
16241839

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA MECÁNICA Y ENERGÍA

DISEÑO Y FABRICACIÓN DEL TRANSPORTE NEUMÁTICO DE UNA PLANTA PILOTO PELLETS DE PRODUCTOS BALANCEADOS PARA CARDÚMENES

TESIS

PARA OPTAR EL TÍTULO PROFESIONAL DE: INGENIERO MECÁNICO

PRESENTADO POR:

BERROSPI DE LA CRUZ GUISSELLA ELIZABETH

ASESOR:

DR. ISAAC PATRÓN YTURRY

BELLAVISTA – CALLAO

2007

RESUMEN

El proyecto de investigación tendrá un aporte tecnológico porque nos dará a conocer la importancia del transporte neumático basándonos en la ingeniería y su rentabilidad en pruebas realizadas.

Así como también la tesis de investigación nos mostrará la forma correcta y la secuencia del proceso ya que es muy importante porque depende a este el resultado de la muestra.

Las máquinas adquiridas que intervienen en el proceso como el mezclador, prensa, zaranda, Post-Acondicionador, Roceador y secador se encuentran detalladas y dibujadas en la presente tesis ya que depende de esta información para el proceso.

La construcción de algunas máquinas y accesorios como los ciclones, esclusas, ventiladores, Transporte por tornillo sin fin y tolvas están claramente descritas, dibujadas y calculadas en el proyecto, dando más énfasis en la selección del transporte.

Los costos de construcción y operación están detalladas siguiendo costos reales con detenimiento para poder ver un perfil mejor de lo que costaría construir esta planta de balaceados.

MI ETERNA GRATITUD

A mis padres Sr.Walter Berrospi.C y Sra. Doris de la Cruz.N gracias a sus esfuerzos, sacrificios y apoyo incondicional hicieron posible la culminación de mis estudios profesionales.

> A mi hermana Akemi Berrospi.D y Carlos Navarro.C por su paciencia y aliento moral para la realización del presente proyecto.

INDICE GENERAL

AGRADECIMIENTOS RESUMEN INDICE GENERAL

CAPI	Pag	
1,1	Introducción	. 1
1.2	Antecedentes	1
1.3	Formulación del problema	2
1.4	Objetivo y alcances de la tesis	2
1.4.1	Objetivo principal	2
1.4.2	Objetivos específicos	3 3
1.4.3	Alcances de la Tesis	
1.5	Formulación de la Hipótesis	3
1.5.1	Hipótesis Principal	3 3
1.5.2	Variables Independientes	
	Variables Dependientes	3
1.6	Justificación del Proyecto	4
1.7	Matriz de consistencia	5
1.8	Marco teórico y Conceptual	6
CAPI	TULO II : METODOLOGÍA	
2	Metodología	8
CAPI	TULO III : SELECCIÓN DE MÁQUINAS	
3.1	Mezclador	. 10
3.1.1	Breve reseña del mezclador	10
3.1.1.		10
	2 Funcionamiento	10
	3 Descripción	10
3.1.1.4	•	11
3.1.2	•	12
3.1.2.		12
3.1.2.2	±	13
	Hojas de medidas	
3.2	Prensa	18
3.2.1	Descripción	18
3.2.1.1		18
3.2.1.2	•	18

3.2.2	Montaje	19
3.2.2.1	•	19
	Verificación antes de la puesta en marcha	19
3.2.3	Puesta en marcha	20
	Procedimiento de la puesta en marcha	20
3.2.4	Dosificador alimentador - acondicionador	20
· · · · ·	Hojas de medidas	
3.3	Secador y Post -Acondicionador	26
3,4	Zaranda	28
	Hojas de medidas	
CAPIT	ULO IV : MAQUINAS Y ACCESORIOS A FABRICAR	
4.1	Trasporte neumático	33
4.1.1	Definición	33
4.1.2	Presión y pérdida de carga	33
4.1.3	Cálculo de los conductos de aire	34
4.1.4	Cálculo de las líneas neumáticas	36
4.1.4.1	Primera línea neumática	36
4.1.4.2	Segunda línea neumática	40
4.1.4.3	Tercera línea neumática	44
4.1.5	Determinación de ciclones	48
4.1.6	Esclusa	53
	Definición	53
4.1.6.2	Cálculo de la capacidad requerida	55
4.2	Sistema de aspiración	59
4.2.1	Cálculo del sistema de aspiración	59
4.2.1.1		62
4.2.1.2	Selección de ciclón de aspiración	62
4.3	Transporte de tornillo sin fin	66
4.3.1	Diseño del transportador tornillo sin fin	66
4.3.2	Cálculo de la hélice	73
4.4	Tambor Roceador	78
4.4.1	Diseño del tambor roceador	78
4.5	Ventilador	84
4.5.1	Objetivo	84
4.5.2	Fundamento teórico	84
4.5.3	Cálculo del ventilador prototipo	86
4.5.3.1		87
4.5.3.2	Determinación de los triángulos de velocidades en la sección de entrada	93
4.5.3.3	Determinación de los triángulos de velocidades en la sección de salida	94
4.5.4	Cálculo del ventilador de Aspiración	95
•		

4.3.4.1	Parametros de diseño	93
4.5.4.2	Cálculo de la carcasa del ventilador	104
4.5.4.3	Determinación de los triángulos de velocidades en la sección de entrada	105
4.5.4.4		105
4.5.5	•	106
4.5.5.1		106
4.5.5.2		115
4.5.5.3		116
4.5.5.4	Determinación de los triángulos de velocidades en la sección de salida	116
	ULO V : DESCRIPCIÓN DE LAS CARACTERÍSTICAS PRINCI PLANTA	PALES
5.1	Descripción de los principales componentes de la planta	118
5.2	Descripción del proceso	121
5.2.1	Almacenamiento de materia prima	121
5.2.2	Zarandeo de repaso	122
5.2.3	Primera línea de trasporte neumático	122
5.2.4	Mezcla	123
5.2.5	Dosificación	124
5.2.6	Segunda línea de transporte neumático	125
5.2.7	Acondicionamiento antes de entrar a la peletizadora	125
5.2.8	Peletizado	126
5.2.9	,	127
5.2.10	1	130
5.2.11	Zarandeo y clasificado	130
5.2.12	Roceado	130
CAPIT	ULO VI : COSTOS DE CONSTRUCCÍON Y OPERACIÓN	
6.1	Costos de construcción e instalación	132
6.1.1	Costos de materiales	132
6.1.1.1	Tolvas	132
6.1.1.2	Primera línea neumática	132
6.1.1.3	Segunda y Tercera línea neumática	133
6.1.1.4	Transportador de tornillo sin fin	134
6.1.1.5	Tambor Roceador	134
6.1.1.6	Ciclón de aspiración	135
6.1.1.7	Ciclón neumático	136
6.1.1.8	Ventiladores	136
6.1.1.9	Plataforma	137
6.1.1.10		137
6.1.2	Costos de compra de maquinaria	138

