crecimiento del PBI, por lo tanto, podemos decir que dicho efecto es significativo para el crecimiento económico peruano.

La hipótesis especifica 2, Las exportaciones de productos pesqueros no tradicionales tuvieron un efecto significativo en el crecimiento económico del Perú,

2005-2019. En la figura 20, podemos visualizar que su crecimiento es significativo, los primeros dos meses tiene un impulso más creciente con respecto a los siguientes meses donde el impulso es menor, pero sigue siendo significativo. El efecto de las exportaciones de productos no tradicionales pesqueros son directamente proporcionales con el crecimiento del PBI, por lo tanto, podemos decir que dicho efecto es significativo para el crecimiento económico peruano.

La hipótesis especifica 3, Las exportaciones de productos químicos no tradicionales tuvieron un efecto significativo en el crecimiento económico del Perú, 2005-2019. En la figura 20, podemos visualizar que su crecimiento es significativo, los primeros seis meses tiene un impulso más creciente con respecto a los siguientes meses donde el impulso es menor, pero sigue siendo significativo. El efecto de las exportaciones de productos no tradicionales químicos son directamente proporcionales con el crecimiento del PBI, por lo tanto, podemos decir que dicho efecto es significativo para el crecimiento económico peruano.

La hipótesis especifica 4, Las exportaciones de productos minerales no metálicos no tradicionales tuvieron un efecto significativo en el crecimiento económico del Perú, 2005-2019. En la figura 20, podemos visualizar que su crecimiento es significativo, los primeros dos meses tiene un impulso más creciente con respecto a los siguientes meses donde el impulso es menor, pero sigue siendo significativo. Los efectos de las exportaciones de productos no tradicionales de minerales no metálicos son directamente proporcionales con el crecimiento del PBI, por lo tanto, podemos decir que dicho efecto es significativo para el crecimiento económico peruano.

La hipótesis especifica 5, Las exportaciones de productos metalmecánicos no tradicionales tuvieron un efecto significativo en el crecimiento económico del Perú, 2005-2019. En la figura 20, podemos visualizar que su crecimiento es significativo, los primeros dos meses tiene un impulso más creciente con respecto a los siguientes meses donde el impulso es menor, pero sigue siendo significativo. El efecto de las exportaciones de productos metalmecánicos no tradicionales de son directamente proporcionales con el crecimiento del PBI, por lo tanto, podemos decir que dicho efecto es significativo para el crecimiento económico peruano.

6.2 Contrastación de los resultados con otros estudios similares

Los resultados presentados en la investigación se contrastan con algunas investigaciones nacionales e internacionales.

Los resultados de la presente investigación coinciden con la investigación de (Escobar, 2022), en el largo plazo continúa incrementándose significativamente el crecimiento del PBI económico, utiliza la metodología del Modelo de Vectores Autorregresivos con corrección del error. Los resultados muestran que los efectos de las variables explicativas (exportaciones no tradicionales de Piura, crecimiento económico de Perú y Estados Unidos) divergen en el corto y largo plazo,

De acuerdo con (Arrieta, 2020) la investigación de los productos no tradicionales del sector agropecuario en los últimos años tienen una tendencia positiva e inciden al crecimiento de la economía, el modelo econométrico de la investigación es mínimo cuadrado ordinario cuyo R-squared es 0.969035, por ende indica que su grado de significancia es alto, es decir, existe relación positiva entre las variables exógenas y endógenas, se coincide positivamente el sector en mención al crecimiento económico peruano.

Los resultados obtenidos en la investigación de (Balcázar, 2017) coinciden con el incremento de las exportaciones de producto pesquero no tradicionales en el crecimiento económico de Tumbes a partir del 2007, y que nuestros principales mercados de destinos exportados siendo Estados Unidos nuestro mayor socio comercial después de Francia, dado que este sector pesquero aporto el dinamismo económico en el PBI peruano. Además, el modelo que se utilizó es el VAR, con el que coincidimos con el sector pesquero.

De acuerdo con (Balcázar, 2017), se coincide los resultados de las dos variables, el PBI y producto no tradicional químico respecto al incremento de las exportaciones del sector químico no tradicional en el crecimiento económico de Tumbes a partir del 2017, dado que este sector químico aporto el dinamismo económico en el PBI peruano. Además, el modelo que se utilizó es el VAR, con el que coincidimos el crecimiento de los productos no tradicionales en el sector químico.

De acuerdo con (Gutiérrez, 2019), se determina el efecto de las exportaciones de productos minerales no metálicos no tradicionales en el crecimiento económico del Perú, 2005-2019, a mayor precio de las exportaciones de oro, aumenta la producción minera, por ende, aumenta el crecimiento económico del país de Ecuador. Esta investigación guarda relación con la investigación presentada.

El efecto de las exportaciones de productos metalmecánicos no tradicionales en el crecimiento económico del Perú, 2005-2019, de acuerdo a los antecedentes citados en la presente investigación no se tiene coincidencia con investigaciones similares con el sector metalmecánico.

6.3 Responsabilidad ética

El desarrollo de la tesis no incluyo tomar información de especies, animales, plantas ni saberes ancestrales de las comunidades étnicas peruanas, por lo tanto, no se requirió de conocimiento informado. Los autores se hacen responsable de la información procesada en la presente tesis, asumiendo la responsabilidad que la presente tesis enmarca en el contexto de la normatividad y reglamentos vigentes en la Universidad Nacional del Callao.

El desarrollo de la investigación es fiel a la realidad económica de nuestra economía, la información presentada cumple con la ética de los autores, pues con mucho esfuerzo se elaboró la tesis con ayuda de los conocimientos y consejos de los profesores conocedores de la materia.

VII. CONCLUSIONES

Las conclusiones de la presente investigación son obtenidas a base de los resultados.

Con respecto al problema general, en esta tesis se analizó las exportaciones de productos no tradionales que influye de manera directa y significativa en el crecimiento económico del Perú, 2005 – 2019. Asimismo, se evidencia por medio de la función impulso - respuesta que los sectores no tradicionales estudiados tienen un efecto positivo y creciente a largo plazo entre ambas variables, lo que significa que a mayor exportación se manifiesta mayor crecimiento de PBI, Lo que corrobora la teoría económica del crecimiento económico.