6.1.3	Costos de mano de obra	138
6.1.4	Costos de traslado	139
6.1.5	Costos del montaje	139
6.1.6	Costos del montaje eléctrico	139
6.1.7	Costos del tendido de vapor	140
6.1.8	Costos de tendido de línea de aire comprimido	144
6.1.9	Costos de la puesta en marcha	146
6.1.10	Costo total de hora máquina	146
~~~~	,	
	LUSIONES Y RECOMENDACIONES	148
	OGRAFÍA	150
ANEXO		
	N°1 - Medidas de Seguridad	
	N°2 - Diagrama de vapor	
Anexo I		
Figura 1		
Figura Tabla T		
Tabla T		
Figura 1		
Tabla R		
D1	<b>.</b>	:
Anexo l	N10/A	
Tabla 1		
Tabla 2		
Tabla 3		
Anexo 1		
	go de motores	
	go de rodamientos	
Catalog	30 do rotalinentos	
PLANO	OS:	
	ondicionador	
Secador	r	
Ciclón d	de Ø200	
Ciclón (	Ø 240	
Ciclón (	Ø 500	
Ciclón (	Ø 600	
Esclusa	. 22/13	
Tornillo	o sin fin	į
Roceado	or	
Tolvas		
Estructu	ara -	
Ventilad		
Nº1 - Nº	°5 Ventilador 1101.5mmH ₂ O – 56.27m ³ /min	

N°6 - N°9 Ventilador 180mmH₂O - 50m³/min N°10 - N°13 Ventilador 700mmH₂O - 18m³/min N°14 - N°16 Post – acondicionador N°17 Plano de la planta piloto

#### CAPITULO I

#### **ASPECTOS GENERALES**

#### 1.1 INTRODUCCIÓN

En la actualidad los alimentos balanceados para peces han incrementado su demanda, se acostumbra que después de pasar por los estudios respectivos de investigación por laboratorio, el producto pase directamente a las plantas de producción por Ton/ Hr lo que ocasiona muchas pérdidas en el reproceso.

Es por esa razón que es necesario hacer pruebas intermedias en plantas piloto de 50-500 Kg/h, como es nuestro caso .

El estudio propuesto busca determinar la factibilidad técnica y económica del establecimiento de una planta procesadora de alimentos balanceados.

Dicha planta atenderá la creciente demanda originada por el fomento de la producción pecuaria y absorbería la producción prevista de materias primas.

La selección de los insumos para pellets son exhaustivos, para brindar un producto de calidad.

#### 1.2 ANTECEDENTES

En nuestro país, la industria de alimentos balanceados para animales de consumo humano, se inicia en el año 1934, se establecen las primeras plantas para la producción de alimentos balanceados, como son:

Nicolini (nicovita), Purina, Compañía Molinera Santa Rosa (vitaovo), etc. a consecuencia de la demanda generada por un creciente número de granjas, principalmente en el departamento de Lima.

Esto se realizó en forma modesta, siendo nuestro país uno de los pioneros en esta parte del continente. Como apoyo, se fundó el Comité de Alimentos

Balanceados y Productos Pecuarios en 1966, el cual organizó cursos invitando a técnicos y profesionales calificados de USA, Inglaterra, Argentina y Uruguay.

En la actualidad, la fabricación de plantas para alimentos balanceados emplea equipos mecánicos de alta tecnología como mezcladoras de premix, peletizadoras, acondicionadores y secadoras de alta eficiencia.

#### 1.3 FORMULACIÓN DEL PROBLEMA:

Para utilizar un transporte optimo que mejore la calidad de producción teniendo en cuenta su fácil rotura después del prensado se hicieron pruebas donde utilizando un elevador de cangilones el proceso no resulto optimo, con una tercera línea neumática independiente (por el alto contenido de humedad) resulto muy antieconómico para el proyecto.

Uno de los mayores problemas de las plantas es el alto decibel que emiten los ventiladores

#### 1.4 OBJETIVO Y ALCANCES DE LA TESIS

#### 1.6.1 Objetivo Principal

Diseñar el transporte una planta de alimentos balanceados que pueda proporcionar mayor eficiencia y calidad en el transporte, que servirá para pruebas de todo tipo de comida balanceada para animales, evitando que las pruebas sean efectuadas en plantas de gran producción.

#### 1.4.2 Objetivos específicos:

- Conocer y manejar un programa de formulación a mínimo costo.
- Disponer de un proceso que conserve la calidad del producto teniendo en cuenta su fácil rotura.
- Contribuir con la conservación de la higiene en el producto ya que será utilizado en animales para consumo humano.

#### 1.4.3 Alcances de la Tesis:

La presente investigación será aplicada para la elaboración de alimentos balanceados en forma de pellets para animales de consumo humano a través del diseño de una planta piloto, la misma que podrá ser utilizada con rentabilidad y flexibilidad en todos los casos evitando el uso de plantas industriales en pruebas para mejorar el proceso de fabricación.

#### 1.5 FORMULACIÓN DE LA HIPÓTESIS:

#### 1.5.1 Hipótesis Principal:

Utilizando el sistema de transporte neumático será resuelto el problema del transporte de la planta piloto.

#### 1.5.2 Variables Independientes:

- Flujo del producto (Kg/hr)
- Porcentaje de humedad ( % H₂O )
- Desecho en polvo ( Kg de polvo )

#### 1.5.3 Variables Dependientes:

Producción mejorada optimizando el transporte dentro de la planta piloto

#### 1.6 JUSTIFICACIÓN DEL PROYECTO:

Este proyecto propone un transporte por sistema neumático el mismo que brinda soluciones a los problemas de rotura, higiene, eficiencia, mantenimiento y energía ya que en las plantas industriales es usual utilizar elevadores de cangilones, el cual en la actualidad ya no es muy recomendable para consumo, este se vuelve antihigiénico, ocasionan finos por rotura de producto (Pellets) e inexacto en la capacidad ocasionando siempre pérdidas de producto en el trayecto.

Estos elevadores de cangilones fueron remplazados por los elevadores Z, solucionando el problema de rotura en su 70%, solucionó perdida en el transporte, mas no problemas de higiene y costos.

La investigación para la fabricación del ventilador es extensa ya que se recopilaron información de muchas fuentes dando un resultado final muy satisfactorio para la investigación.

## MATRIZ DE CONSISTENCIA

PROBLEMA	HIPÓTESIS	OBJETIVOS
Utilizar un	Hipótesis principal:	Objetivo principal:
transporte óptimo	Utilizando el sistema de	- Diseñar el transporte de una
que mejore la	transporte neumático será	planta de alimentos balanceados
calidad del	resuelto el problema del	que pueda proporcionar mayor
producto, teniendo	transporte de la planta piloto.	eficiencia y calidad en el
en cuenta su fácil		transporte, que servirá para
y rotura.	Variables independientes:	pruebas de todo tipo de comida
	- Flujo del producto (Kg/hr.)	balanceada para animales,
	Porcentaje de humedad	evitando que las prueban sean
	(%H ₂ 0)	efectuadas en plantas de gran
	- Desecho en polvo (Kg. de	producción.
•	polvo)	
		Objetivos específicos:
	Variables dependientes:	- Conocer y manejar un
√ ·	La producción mejora	programa de formulación de
	optimizando el transporte	mínimo costo.
<b>↓</b>	dentro de la planta.	- Disponer de un proceso que
		conserve la calidad del producto
		teniendo en cuenta su fácil
		rotura.
	:	- Contribuir con la conservación
		de la higiene en el producto, ya
		què será utilizado en animales
		para consumo humano.

#### 1.8 MARCO TEORICO Y CONCEPTUAL:

En el libro Interacción de Ingredientes y Procesos en la Producción de Alimentos escrito por Eugenio Bortone D.: Nos da la idea de lo necesario que es nutrir a nuestros animales con comida balanceada y de la importancia que viene hacer su proceso así mismo nos da referencias de lo conveniente que es contar con una planta piloto.

El libro de Sistemas Neumáticos ,Principios Y Mantenimiento escrito por S.R.Mayumda, me fue muy necesario para calcular el transporte neumático ya que la teoría es muy explicita, por otro lado los catálogos Buhler fueron muy útiles por su enfoque técnico en las maguinarias.

El Manual del Ingeniero Químico escrito por Perry John, me ayudo a comprender pasajes del transporte neumático así como también de secadores rotatorios al vació y roceadores.

El Libro Soplante y Ventiladores, escrito por Robert Jorgensen, crea designaciones estándar, este apartado incluye extractos de aquellos ventiladores que no son muy convencionales pero que siguen en investigación, de la misma manera la Teoría aprendida por mis profesores en el transcurso de mi carrera universitaria tendrá que ser utilizada en la investigación.

El libro de Materials handling and processing equipment escrito por Link Belt, contiene un gama de datos técnicos que fueron de gran ayuda para el entendimiento y fabricación del tornillo sin fin .

Normas y Catálogos **Buhler**, fue de gran ayuda para la fabricación de esclusas y el cálculo de la aspiración así como también, para entender el funcionamiento de la prensa, el mezclador y saranda.