Como resultado al primer problema específico, se determinó la existencia de una influencia directa y significativa entre el crecimiento de las exportaciones de productos agropecuarios no tradicionales en el periodo 2005 a 2019. Es decir, el incremento es 0.8397 de las exportaciones no tradicionales agropecuarias en el año 2005 respecto al 0.8569 del crecimiento del PBI y cerramos con el último año de estudio cuyo incremento es 5.2490 de las exportaciones no tradicionales agropecuarias frente al 1.7097 del crecimiento del PBI en el año 2019. En el contexto real, la exportación de productos agropecuarios no tradicionales efectivamente influye en el crecimiento económico, dado el sector agropecuario no tradicional es uno de los principales factores que impulsó la creciente demanda internacional de productos alimenticios como las paltas, uvas, arándanos, espárragos, entre otros, siendo estos los que fomentan una mayor productividad y competitividad, y dar mayor producción, por ende, mayor crecimiento económico.

Como resultado al segundo problema específico, se determinó la existencia de una influencia directa y significativa entre el crecimiento de las exportaciones de productos pesqueros no tradicionales en el crecimiento económico en el periodo 2005 a 2019. Es decir, el incremento es 0.2761 de las exportaciones no tradicionales pesqueros en el año 2005 respecto al 0.8569 del crecimiento del PBI y cerramos con el último año de estudio cuyo incremento es 1.3450 de las exportaciones no tradicionales pesqueros frente al 1.7097 del crecimiento del PBI en el año 2019. En el contexto real, la exportación de productos pesqueros no tradicionales efectivamente influye en el crecimiento económico, dado el sector pesquero no tradicional es uno de los principales factores que impulsó la creciente demanda internacional de productos pescados congelados, conservas, siendo estos los que fomentan una mayor innovación y competitividad, por ende, mayor crecimiento económico.

Como resultado al tercer problema específico, se determinó la existencia de una influencia directa y significativa entre el crecimiento de las exportaciones de productos químicos no tradicionales en el crecimiento económico en el periodo 2005 a 2019. Es decir, el incremento es 0.4480 de las exportaciones no tradicionales químicos en el año 2005 respecto al 0.8569 del crecimiento del PBI y cerramos con el último año de estudio cuyo incremento es 1.3389 de las exportaciones no tradicionales pesqueros frente al 1.7097 del crecimiento del PBI en el año 2019. En el contexto real, la exportación de productos químicos no tradicionales efectivamente influye en el crecimiento económico, dado el sector químico no tradicional es uno de los principales sectores que impulsó la creciente con películas de polímeros de propileno, tal que fomenta la competitividad y mayor crecimiento económico del Perú.

Como resultado al cuarto problema específico, se determinó la existencia de una influencia directa y significativa entre el crecimiento de las exportaciones de productos minerales no metálicos no tradicionales en el crecimiento económico en el periodo 2005 a 2019. Es decir, el incremento es 0.0984 de las exportaciones no tradicionales minerales no metálicos en el año 2005 respecto al 0.8569 del crecimiento del PBI y cerramos con el último año de estudio cuyo incremento es 0.5060 de las exportaciones no tradicionales minerales no metálicos frente al 1.7097 del crecimiento del PBI en el año 2019. En el contexto real, la exportación de productos minerales no metálicos no tradicionales efectivamente influye en el crecimiento económico, dado el sector mineral no metálicos no tradicional es uno de los principales factores que impulsó la creciente demanda de remolcadores de barcos y máquinas de sondeo siendo estos los que fomentan una mayor competitividad y mayor PBI peruano.

Como resultado al quinto problema específico, se determinó la existencia de una influencia directa y significativa entre el crecimiento de las exportaciones de productos metalmecánico no tradicionales en el crecimiento económico en el periodo 2005 a 2019. Es decir, el incremento es 0.4480 de las exportaciones no tradicionales metal mecánico en el año 2005 respecto al 0.8569 del crecimiento del PBI y cerramos con el último año de estudio cuyo incremento es 1.3389 de las exportaciones no tradicionales minerales no metálicos frente al 1.7097 del crecimiento del PBI en el año 2019. En el contexto real, la exportación de productos metalmecánico no tradicionales efectivamente influye en el crecimiento económico, dado el sector metalmecánico no tradicional es uno de los principales factores que impulsó una mayor competitividad y mayor PBI peruano.

VIII. RECOMENDACIONES

El Gobierno Nacional Peruano debe promocionar, fortalecer y seguir implementando programas integrales de desarrollo en los sectores económicos para tener mayor efecto las exportaciones de productos no tradicionales en el crecimiento económico del Perú. Asimismo, implementar políticas comerciales que permitan ampliar nuevos mercados e implementar políticas económicas que permitan incentivar e impulsar acuerdos comerciales que diversifiquen mercados y facilitar a las micro y pequeñas empresas exportadoras su internacionalización para expandir nuestros productos no tradicionales a nivel del mercado global.

El Gobierno debe mejorar la infraestructura para el desarrollo de nuestras agro exportaciones, como sus sistemas de riego, para asegurar la ejecución de proyectos de irrigación, también de la mano del Ministerio de Desarrollo Agrario y Riesgo del Perú capacitar a los agricultores para incentivar y fortalecer más el sector.

Impulsar y mejorar la infraestructura portuaria para que brinde facilidades de desembarcación, para así diversificar los productos ofertados por el sector impulsando así mayores niveles de exportación de productos no tradicionales pesqueros.

Impulsar políticas que ayuden a los exportadores peruanos a ingresar a nuevos mercados, promover la investigación y alianzas, adaptar las normas legales y técnicas a sus necesidades, promover la posible especialización de productos y crear un marco legal que fomente la inversión y formación de capital humano de alta calidad para mejorar la competitividad de la industria química.

Impulsar políticas que fomenten la exportación de los productos minerales ya que como sector clave impulsa el crecimiento económico. Asimismo, impulsar su inversión con proyectos mineros sostenibles para incrementar la productividad de la

extracción de minerales, para mejor calidad del producto en fomento de su transacción en los mercados internacionales.