El manual del Ingeniero Mecánico (segunda edición en español ). Volumen I escrito por Theodoro Baumeister, Eugene A. Avallone pretende que el

manual proporcione tanto al ingeniero como al estudiante una obra de consulta y que cubra con amplitud el campo de la ingeniería mecánica. En el presente proyecto ayudo en la parte de elementos de máquinas lo que facilitó la construcción de algunas de ellas y su entender.

En el libro acondicionamiento de aire — Principios y sistemas ( Segunda Edición) , escrito por Edward G . Pita, en el capitulo de ventiladores y dispositivos de distribución de aire pude aprender a distinguir los tipos de ventiladores, sus características, usar leyes de ventiladores para determinar el efecto de las condiciones cambiantes, distinguir entre los tipos de dispositivos de distribución de aire y sus aplicaciones, seleccionar un dispositivo de distribución de aire, analizar las condiciones de ruido en un sistema de distribución de aire.

El libro fundamentos de ventilación industrial escrito por V.V. Baturrin, en el capitulo de extracción de polvo del aire nos da entender lo importante que es tener un sistema de aspiración en plantas a fin de prevenir la contaminación excesiva de la atmósfera, establecen que la concentración de polvo en el aire que descarga a la atmósfera los sistemas de ventilación no debe pasar de 150mg/m³, por tanto todo aire viciado que contenga polvo en proporción mayor debe someterse a purificación .

El libro de turbomáquinas de **Rafael Avilés**, permite comprender en forma general el comportamiento de turbinas, bombas y ventiladores muy simplificado y comprensivo.

El libro transferencia de calor escrito por **J.P.Holman**, el libro presenta un tratado elemental de transferencia de calor, la presentación de los temas sigue la línea clásica de tratamientos separados para conducción, convección y radiación.

#### CAPITULO II

#### **METODOLOGÍA**

La producción industrial de alimentos para cardúmenes requiere de condiciones adecuadas que garanticen su uso efectivo.

Tomando en consideración estas condiciones se llega a deducir reglas específicas, que pueden ser aplicadas con éxito. Por ello si se parte de situaciones generales explicadas por un marco teórico general y se van a aplicar a una realidad concreta se empleará un método DEDUCTIVO, en forma preferente en esta investigación.

1ra. etapa: - Recopilación de información

- Visita a instituciones, bibliotecas, etc.
- Experiencias extranjeras y nacionales, seminarios, talleres, internet, otros.

2da. etapa: - Asesoría de expertos

 Toma de metodología y estrategias para abordar el estudio del tema.

3ra. etapa: - Trabajo de campo

- Selección de una empresa para efectuar el estudio
- Diseño de formatos para la información.
- Selección de dinámicas a aplicar para la toma de datos

4ta.- etapa:- Procesamiento de la información

- Ordenamiento de los datos obtenidos en el campo
- Análisis de la información
- -Tabulación de los resultados
- Diseño de los equipos

#### 5ta. etapa:- Preparación del documento final

- -Redacción, preparación de planos conclusiones y recomendaciones
- -Entrega del borrador al asesor (es) para correcciones.
- -Redacción final, levantamiento de observaciones

#### 6ta. etapa: -Presentación de la tesis

- -Trámites para la aprobación de la tesis
- -Pago de trámites administrativos
- -Pago de derechos de sustentación
- -Solicitud al decano para fijar la fecha de sustentación
- -Sustentación

#### CAPITULO III

#### SELECCIÓN DE MÀQUINAS

- Mezclador
- Prensa
- Secador y Post Acondicionador
- Zaranda

#### 3.1 MEZCLADOR

#### 3.1.1 BREVE RESEÑA DEL MEZCLADOR

#### 3.1.1.1 Definición:

El mezclador de cargas se utiliza para la elaboración de mezclas homogéneas de sustancias secas, por ejemplo harinas, granos, copos, roturas, minerales y polvos finos. Los líquidos pueden añadirse directamente por varillas provistas de toberas.