Fomentar la diversificación de productos metalmecánicos en los mercados internacionales, así como promover el desarrollo y productividad del sector y así impulsar el crecimiento económico. El Gobierno debería desarrollar planes estratégicos para poder fomentar mayor venta de productos metalmecánicos ya que es un sector no tan notorio.

IX. REFERENCIAS BIBLIOGRÀFICAS

- Aguirre Bocanegra, S. E., & Méndez Castillo, K. M. (2015). Incidencia del sector pesquero en el crecimiento económico en el Perú durante el periodo 1970-2014. https://repositorio.upao.edu.pe/bitstream/20.500.12759/1498/1/Aguirre_Bocaneg ra_Incidencia_Sector_Pesquero.pdf
- Arrieta, A. y Laurencio, K. (2020). Incidencia de las exportaciones no tradicionales agropecuarias y textiles en el crecimiento económico del Perú, período 2006-2017. [Tesis de pregrado, Universidad Nacional Hermilio Valdizan].

 Repositorio Institucional de la Universidad Hermilio

 Valdizan.https://repositorio.unheval.edu.pe/bitstream/handle/20.500.13080/5908

 /TEC00395A77.pdf?sequence=1&isAllowed=y
- Balcázar, J., y Calva, L. (2017). Las exportaciones no tradicionales y su contribución al crecimiento económico de Tumbes, 1999 2014. [Tesis de pregrado,

 Universidad Nacional de Tumbes]. Repositorio Institucional de la Universidad

 Nacional de

 Tumbes.https://repositorio.untumbes.edu.pe/bitstream/handle/20.500.12874/95/

 TESIS%20-

%20BALCAZAR%20Y%20CALVA.pdf?sequence=1&isAllowed=y

Banco Central de Reserva del Perú (2023).

https://www.bcrp.gob.pe/estadisticas/correlacionador-exportaciones-no-tradicionales-por-sector-economico.html

Banco Central de Reserva del Perú (2022).

https://www.bcrp.gob.pe/docs/Transparencia/Notas-Informativas/2022/nota-informativa-2022-03-17.pdf

- Bernal, C. (2010). Metodología de la investigación, 3ra Edición. Impreso en Colombia. https://abacoenred.com/wp-content/uploads/2019/02/El-proyecto-de-investigaci%C3%B3n-F.G.-Arias-2012-pdf.pdf
- Bobadilla Adrianzen, H. G. (2016). Recursos minerales: maldición o bendición para el crecimiento de la economía peruana 1991t1-2015t2.

 https://repositorio.unp.edu.pe/bitstream/handle/UNP/629/ECO-BOB-ADR-16.pdf?sequence=1&isAllowed=y
- Cabezas, E. Andrade, D y Torres. J. (2018). Introducción a la metodología de la investigación científica.

 http://repositorio.espe.edu.ec/jspui/bitstream/21000/15424/1/Introduccion%20a%20la%20Metodologia%20de%20la%20investigacion%20cientifica.pdf
- COMEXPERÙ (2020). https://www.comexperu.org.pe/articulo/exportaciones-no-tradicionales-cierran-2019-al-alza
- COMEXPERÙ (2021). https://www.comexperu.org.pe/articulo/exportaciones-no-tradicionales-cuales-son-las-regiones-que-destacan-en-este-sector
- EL PERUANO. Diario Oficial (2023). https://elperuano.pe/noticia/90145-exportaciones-no-tradicionales-marcaron-un-record-en-el-2019
- Escobar, T. L. (2022). Impacto de las Exportaciones No Tradicionales en el

 Crecimiento Económico de la Región Piura 1983-2019.

 http://repositorio.unf.edu.pe/bitstream/handle/UNF/161/TESIS%20ESCOBAR%

 20TAVARA%2c%20LOURDES%20ANTONIA%20.pdf?sequence=1&isAllow
 ed=y

- Fracica (1988), Metodología de la investigación. 160.

 https://sf4b82729bdc99ec0.jimcontent.com/download/version/1522088201/mod
 ule/13881275878/name/DOC-20180326-WA0064.pdf
- Gutiérrez Bonifaz, M. D. L. M. (2019). La producción minera y exportación de oro en el Ecuador, una aproximación empírica para el período 2000-2016.
- Gutiérrez, F., Moreno, J., y Sánchez, J. (2021). Inversión pública y privada en México: ¿motores complementarios del crecimiento económico? El trimestre económicohttps://doi.org/10.20430/ete.v88i352.1357
- Hernandez. R & Mendoza. S. (2018). Metodología de la investigación: Las rutas cuantitativa, cualitativa y mixta. México, México: McGraw-Hill. http://www.biblioteca.cij.gob.mx/Archivos/Materiales_de_consulta/Drogas_de_Abuso/Articulos/SampieriLasRutas.pdf
- Huamán, A. (2022). Efecto de las exportaciones no tradicionales de las industrias agropecuaria, pesquera, textil y química en el producto bruto interno del Perú durante el periodo 2007 2019. [Tesis de pregrado, Universidad Nacional Mayor de San Marcos]. Repositorio Institucional de la Universidad Nacional Mayor de San

Marcos.https://cybertesis.unmsm.edu.pe/handle/20.500.12672/17842

- Huansha Mesias, M. R. (2020). Incidencia de las Exportaciones Tradicionales y no Tradicionales en el Crecimiento Económico del Perú, 1950-2018. http://repositorio.unasam.edu.pe/handle/UNASAM/4202
- Keynes, John M. Teoría general del empleo, el interés y el dinero [1936]. Madrid, Ediciones Aosta, 1998.
 - http://www.iunma.edu.ar/doc/MB/lic_historia_mat_bibliografico/Fundamentos

- %20de%20Econom%C3%ADa%20Pol%C3%ADtica/Teor%C3%ADa%20gene ral%20de%20la%20ocupaci%C3%B3n,%20el%20inter%C3%A9s%20y%20el %20dinero%20-%20%20John%20Maynard%20Keynes.pdf
- Larraín y Sachs, (2004) Macro economía en la economía global. Segunda Edición.

 Mhttp://catarina.udlap.mx/u_dl_a/tales/documentos/lec/zarate_m_ve/capitulo2.p

 df
- Instituto Nacional de Estadística e Informática (2019). Evolución Exportaciones de las e Importaciones. https://m.inei.gob.pe/media/MenuRecursivo/boletines/02-informe-tecnico-n02_exportaciones-e-importaciones-dic2019.pdf
- Mendoza. E. (2016). La incidencia de la exportación de los principales minerales en el crecimiento económico de Bolivia en el corto y largo plazo 1986-2016. http://repositorio.umsa.bo/xmlui/handle/123456789/20252
- Ministerio de Comercio Exterior y Turismo (2014). PDM Alemania 04 Intercambio

 Comercial Alemania Perú. https://www.mincetur.gob.pe/wp
 content/uploads/documentos/comercio_exterior/plan_exportador/Penx_2025/PD

 M/alemania/04.html
- Ministerio de Comercio Exterior y Turismo (2019). Exportaciones del Perú hacia

 Estados Unidos. https://www.mincetur.gob.pe/exportaciones-no-tradicionalesdel-peru-hacia-estados-unidos-se-incrementaron-en-903/

Ministerio de Economía y Finanzas. (2020).

Consulta amigable.https://apps5.mineco.gob.pe/transparencia/Navegador/default.aspx

Ministerio de Economía y Finanzas (2023). https://www.mef.gob.pe/en/?id=61:conoce-los-conceptos-basicos-para-comprender-la-economia-del-pais&option=com_content&language=en-GB&view=article&lang=en-GB

- Ministerio de la Producción (Produce), (2015). Dirección de Estudios y Derechos Económicos, Pesquero y Acuícola (DGPDP). https://www.minam.gob.pe/esda/parte-tres-capitulo-11-sector-pesca-y-recursos-hidrobiologicos/
- Morales y Ramos, 2016, en su tesis, "Las Exportaciones No Tradicionales y su contribución al Crecimiento Económico Ecuatoriano periodo 2007 2014:

 Análisis Comparativo Ecuador Colombia", Universidad Nacional de Chimborazo.http://dspace.unach.edu.ec/handle/51000/1434
- Organismo Supervisor de la Inversion de Energía y Minería (OSINERGMIN, 2016).

 Reporte de Análisis Económico.
 - https://www2.osinergmin.gob.pe/publicacionesgrt/pdf/Anuario/Anuario2016.pdf
- Orgaz, F. (2014). Un análisis de los beneficios del ecoturismo para los destinos. Periodo 2014, 47 66. https://www.redalyc.org/pdf/1934/193432638002.pdf
- Sectorial.https://www.osinergmin.gob.pe/seccion/centro_documental/Institucional/Estu dios_Economicos/RAES/RAES-Mineria-Diciembre-2016-GPAE-OS.pdf
- Papadópolos, Á. (marzo de 2016). Crecimiento económico y desarrollo económico.

 Gestiopolis. https://www.gestiopolis.com/crecimiento-economico-desarrollo-economico/
- Paredes (2016), Análisis de las exportaciones no tradicionales y su impacto en la economía de los últimos 5 años", Universidad Católica de Santiago de Guayaquil, facultad de Especialidades Empresariales Guayaquil, Ecuador.http://repositorio.ucsg.edu.ec/bitstream/3317/6213/1/T-UCSG-PRE-ESP-CFI-254.pdf

- Pierina M. (2022). El sector pesquero en el período 1990-2018 y su influencia en el crecimiento económico del Perú. [Tesis de pregrado, Universidad Nacional de Tumbes] Repositorio Institucional de la Universidad Nacional de Tumbes.https://repositorio.untumbes.edu.pe/bitstream/handle/20.500.12874/634 64/TESIS%20-
 - %20MOGOLLON%20CASTILLO.pdf?sequence=1&isAllowed=y
- Poder, B. (8 de Setiembre del 2022). Los 10 países que más exportan en América Latina. https://www.youtube.com/watch?v=MT5IclVDTgU&t=31s
- Posada, C. (2018). SECTOR QUÍMICO EXPORTARÁ MÁS DE US\$1.400 MILL. EN EL 2018.
 - https://apps.camaralima.org.pe/RepositorioAPS/0/0/par/POSADA_845/POSADA_845_Sector%20qu%C3%ADmico%20exportar%C3%A1%20m%C3%A1s%20e%20US\$1.400%20mill.%20en%20el%202018.pdf
- Ricardo, D. (1817). Principios de economía política y tributación. México DF.

 https://ehu.eus/Jarriola/Docencia/EcoInt/Lecturas/David%20Ricardo_Principios

 _VII_Comercio%20exterior.pdf
- Secretaría de Ambiente y Desarrollo Sustentable de la Nación. (2019). Guía para una producción sustentable: sector metalmecánico. 1a Ed. Ciudad Autónoma de Buenos Aires: Secretaría de Ambiente y Desarrollo Sustentable de la Nación.https://www.oneplanetnetwork.org/sites/default/files/from-crm/guia_metalmecanica.pdf
- Smith, A. (1994). Riqueza de las naciones (1776). Madrid: Alianza, 37, 67-72. https://web.seducoahuila.gob.mx/biblioweb/upload/1%20La%20riqueza%20de %20las%20Adam%20Smith.pdf

USGS, (2011). Development of Industrial Minerals in Coloradohttps://pubs.usgs.gov/circ/1368/C1368.pdf

Yugar, E. (2015) en su tesis, "El aporte de las exportaciones de productos no tradicionales y su contribución al crecimiento Económico de La Paz (1994 - 2013)", Universidad Mayor de San

Andrés.https://repositorio.umsa.bo/xmlui/bitstream/handle/123456789/6138/T-2088.pdf?sequence=1&isAllowed=y

Zurita, A. (2020). El rol de las exportaciones no tradicionales en el crecimiento económico del Ecuador.