#### 3.1.1.2 Funcionamiento:

Los componentes secos de una mezcla se vierten al mezclador por cargas, mientras gira el rotor y se homogenizan intensamente en la cámara de mezcla cilíndrica. La adición de líquido (siempre que el mismo sea necesario) se efectúa después de que haya transcurrido el tiempo de mezcla.

La mezcla anterior que se efectúa acto seguido asegura la homogeneidad óptima del producto mezclado.

El vaciado del mezclador se efectúa en corto tiempo con la ayuda de la clapeta de fondo que abarca toda la longitud de mezcla.

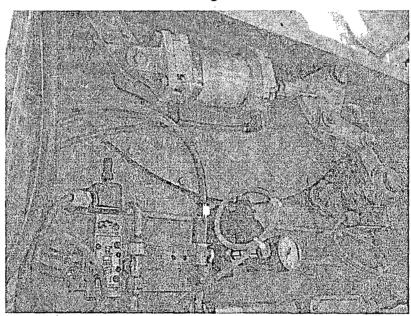
#### 3.1.1.3 Descripción:

El mezclador de carga se compone esencialmente de una carcasa horizontal, cilíndrica, de chapa de acero con una parte de entrada y compuerta de fondo, en la que el rotor del mezclado gira alrededor del eje horizontal.

La compuerta de fondo abarca todo el largo del mezclador garantizando así un vaciado del mezclador rápido y prácticamente sin restos.

Vibradores accionados por aire comprimido y una pintura interior especial reducen aún más la cantidad de restos.

El cierre hermético de la compuerta de fondo se lleva a cabo por medio de perfiles huecos de caucho hinchables.


Un mecanismo de palanca acodada impide la apertura de la compuerta de fondo en caso de interrupción de corriente.

El rotor va colocado en un soporte recto exterior.

El retén para ejes del rotor consiste en anillos deslizantes que se limpian con aire comprimido después de cada carga.

Todas las conexiones neumáticas son llevadas a un bloque de válvulas, de manera que sólo es necesaria una conexión a la red de aire comprimido.

Debido a las diferentes prescripciones usuales localmente, las conexiones eléctricas han de ser efectuadas en el lugar mismo.



#### 3.1.2.4 Montaje:

Colocar el mezclador de cargas sobre una base sólida, sin vibraciones. En caso contrario, reforzar el suelo con soportes de cemento o de hierro.

#### 3.1.2 PUESTA EN MARCHA

#### 3.1.2.1 Primera puesta en marcha:

-Retirar el seguro para el transporte

Antes de la primera puesta en marcha retirar el hierro angular (1).

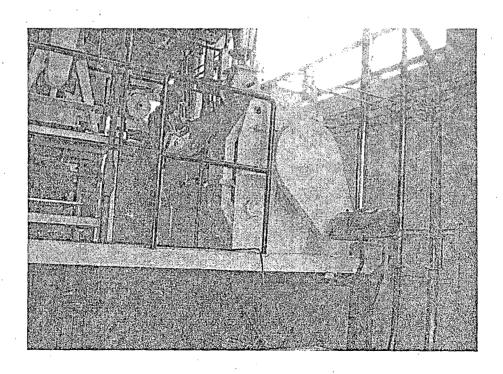
-Controles previos a la primera puesta en marcha

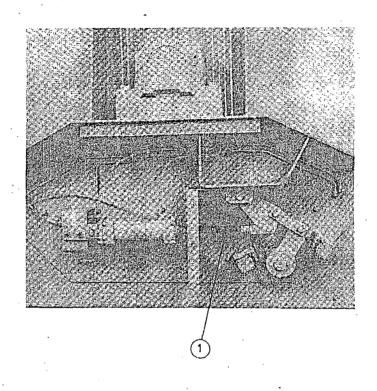
Mantener imperativamente el sentido de rotación (3) del rotor, visto desde la parte del accionamiento, en el sentido de las agujas del reloj.

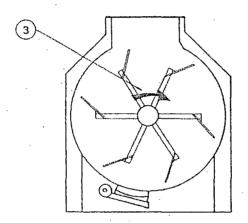
-El rotor no debe rozar la artesa en ninguna posición.

Controlar el estado de aceite del engranaje.

#### Marcha:


La alimentación y el vaciado del mezclador se efectúa con el rotor girando.


#### Restos:


El mezclador va provisto de una pintura antiadherente especial que limita al mínimo la cantidad de restos después del vaciado.

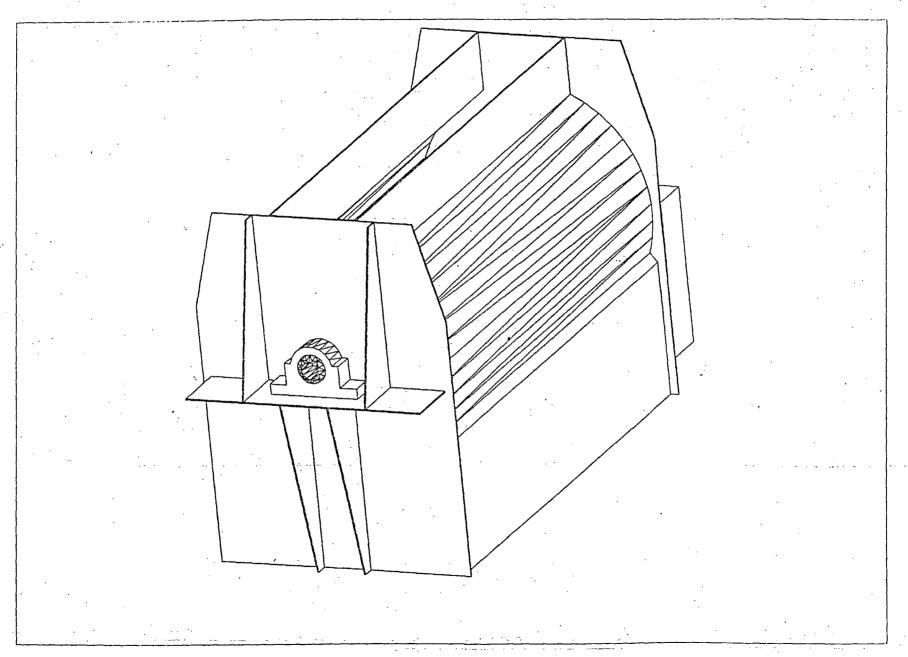
A pesar de ello puede ocurrir que después de una larga interrupción de funcionamiento aparezcan zonas ásperas en el mezclador.

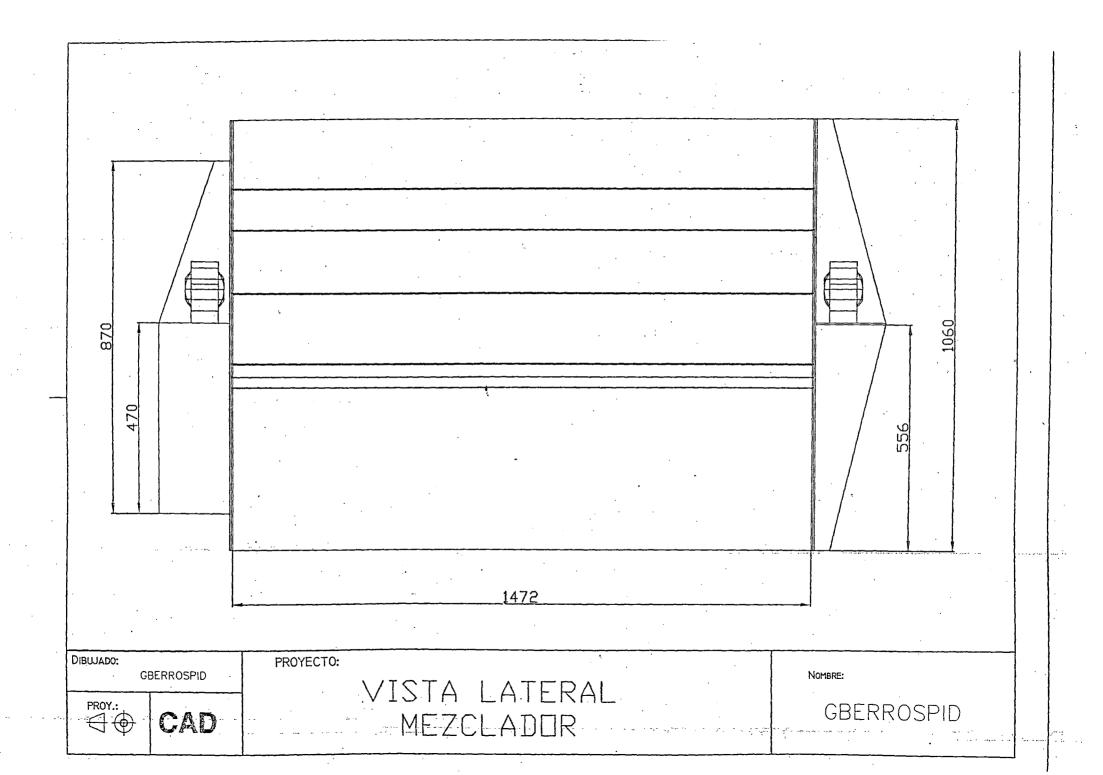
Mezclando un producto abrasivo durante 2...3 horas la parte interior puede ser pulida de nuevo.

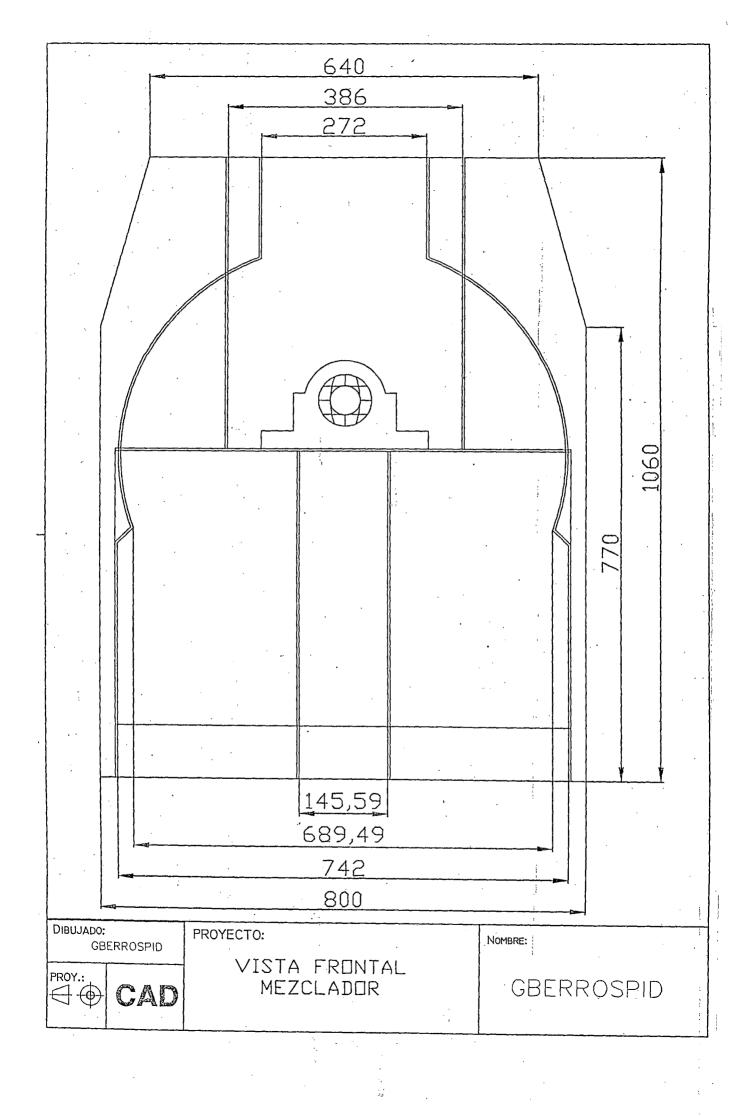


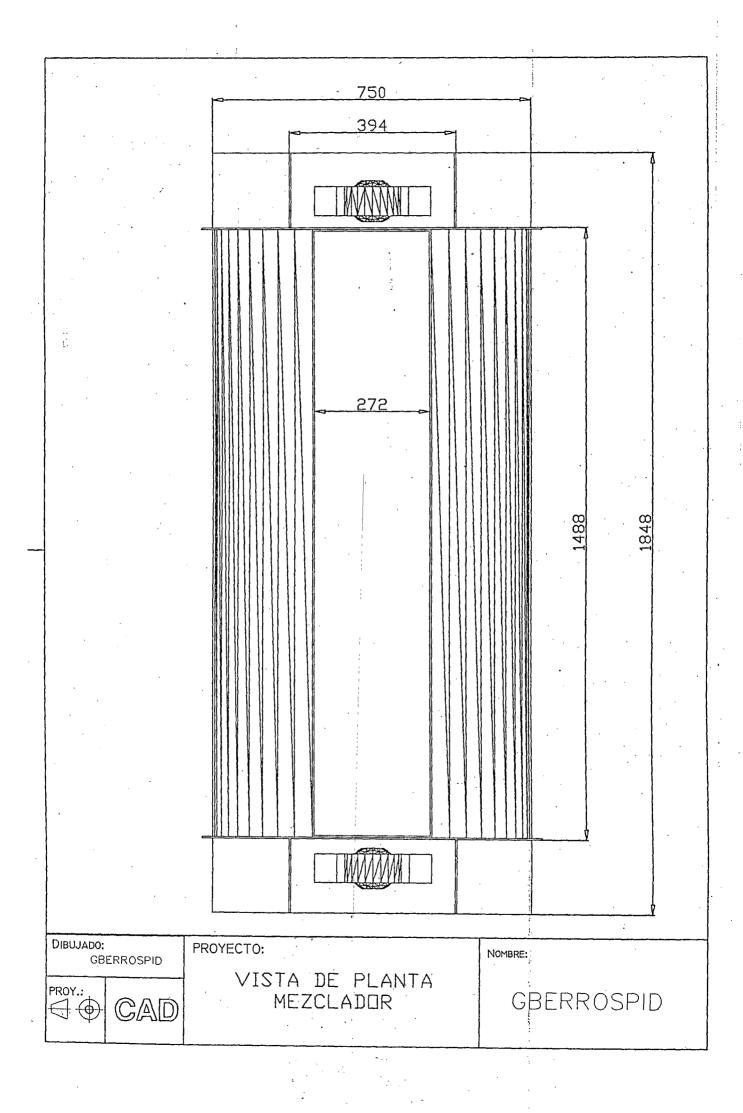





#### 3.1.2.2 Tiempo de mezcla:


El proceso de mezcla dura según el producto y la finura de 1 ... 5 minutos. Productos con una finura media de aproximadamente 500 micrómetros y un peso a granel de aproximadamente 0,5 kg/dm3 necesitan 3 minutos de tiempo de mezcla.


#### MEZCLAS:


La precisión de la mezcla (productos) se expresa con el coeficiente de variación V en %.

# MEZCLADOR









#### 3.2 PRENSA

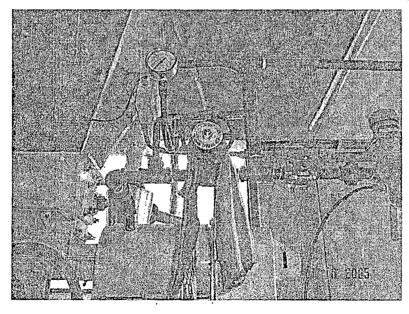
#### 3.2.1 DESCRIPCIÓN

#### 3.2.1.1 Desplazamiento:

Se recomienda colocar la prensa sobre placas amortiguadoras para amortiguar las vibraciones.

Elementos oscilantes no son adecuados porque podrían originar oscilaciones más fuertes de la máquina con efectos negativos sobre el alojamiento principal y las instalaciones de vapor y otras.

Se asegurará la prensa con escuadras atornilladas en el piso o empotradas, entre las que se colocarán placas de caucho.


Se preverá bastante espacio para el servicio, por ejemplo cambio de matrices, trabajos periódicos de mantenimiento y limpieza.