https://repositorio.uta.edu.ec/bitstream/123456789/30816/1/T4721e.pdf

X. ANEXOS

ANEXO 1. Matriz de consistencia

TITULO: EFE	CTO DE LAS EXPO			RADICIONALES EN E	L CRECIMIENTO
	T		EL PERÚ, 2005 - 2		
PROBLEMAS	OBJETIVOS	HIPÓTESIS	VARIABLES	INDICADORES	METODOLOGÌA
PROBLEMA	OBJETIVO	HIPÓTESIS			
GENERAL	GENERAL	GENERAL			Tipo de Investigación
¿Cuál fue el efecto	Analizar el efecto	Las exportaciones	Variable		Investigación aplicada
de las exportaciones	de las	de productos no	Dependiente	Y1: PBI millones de	Investigación
de productos no	exportaciones de	tradicionales		dólares	Descriptiva-
tradicionales en el	productos no	tuvieron un efecto	Y:Crecimiento		Correlacional.
crecimiento	tradicionales en el	significativo en el	económico		
económico del Perú,	crecimiento	crecimiento			Diseño de investigación
2005-2019?	económico del	económico del			No experimental
	Perú, 2005-2019.	Perú, 2005 -2019.			Longitudinal.
PROBLEMAS	OBJETIVOS	HIPÓTESIS			
ESPECÍFICOS	ESPECÌFICOS	ESPECÌFICAS		X1: Sector de	Método de
¿Cuál fue el efecto	Determinar el	Las exportaciones		productos no	investigación
de las exportaciones	efecto de las	de productos		tradicionales	Enfoque Cuantitativo
de productos	exportaciones de	agropecuarios no	Variable	agropecuarios	Método hipotético-
agropecuarios no	productos	tradicionales	Independiente		deductivo.
tradicionales en el	agropecuarios no	tuvieron un efecto		X2: Sector de	
crecimiento	tradicionales en el	significativo en el	X:Exportaciones	productos no	Población
económico del Perú,	crecimiento	crecimiento	no tradicionales	tradicionales	Toda la población
2005-2019?	económico del	económico del		Pesquero	peruana periodo 2005 –
	Perú, 2005-2019.	Perú, 2005 -2019.		_	2019.

¿Cuál fue el efecto	Determinar el	Las exportaciones	X3: Sector de	Muestra
de las exportaciones	efecto de las	de productos	productos no	Los sectores no
de productos	exportaciones de	pesquero no	tradicionales químico	tradicionales de la
pesqueros no	productos	tradicionales		economía peruana con
tradicionales en el	pesquero no	tuvieron un efecto	X4: Sector de	periodo de 2005 – 2019
crecimiento	tradicionales en el	significativo en el	productos no	con datos mensuales y
económico del Perú,	crecimiento	crecimiento	tradicionales	168 observaciones.
2005-2019?	económico del	económico del	minerales no	
	Perú, 2005-2019.	Perú, 2005 -2019.	metálicos	
		Las exportaciones		
¿Cuál fue el efecto	Determinar el	de productos	X5: Sector de	Procesamiento de datos
de las exportaciones	efecto de las	químico no	productos no	MCO
de productos	exportaciones de	tradicionales	tradicionales	Prueba de Hipótesis
químicos no	productos	tuvieron un efecto	metalmecánico	Descomposición de
tradicionales en el	químico no	significativo en el		Varianza
crecimiento	tradicionales en el	crecimiento	Medidos en millones	Modelo VAR
económico del Perú,	crecimiento	económico del	de dólares	
2005-2019?	económico del	Perú, 2005 -2019.		
	Perú, 2005-2019.			
¿Cuál fue el efecto	Determinar el	Las exportaciones		
de las exportaciones	efecto de las	de productos		
de productos	exportaciones de	minerales no		
minerales no	productos	metálicos no		
metálicos no	minerales no	tradicionales		
tradicionales en el	metálicos no	tuvieron un efecto		
crecimiento	tradicionales en el	significativo en el		
económico del Perú,	crecimiento	crecimiento		
2005-2019?	económico del	económico del		
	Perú, 2005-2019.	Perú, 2005 -2019.		

¿Cuál fue el efecto	Determinar el	Las exportaciones
de las exportaciones	efecto de las	de productos
de productos	exportaciones de	metalmecánicos no
metalmecánicos no	productos	tradicionales
tradicionales en el	metalmecánicos	tuvieron un efecto
crecimiento	no tradicionales	significativo en el
económico del Perú,	en el crecimiento	crecimiento
2005-2019?	económico del	económico del
	Perú, 2005-2019.	Perú, 2005 -2019.

ON THE PROPERTY OF THE PROPERT

ANEXO 2

Ficha de Registro de datos

Base de Datos

Título: Efecto de las exportaciones de productos no tradicionales en el crecimiento económico del Perú, 2005-2019

Fecha	PBI	AGRO	PESQUERO	QUIMICO	MINERAL	METAL
1/01/2005	79.9791611	81.0158687	27.0392101	46.4213862	9.9062077	18.9895557
1/02/2005	80.1344599	71.8001684	35.9102195	40.3667725	7.15005873	12.3895163
1/03/2005	81.396413	59.0658159	28.2572228	46.9821167	7.27469899	15.6056746
1/04/2005	87.073447	69.315448	27.263243	49.1398733	10.5327544	14.3091773
1/05/2005	92.1414551	75.4612368	31.7555731	43.5048725	11.4785551	36.2719099
1/06/2005	88.455773	70.4016221	30.6014956	39.8862204	7.96955354	13.8035049
1/07/2005	87.2766006	81.5042081	25.7596677	61.082589	11.9854289	10.8360303
1/08/2005	82.9894831	81.2838629	24.4610927	39.8926212	10.7902054	15.8185691
1/09/2005	82.0878665	93.6809837	19.3813813	41.2393379	9.21111716	11.0481172
1/10/2005	84.8027239	106.154789	24.2165238	42.4923082	11.8448865	14.6516222
1/11/2005	90.4951176	109.120476	28.7903269	42.125141	9.37074579	14.3968745
1/12/2005	91.5459267	108.891182	27.9896357	44.5384426	10.6750214	12.7273109
1/01/2006	85.6590425	111.256929	30.4864363	39.643745	7.62251735	11.3767434
1/02/2006	84.6285221	78.0328151	30.2321937	40.4855738	10.3215847	11.9424777
1/03/2006	91.2286928	81.1539939	40.521973	46.2894962	11.6587747	12.1526219
1/04/2006	91.7780024	73.1043813	36.0550115	44.4329482	11.5922104	16.1468656
1/05/2006	97.7619063	85.0671817	41.9154902	52.8128142	11.3211204	11.8391833
1/06/2006	95.0728998	80.7415102	35.9765751	53.167766	12.0703745	17.5710487
1/07/2006	92.9616001	101.402771	34.958847	53.7666061	12.9296869	13.7303866
1/08/2006	91.5547627	105.134128	37.9400284	55.5458131	10.0004064	13.7914832
1/09/2006	88.7693296	95.2636634	35.7988672	49.4228329	9.0933097	12.3848646
1/10/2006	92.1822067	136.67116	38.1807427	57.9173643	15.5169791	15.4981336
1/11/2006	94.7874212	129.631956	34.9321431	54.7011446	13.8684716	14.7477848
1/12/2006	99.4183588	142.661991	43.2942171	53.4874157	9.44686612	13.2093173
1/01/2007	89.952562	127.742488	40.1545089	57.3865856	10.0940453	15.9260426
1/02/2007	88.6681022	97.4449242	47.8074708	58.8037067	10.6403917	16.2659823
1/03/2007	96.7214346	89.1690534	56.4754441	61.3524008	11.748861	16.0207337
1/04/2007	96.6364193	86.862689	51.5280439	65.4650913	14.9550924	16.2753503
1/05/2007	104.746679	99.1545601	44.1556617	61.1027683	11.7165181	15.404335
1/06/2007	101.254569	115.094968	39.0988195	68.5483764	15.2922475	19.4811861
1/07/2007	102.545139	133.777	40.1301961	72.0291782	16.6574702	19.4195243
1/08/2007	100.128668	132.053161	40.518461	71.5731187	16.2012042	18.2808722
1/09/2007	100.240421	142.69045	28.4831087	70.3509153	14.5404143	20.6564011

1/10/2007	103.151331	159.271635	38.0419871	73.6531091	12.9789101	21.1821288
1/11/2007	104.099697	131.564721	31.1055106	61.431525	12.4977426	17.5172359
1/12/2007	111.854978	196.969827	46.6264952	83.0086144	17.6386716	23.831861
1/01/2008	98.5070312	181.346732	48.2045822	78.2648452	12.4749308	22.8066493
1/02/2008	100.67216	149.019536	60.5040358	75.9256952	11.2942824	22.0002909
1/03/2008	104.083131	128.874778	60.5474532	76.4915784	13.7126861	23.2032866
1/04/2008	110.233179	117.247705	50.320129	85.7917204	15.3955348	24.0322725
1/05/2008	112.07573	140.7356	46.5199101	81.2468961	12.894693	21.8624726
1/06/2008	112.166659	149.476453	61.2099645	86.3620374	17.2318582	26.7779556
1/07/2008	112.297861	170.389707	46.752468	102.00775	15.6380284	31.1734976
1/08/2008	108.887385	177.763548	56.2975042	92.8770848	17.1285067	32.3251478
1/09/2008	110.738318	185.220289	53.9627147	103.892457	13.8166821	30.5284125
1/10/2008	111.652316	170.64217	54.056881	92.379616	16.226816	35.222392
1/11/2008	110.655054	176.260592	49.0014762	83.2589518	15.5492191	26.7215806
1/12/2008	117.460153	165.628324	39.0777247	82.2941392	14.5287364	31.1191919
1/01/2009	102.953128	155.218732	40.8624006	67.1282935	11.8856222	27.5997183
1/02/2009	101.029869	119.605943	50.8291239	64.3483764	9.05872719	21.4688061
1/03/2009	107.149816	132.728882	50.9568076	76.7612303	11.4916765	42.763805
1/04/2009	108.842532	119.061905	39.7658606	68.1168636	10.8388451	20.6414163
1/05/2009	114.214279	118.457249	41.2883226	58.7346067	10.240579	35.1537879
1/06/2009	108.963968	141.873666	54.4545372	61.542341	12.1529118	26.5271333
1/07/2009	110.73597	145.632103	47.1501682	66.9338016	12.8073622	27.8842244
1/08/2009	109.851422	154.332397	38.7076623	69.6424347	13.0804807	29.4787158
1/09/2009	111.002194	154.943242	40.573202	72.8280955	14.4132713	23.6209954
1/10/2009	113.063804	166.530372	37.5083518	70.0616829	14.0291142	36.4085422
1/11/2009	113.604309	196.393154	40.0896951	78.2846864	13.8399227	40.8128014
1/12/2009	122.371417	222.743794	44.3745028	83.4186174	14.1810412	36.4600503
1/01/2010	106.143683	177.629285	37.3065809	70.5456973	12.6217734	22.0058855
1/02/2010	106.178126	153.551957	49.3151483	78.0715741	12.1264076	28.5063453
1/03/2010	115.867839	139.897243	64.2476424	98.2340642	14.7796355	27.516113
1/04/2010	117.527218	133.565919	57.0263099	95.7396291	14.7966742	47.7498552
1/05/2010	122.828226	127.928256	55.5074945	95.8509095	14.0015432	25.8960684
1/06/2010	122.939504	175.045427	81.2858342	117.219329	20.2095047	35.4349168
1/07/2010	121.710944	183.919962	41.4540212	111.972363	20.0107273	38.9015905
1/08/2010	119.434203	179.651156	38.9244401	97.7147373	19.3353284	33.8820934
1/09/2010	122.174733	190.14199	40.574714	102.149382	30.2786842	31.0445109
1/10/2010	123.721829	212.514726	49.489755	116.683358	26.7393126	30.9753872
1/11/2010	123.649082	252.690535	59.7443762	119.365623	35.0792764	32.689277
1/12/2010	131.939415	276.01514	75.5919392	124.726728	31.7029243	38.4429118
1/01/2011	116.294671	229.808061	59.2446902	108.283891	34.0497295	27.2700798
1/02/2011	114.732225	198.805919	80.40832	121.425658	35.4829367	31.5715511
1/03/2011	124.771191	193.953586	100.52033	151.546313	37.8819362	38.4285748
1/04/2011	126.239954	188.318971	96.9360187	128.248509	32.1200014	33.7416796