#### 3.2.1.2 Salida de la prensa:

Debido a la pequeña distancia de la salida de la tapa de la carcasa y el borde inferior de la prensa es normalmente imposible colocar una caja de salida con tapa para la toma de muestras y mediciones de control.

Hay que tener en cuenta:

Seguridad en la entrada del enfriador para que en caso de acumularse producto, se desconecten todos los elementos de alimentación a la prensa.



#### 3.2.2 MONTAJE

#### 3.2.2.1 Montaje de prensa:

La ejecución del montaje en el sitio es de gran trascendencia para el funcionamiento perfecto y la marcha segura de toda prensa.

Sin embargo hay que atribuir especial atención a los puntos siguientes:

- Al montar los motores poner atención en que los ejes estén paralelos y las poleas de fajas trapezoidales estén perfectamente alineadas.
- Las ranuras de las poleas para fajas trapezoidales no estarán sucias ni oxidadas.
- Reducir la distancia entre ejes de forma que las fajas trapezoidales puedan fácilmente montarse.
- El tensado correcto de las fajas trapezoidales es determinante para la transmisión máxima de potencia así como para la duración del mando.
- Por lo tanto se ejecutará el tensado de fajas trapezoidales de acuerdo con lo prescrito. Se examinará y eventualmente corregirá luego de aprox. 2 horas de trabajo.

#### 3.2.2.2 Verificación antes de la puesta en marcha:

Se pondrá en marcha la máquina tan sólo tras efectuar estas comprobaciones:

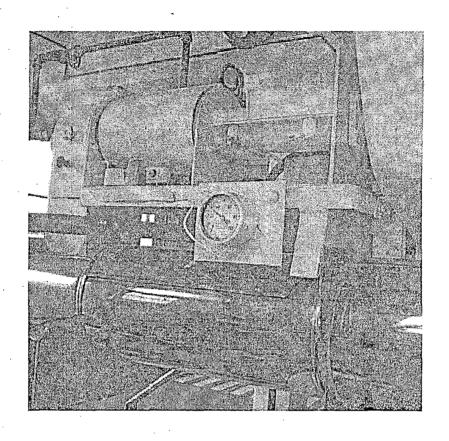
- El depósito de entrada, las secciones de dosificación , mezclado y la cámara de prensa estarán libres de cuerpos extraños.
- Ajustar correctamente los elementos que deberán coincidir en los datos de los motores correspondientes.
- Controlar el tensado de fajas (volver a examinar tras aprox. 2 y 24 horas de trabajo).
- Controlar el sentido de rotación y el número de revoluciones de todos los mandos.
- Comprobar los enclavamientos eléctricos. (Enfriador, zaranda, elementos de transporte, motor principal, mezclador, dosificador, etc).
- Cerciorarse de la función de los dispositivos de seguridad. (Cuando la tapa de carcasa o la tapa lateral está abierta, los motores de la prensa no

deberán arrancar.)

- Para el control de marcha sin producto, los rodillos de prensado estarán totalmente centrados.
- Ajustar y controlar el funcionamiento de las armaduras de vapor.

#### 3.2.3 PUESTA EN MARCHA

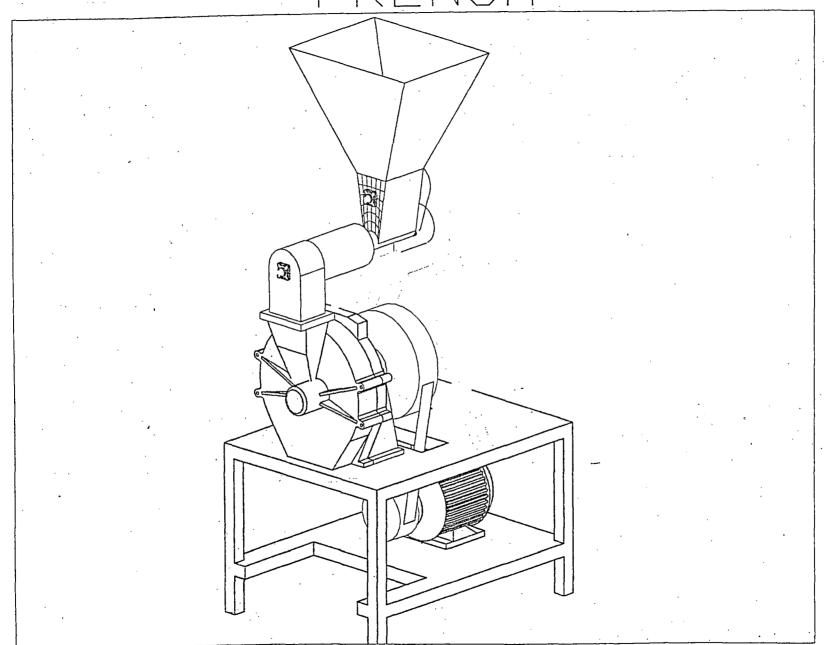
#### 3.2.3.1 Procedimiento de la puesta en marcha:

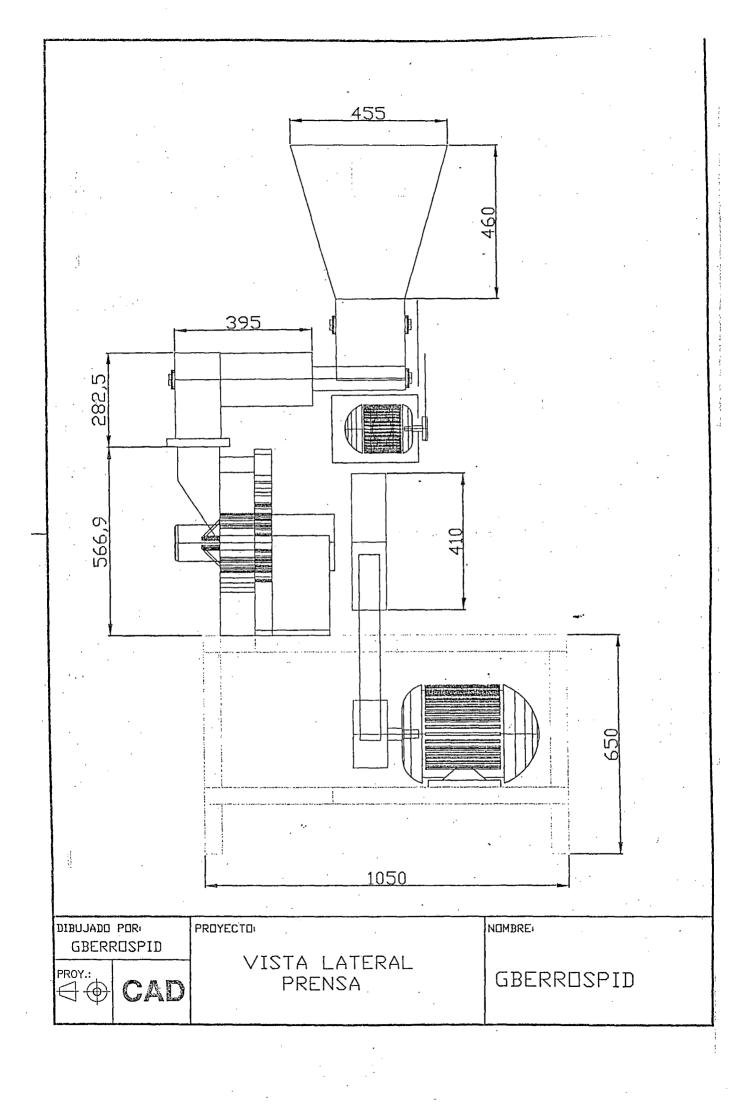

Proceder de esta forma para toda puesta en marcha con producto:

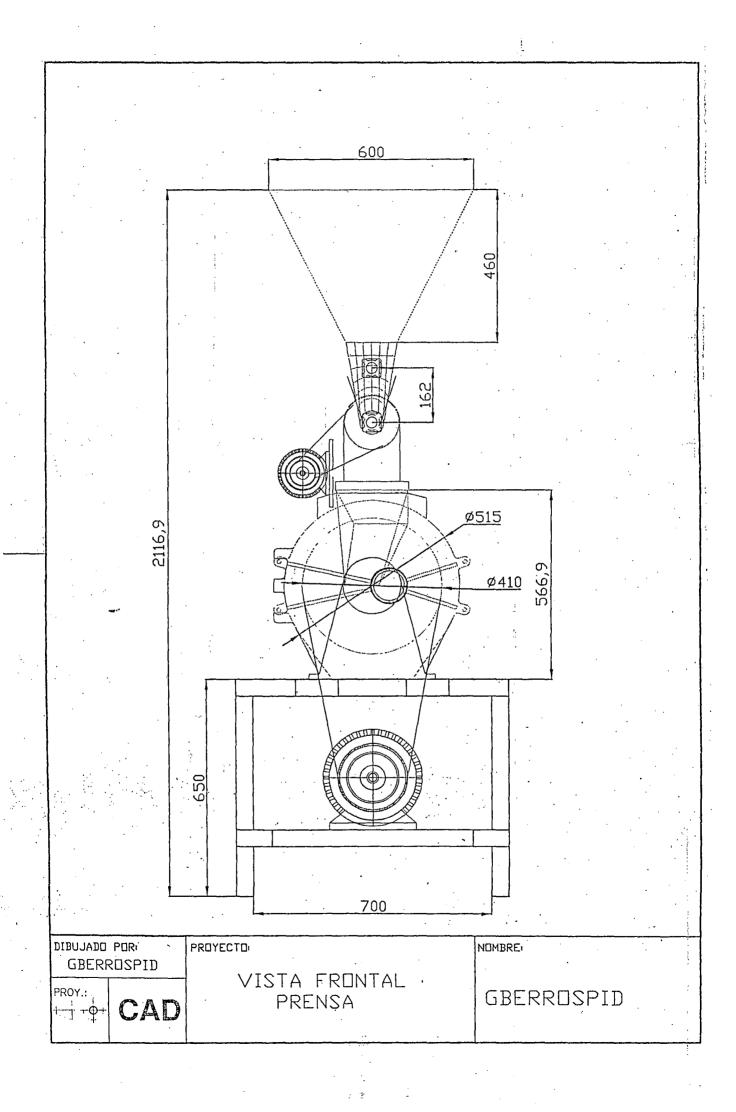
- Controlar el par de apretado de los tornillos de fijación de matriz y aro de refuerzo.
- Poner a contacto los rodillos de prensado.
- Ajustar la cuchilla.
- Lubricar la prensa.
- Cerrar la tapa de carcasa y la tapa lateral.
- Poner en marcha la prensa y todas las máquinas necesarias para la fabricación de gránulos, en sentido contrario del avance del producto.
- Aumentar a pasos desde cero la dosificación de producto, regulando a la vez la agregación de vapor, hasta la carga máxima del motor principal, observar el amperímetro.
- Según la ejecución del mando de la prensa, la regulación de dosificación es manual o automática, así como la agregación de vapor .

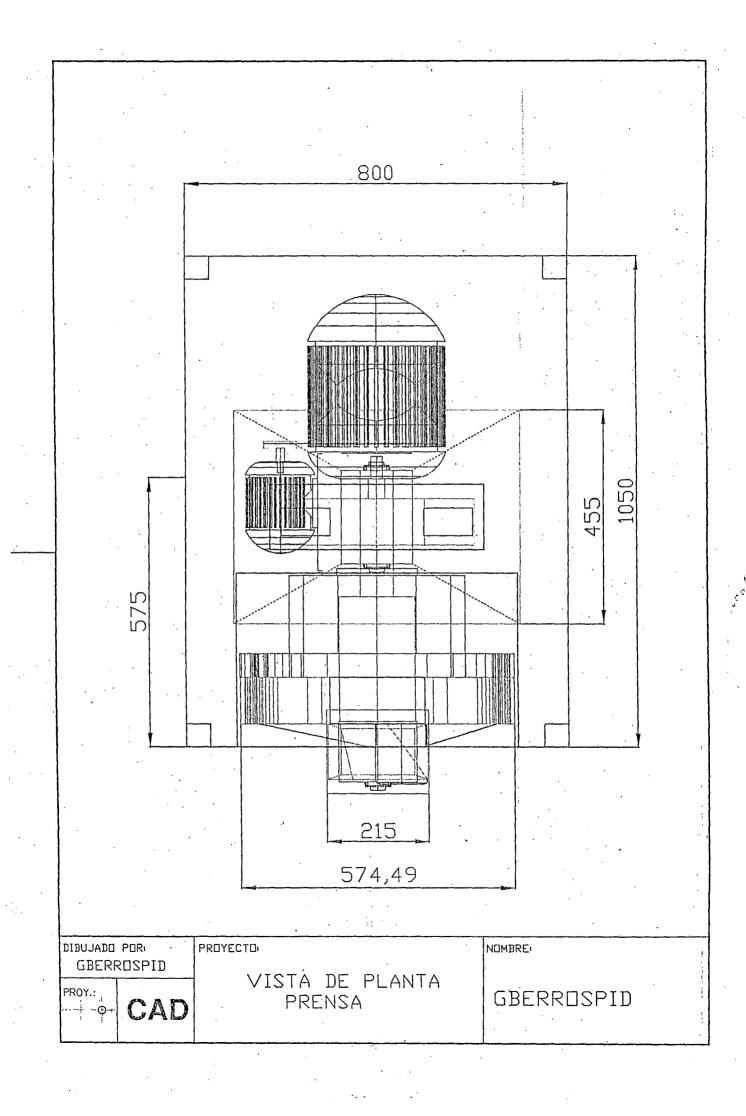
#### 3.2.4 DOSIFICADOR ALIMENTADOR - ACONDICIONADOR

El aparato alimentador-acondicionador es del tipo de 2 líneas, las paletas del eje dosificador son regulables y cambiables.


Se modificará la posición de las paletas de acuerdo con el producto y el tiempo de tratamiento, pero es aconsejable hacerlo tan sólo tras recoger experiencias con el ajuste del dado.





2 27




PRENSA









#### 3.3 SECADOR Y POST ACONDICIONADOR

Ya que el producto que sale de la prensa se encuentra húmedo y a una temperatura de 90°C es necesario que este pase por un secador antes de esto el producto es acondicionado por cocción es por esa razón que ingresa a un post – acondicionador, para luego pasar por el secador el cual cuenta con una bandeja de entrada para la amortiguación y distribución constante en toda la cámara, el producto deberá contar con un calor disipado de 200000Kj/Hora y con un caudal de aire de 50 m³/min.