1/05/2011	129.635869	198.420342	101.714702	141.398109	34.1966737	40.9348088
1/06/2011	126.608697	199.583444	85.1633578	145.003426	37.284118	47.6937405
1/07/2011	129.091088	237.372403	102.428723	159.950486	35.2937899	37.1926408
1/08/2011	127.173297	254.65609	90.7792899	144.777404	46.4689064	37.247221
1/09/2011	128.16647	243.71865	91.8609516	144.210505	49.2348082	49.1782592
1/10/2011	129.234696	245.206776	82.9316351	140.660462	44.3855173	45.495832
1/11/2011	129.511008	300.923207	62.8671464	135.097678	47.9580174	49.6468
1/12/2011	143.358792	344.759836	97.6926413	134.219316	57.6110993	37.5102239
1/01/2012	122.637148	258.714382	80.6613902	139.646575	52.3355499	35.4503882
1/02/2012	122.828188	206.406906	104.020021	119.725735	55.3505659	36.81986
1/03/2012	132.081142	222.15357	110.861991	170.685883	58.0963337	50.1621789
1/04/2012	130.289358	184.281738	71.1717231	132.833241	47.7455937	58.7734148
1/05/2012	138.603364	211.212585	92.9363854	139.726238	63.834733	44.0068466
1/06/2012	136.148203	255.258349	91.5112585	130.399514	74.268923	64.0075345
1/07/2012	138.452943	261.175025	86.4640137	129.757539	64.9926893	41.8090997
1/08/2012	136.155476	263.951024	71.4681602	144.722916	62.7734294	42.4801535
1/09/2012	136.812369	226.818257	66.781062	123.741771	55.9920105	40.4844764
1/10/2012	138.819382	276.77254	94.3910825	127.982812	65.1344596	42.5959472
1/11/2012	137.366174	343.241345	71.1076806	138.077733	63.2477243	44.8798508
1/12/2012	148.284668	372.715751	75.9809473	139.019326	58.4931126	42.7279574
1/01/2013	130.552484	311.907419	66.4034573	114.299368	53.2500809	44.4499025
1/02/2013	129.075053	234.55021	89.8664249	109.234498	60.5659916	36.5716997
1/03/2013	136.712199	213.755004	82.5518282	136.303615	59.4949307	42.7224049
1/04/2013	141.782634	206.424229	83.9932523	122.961499	62.6124649	42.0882649
1/05/2013	144.515	237.015504	85.9186437	133.756434	56.5863101	44.4814215
1/06/2013	144.119297	241.303282	88.8066239	124.372119	53.9813627	72.467451
1/07/2013	145.80878	290.924485	87.7916733	124.928813	68.7243258	40.1774336
1/08/2013	143.650212	286.689233	84.1872505	132.901369	61.2139607	43.728619
1/09/2013	143.465238	248.246363	91.290772	122.269524	48.8150058	41.9089538
1/10/2013	147.437732	295.020628	80.8200947	135.949625	60.5057044	53.5448752
1/11/2013	147.360542	395.34766	89.2588659	127.071202	63.1737052	42.517116
1/12/2013	158.708386	483.186104	99.3724247	125.984422	73.0202242	39.8295152
1/01/2014	136.074264	378.938134	94.1781693	102.815281	44.6050788	39.8259148
1/02/2014	135.797372	323.834986	108.663672	127.33865	53.4461618	45.5204671
1/03/2014	144.111916	295.439068	128.881895	143.207453	57.8095748	44.3391338
1/04/2014	145.925353	251.945352	92.5454737	116.107227	56.0435469	53.5091774
1/05/2014	148.260222	305.567112	100.410188	124.361238	49.7023841	34.9556992
1/06/2014	144.668115	331.179253	86.7782468	134.487714	58.0247071	36.9570252
1/07/2014	147.922643	367.733492	83.6698418	122.333636	54.2040978	41.6092029
1/08/2014	145.595315	332.799987	91.199216	133.40424	63.0085803	59.6783326
1/09/2014	147.301851	333.542058	89.5312876	125.205052	48.0790555	42.2678808
1/10/2014	150.790043	364.375299	88.3547838	131.626675	58.9747072	71.3218589
1/11/2014	147.601135	448.251153	82.5009632	126.622591	61.3010972	60.0148377

1/12/2014	159.97645	497.69982	108.632149	127.457158	58.4067432	51.2977264
1/01/2015	138.197687	414.554666	83.7360864	108.76585	56.6866601	34.2936893
1/02/2015	137.4703	327.927217	116.203592	121.280121	59.6276253	36.9237451
1/03/2015	148.339778	311.516163	110.303957	131.772217	52.2643889	41.2614255
1/04/2015	152.038605	248.333623	75.0672936	105.170041	51.2019246	32.0282339
1/05/2015	150.157192	302.821821	89.0757701	120.60587	60.9690958	41.6794234
1/06/2015	150.578547	334.206833	74.5910131	116.722384	63.0008172	40.5871311
1/07/2015	153.252909	360.941857	76.1030641	112.766682	54.4645492	48.442108
1/08/2015	149.481867	322.726807	52.2200338	110.266341	51.6184909	49.7220545
1/09/2015	151.999229	334.421375	60.8916221	121.972679	63.794854	45.0452561
1/10/2015	155.730121	387.657782	64.9813941	120.938038	66.2434956	70.536242
1/11/2015	153.424115	478.367244	59.3170165	119.417922	61.7083223	45.4809155
1/12/2015	170.391577	585.167513	70.1012865	116.267783	56.8816663	47.1957027
1/01/2016	143.100521	422.385539	71.4671794	110.577996	52.2543126	34.0198717
1/02/2016	146.316294	322.887701	75.9002522	105.631256	52.1826267	28.7670096
1/03/2016	153.620687	288.256284	64.1902545	117.1446	51.9462236	42.0285396
1/04/2016	156.27223	290.041076	69.2632569	111.679402	49.5437645	33.4759795
1/05/2016	157.496837	328.560978	70.2716201	108.938186	56.1413641	43.2091051
1/06/2016	155.977419	327.748041	56.704886	116.144976	45.5488462	35.1509828
1/07/2016	158.742284	372.396458	68.9856804	113.240214	51.5765744	45.9732163
1/08/2016	158.111338	382.928364	74.4946463	107.583029	54.1895549	32.7288422
1/09/2016	158.845788	389.125988	89.7566439	112.001088	54.6864961	35.1581802
1/10/2016	159.111358	434.309683	83.803563	110.92931	57.0011205	47.8096358
1/11/2016	158.795139	508.182294	77.0149512	105.212319	52.7849017	33.9149524
1/12/2016	176.279514	635.379375	108.418629	124.718855	64.2318708	37.9730918
1/01/2017	150.311211	462.220833	91.3591012	99.8077137	47.4904973	31.9273115
1/02/2017	147.486007	313.470628	105.255413	99.2006614	44.5548223	34.4038511
1/03/2017	155.415035	301.283254	117.695004	116.162282	35.7394238	44.4109088
1/04/2017	156.756309	316.764981	81.2907962	108.178524	28.9710333	34.7715562
1/05/2017	163.249135	409.337082	99.2087226	114.466706	53.1386814	45.0729771
1/06/2017	162.164336	388.994522	121.965989	113.009505	53.6891546	37.3235995
1/07/2017	162.276265	441.119994	84.8136914	111.938442	49.2114457	38.9537976
1/08/2017	162.62624	448.153873	76.3743244	119.42297	59.4241333	48.9266769
1/09/2017	164.168973	418.60287	59.6589054	126.991428	48.6213447	48.4177678
1/10/2017	164.859118	473.482624	55.4771121	124.476166	59.8448826	50.2056095
1/11/2017	162.035997	519.082274	66.0128796	123.858246	51.8016752	54.8067372
1/12/2017	178.809369	653.21397	86.844508	127.239092	55.2563914	51.2042391
1/01/2018	154.598248	581.737375	85.9757927	120.615599	47.1166714	47.5820227
1/02/2018	151.469039	402.053058	100.683976	132.619008	46.0140546	44.586994
1/03/2018	161.434805	372.052605	129.120926	129.416664	53.7372114	50.5884162
1/04/2018	169.424387	388.643238	130.038825	136.672932	51.6527395	44.9222404
1/05/2018	174.202548	446.68403	156.806861	134.966255	50.0132826	47.9802016
1/06/2018	165.532593	416.511746	165.440327	130.09196	51.8302486	52.4051901

1/07/2018	166.518728	447.626173	141.557211	122.94533	56.2061275	44.4818107
1/08/2018	166.412703	542.823695	100.623383	135.306433	54.2129971	45.3820169
1/09/2018	168.105837	474.70266	86.1164743	126.382195	57.227516	47.7961618
1/10/2018	171.603442	575.99246	79.2608457	141.764113	48.131537	57.4325241
1/11/2018	170.240885	569.012521	83.3089456	131.767023	55.0371134	45.236143
1/12/2018	187.229533	695.650636	69.7367319	119.76389	58.0345296	62.1067256
1/01/2019	157.186802	675.72797	88.5364491	119.532806	43.0268233	46.1860922
1/02/2019	154.603349	387.338667	128.37427	118.195958	47.9676502	49.817852
1/03/2019	166.883514	376.071858	185.205132	139.962288	47.4273249	43.0815639
1/04/2019	169.39801	381.366464	167.469881	121.508573	54.7499726	45.0036861
1/05/2019	175.381659	425.589797	106.300975	142.118589	59.4450013	57.9939405
1/06/2019	170.183485	494.920713	148.647872	148.028609	56.2156773	48.5994541
1/07/2019	173.057902	567.462843	159.300351	140.481036	59.9127992	39.018137
1/08/2019	172.598244	482.542846	142.272282	138.194832	46.686794	42.1568745
1/09/2019	172.375333	500.826615	145.246415	139.7006	54.3514542	50.7557603
1/10/2019	176.261988	607.756171	113.567994	136.535547	48.5060056	50.5390064
1/11/2019	174.206812	647.577933	108.264304	129.833259	42.2803261	41.8282507
1/12/2019	189.600038	751.642657	120.919282	132.616663	46.7171958	52.4198254

ANEXO 3
Promedio anual de las variables de estudio

	I	T	I	Ι	
	Promedio	Promedio	Promedio	Promedio Anual	
Promedio	Anual	Anual	Anual	MINERAL_NO_	Promedio Anual
Anual PBI	AGRO	PESQUERO	QUIMICO	METALICO	METALMECANICO
0.856982023	0.839746384	0.276187994	0.448059735	0.098491028	0.159039886
0.921502288	1.016768734	0.366910438	0.5013946	0.112868585	0.136992426
1	1.259829565	0.420104756	0.670587825	0.137467974	0.183551378
1.091190813	1.593837862	0.522045703	0.86732731	0.146576645	0.273144292
1.103152257	1.522934533	0.438800529	0.698167525	0.123349628	0.307349997
1.195095668	1.835459664	0.54205688	1.023561163	0.209734826	0.327537463
1.270681632	2.362939405	0.877123172	1.37901813	0.409972945	0.396592843
1.348732012	2.568917894	0.84779643	1.363599402	0.601887604	0.45349809
1.427656297	2.870308435	0.858551093	1.258360407	0.601620056	0.453739715
1.461687232	3.526088096	0.962788239	1.262472428	0.553004779	0.484414381
1.509218272	3.673869084	0.777160107	1.171621606	0.582051575	0.444329939
1.581426262	3.890742038	0.762549439	1.121112031	0.53621213	0.378354123
1.608464996	4.288105754	0.871630372	1.153959781	0.489786238	0.433687527
1.672310623	4.927908496	1.107225251	1.301926167	0.524345024	0.492083706
1.709780946	5.249020445	1.345087671	1.338923966	0.50607252	0.472833703