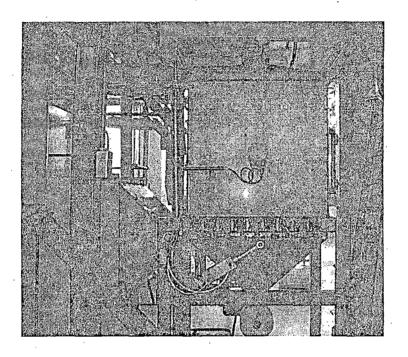
La presión de vapor que ingresa al radiador es de 120Psi , 110°C y necesitamos que ingrese a la cámara 70°C para esto se selecciono un radiador con las siguientes características.

120 tubos de cobre de 5/8" diámetro exterior de alta presión .

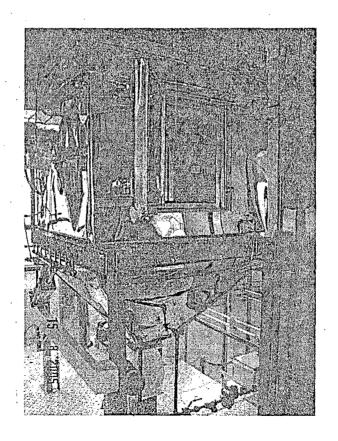
Aletas de aluminio disipadoras de calor de 0.3mm de espesor , dispuestas en 11 aletas / pulgada.

Proceso de adherencia entre tubos y aletas, ajuste por expansión interior a lo largo de cada tubo.

Codos de cobre de 5/8" de 1.24mm de espesor , soldadas con soldadura de plata .


Parrillas de plancha galvanizada de 1/16" de espesor.

Aleros de plancha galvanizada de 1/16" de espesor

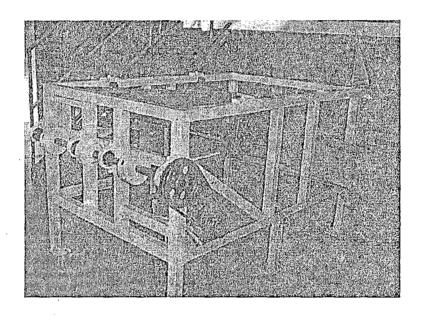

Probado a 250 PSI (Nitrógeno)

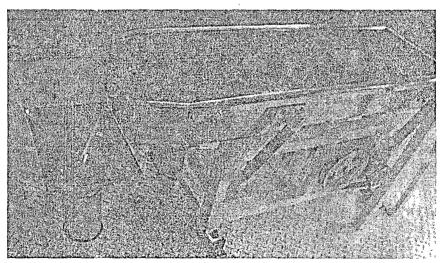
Siguiendo estas características ya mencionadas el radiador será de : 30" x 36" x 6".

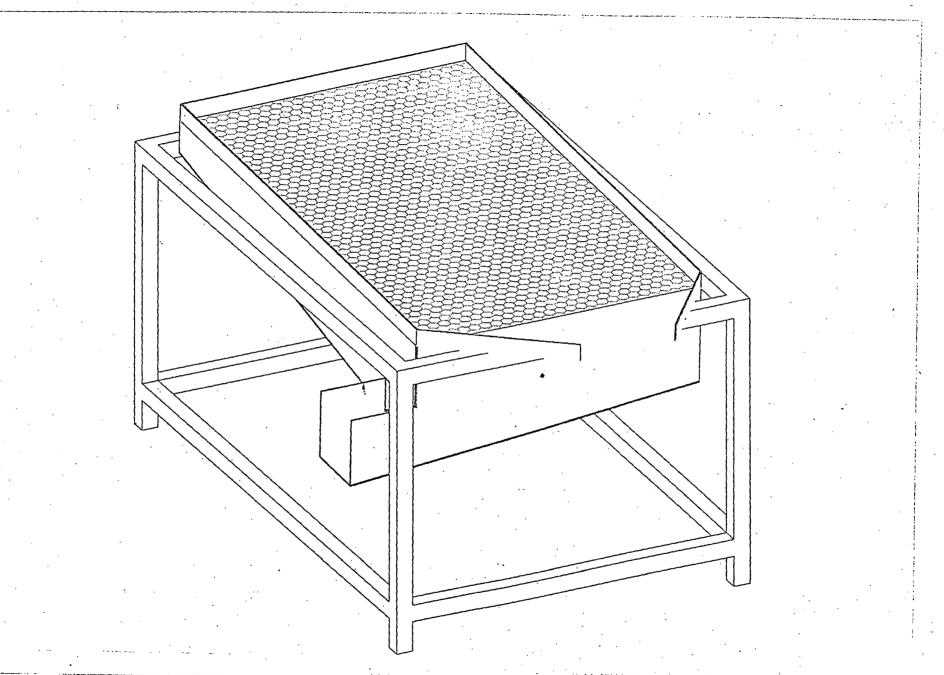
### SECADOR:

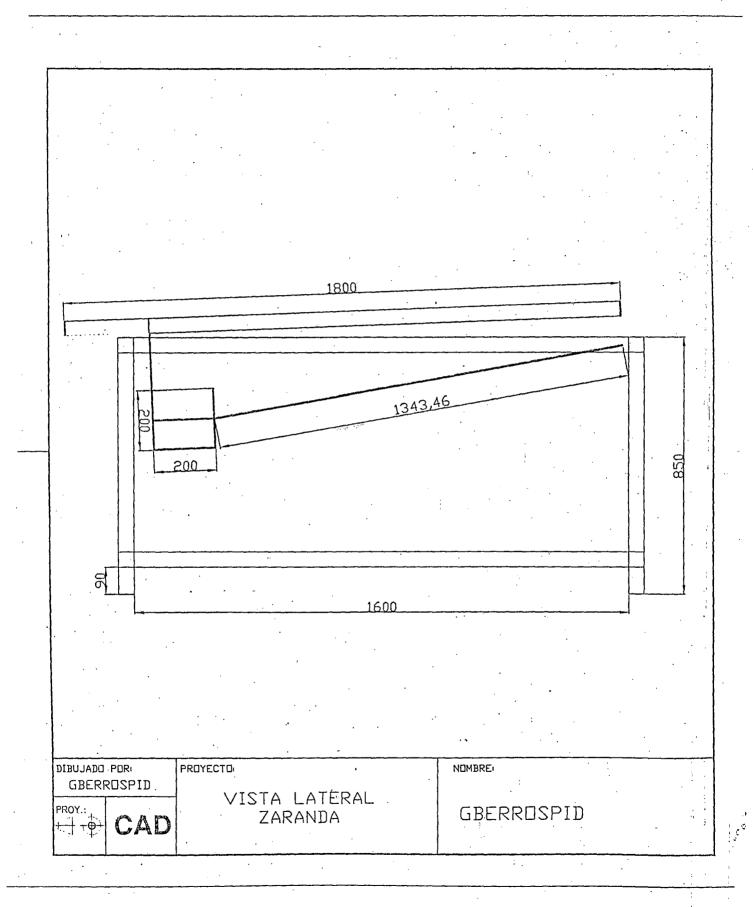


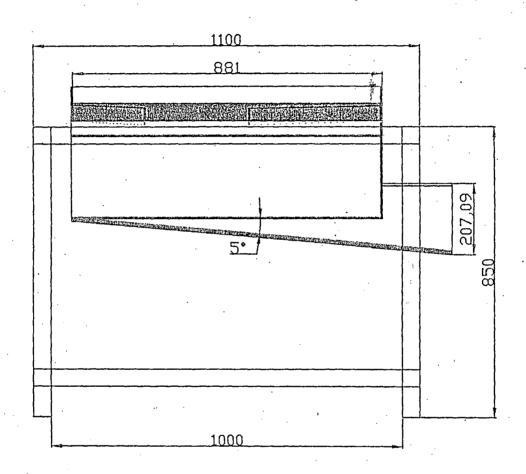
### **POST –ACONDICIONADOR:**





#### 3.4 ZARANDA:


En el presente trabajo usaremos dos zarandas de vibración excéntrica las cuales están equipadas con chapas perforadas 3/32" de diámetro y un área de 1m² (1ton de producto).


Una de ellas de repaso de harina retirando las impurezas gruesas superior a 150 micrones ubicada al inicio del proceso.


La segunda zaranda será de clasificación retirando finos del pellets, se ubica a la salida de la tercera línea neumática.





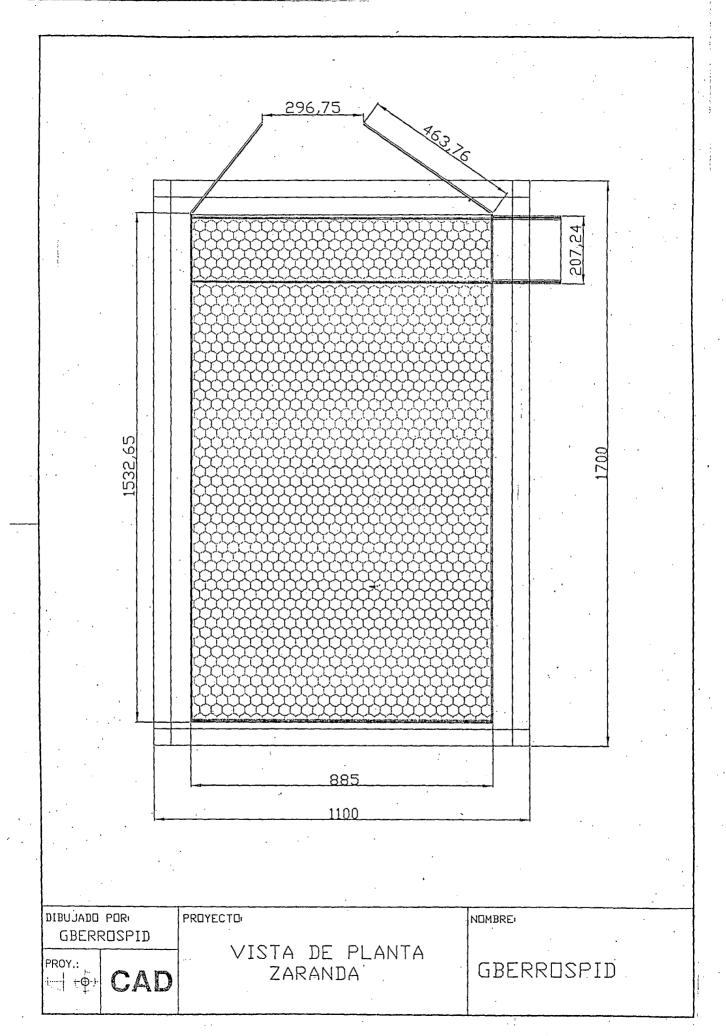






DIBUJADO POR GBERROSPID

PROY.:




PROYECTO

VISTA FRONTAL ZARANDA

NOMBRE:

GBERROSPID



#### CAPITULO IV

# MÁQUINAS Y ACCESORIOS A FABRICAR

#### 4.1 TRANSPORTE NEUMÁTICO:

#### 4.1.1 DEFINICIÓN

Considerado actualmente como uno de los medios más eficaces para el transporte de productos por su seguridad, higiene, precisión y confiabilidad, el transporte neumático es la solución para un sinnúmero de problemas.

El transporte neumático cuenta con pipas en el inicio de su transporte ya que hace la función de toma de aire para el tubo neumático este será conducido por aire hasta el ciclón el cual optimiza la separación de polvo con el agregado del efecto ciclónico del ingreso de aire, el cual caerá a una esclusa la que servirá para controlar la descarga. En el proyecto se tomaron tres líneas neumáticas de las cuales la línea uno tuvo una presión de 550 mmH₂O , la línea dos tuvo una presión de 700 mmH₂O y la línea tres con 700 mmH₂O (tomadas de las líneas neumáticas pagina 36-48) , trabajaremos con la mayor presión para el cálculo del ventilador neumático de alta presión .

Adaptable a cualquier necesidad en cuanto a capacidad y longitud, esta tecnología simplifica notablemente el traslado de productos entre sectores de producción.

#### 4.1.2 PRESIÓN Y PÉRDIDA DE CARGA

Si se calculan las dos presiones, estática y dinámica, que sumadas nos dan la presión total que será suministrada por el ventilador. Esta presión va disminuyendo a lo largo de la red de conductos debido a que el aire roza con las paredes y por lo tanto, gasta energía, a los cambios de dirección del aire dentro de los conductos, al choque con obstáculos interiores, etc., que son causa de remolinos.

El efecto combinado de ambos fenómenos motiva una caída de presión en los conductos, que se denomina pérdida de carga y que pasaremos a explicar más detenidamente.

Cuando el aire o el fluido que tenemos que transportar transita por un conducto, pasa rozando sus paredes, lo que supone una pérdida de energía que se manifiesta en una disminución de la presión total. Esta pérdida de presión es lo que conocemos con el nombre de pérdida de carga o caída de presión.

En nuestro caso, el ventilador que vamos a instalar esta obligado a comunicar al aire una presión necesaria para vencer las pérdidas de carga que se originen en toda la longitud del conducto. Por consiguiente, es lógico que previamente debamos conocer cuáles son las pérdidas de carga que se crean en todo el recorrido de la instalación, incluyendo tanto los tramos rectos como las derivaciones y otros accidentes insertos en la conducción.

Como sea que la presión dinámica está relacionada con la velocidad del aire, dependiendo únicamente del caudal y del área de paso, se deduce que la disminución de presión afecta a la presión estática del aire, siendo ésta la que consideraremos en los cálculos.

# 4.1.3 CÁLCULO DE LOS CONDUCTOS DE AIRE

La resistencia al paso del aire en los conductos depende del caudal, diámetro de los conductos, rugosidad de las paredes, accidentes, etc. Para valorar la resistencia o pérdida de carga del conjunto sirven diversos métodos, siendo el sistema mas simple y adecuada su aplicación en los casos corrientes de ventilación en donde la longitud de la conducción no es excesivamente larga, el procedimiento denominado de **longitud equivalente**, consistente en convertir a metros lineales de conducto todos los diferentes accesorios de la instalación, que sumados al tramo recto, nos darán como resultado la longitud total que habremos de considerar para hallar la pérdida de carga global de la instalación que estamos proyectando.

Para resolver tal cuestión se incluyen, en primer lugar, el diagrama **Figura TN2** (ANEXO Nº3) para el cálculo de conductos circulares lisos y tramos rectos, del que se pueden extraer diversas soluciones según cómo lo manejemos, y cuyo uso se explica a continuación.

Partiendo del caudal de aire y siguiendo la línea horizontal buscaremos su encuentro con la diagonal que marca el diámetro del conducto. Bajando perpendicularmente hacia la recta de la pérdida de carga, descubriremos la cifra buscada. La velocidad la hallaremos partiendo de la intersección caudal pérdida de carga subiendo en diagonal hasta las líneas que definen la velocidad.

Si, por el contrario, conociéramos la perdida de carga y el caudal, actuando al revés de cómo lo hemos hecho, hallaríamos el diámetro del conducto. Igualmente si combináramos perdida de carga y velocidad, encontraríamos el diámetro correspondiente.

Debemos observar que cuando en un mismo conducto confluyan varios tramos de distintas sección, al tener cada largo diferente pérdida de carga por metro lineal, se considerará cada tramo por separado y la pérdida de carga total vendrá dada por la suma de la pérdida de carga de cada uno de los tramos.

Para evaluar la longitud de los distintos tramos se tomara como referencia el eje de simetría de conducto.

# 4.1.4 CÁLCULO DE LAS LÍNEAS NEUMÁTICAS:

#### 4.1.4.1 Primera Línea Neumática:

Datos: OBTENIDOS DEL PLANO DE LA PLANTA PILOTO

$$LH = 1.384 + 2.596 = 3.98 \text{ m}$$

$$L\dot{v} = 3.657 \text{ m}$$

$$\rho = 590 \text{ kg/m}^3$$

# De la FIGURA NI (ANEXO Nº3):

Obtenemos que para transportar la primera línea necesitamos un \$\phi\$ 75/80 ya que en este caso el transporte de capacidad será de 1 Ton/HR esto se recomienda para que el mezclador sea llenado rápidamente.

$$C = 1000 \frac{Kg}{HR}$$

Velocidad recomendada 19-24 m/sg según producto

Velocidad de : V = 
$$19\frac{m}{S}$$
 = 3740 pies/min

Caudal:

Diámetro de tubo = Ø3"

Q = V x A = 19 
$$\frac{m}{S_g} x (\frac{\pi}{4} x 0.0762^2 m^2 \cdot \frac{60 Sg}{1 \min})$$

Q = 5.1988 
$$\frac{m^3}{\min} x \frac{1pie^3}{(0.3048m)^3} = 183.59 pie^3 / \min$$

# 1. Energía de aceleración (E₁)

$$E_1 = \frac{C \times V^2}{2 \times g} = \frac{1000 \frac{Kg}{HR} \times \left(19 \frac{m}{sg}\right)^2}{2 \times 9.81 \frac{m}{sg^2}}$$

$$E_1 = 18399.5922 \times \frac{kg.m}{HR} \cdot \frac{2.2046lb}{1kg} \cdot \frac{1pie}{0.3048m} \cdot \frac{1h_R}{60 \text{ min}}$$

$$E_1 = \frac{2218.0523 \frac{lb \ pie}{\min}}{183.59 \frac{pie^3}{\min} x \ 5.2} = 2.3234 \ pu \lg \ de \ H_2O \ x \frac{0.3048m}{12"} \cdot \frac{1000mm}{1m}$$

 $E_1 = 59.0144$ mm  $H_2O$ 

2. Enérgica necesaria para elevar los sólidos o material a granel (E₂)

$$E_2 = C \times Lv$$

$$E_2 = 1000 \frac{kg}{HR} x3.657m = 3657 \frac{kg \ x \ m}{HR} = 440.8477 \frac{lb \ x \ pie}{min}$$

$$E_2 = \frac{440.8476 \frac{lb \times pie}{\min}}{183.59 \frac{pie^3}{\min}} = 0.4618 \, pu \lg H_2O$$

 $E_2 = 11.7292 \text{ mm H}_2\text{O}$ 

3. Energía requerida para vencer la resistencia, que el ducto ofrece al pasaje de los sólidos en sentido horizontal.

$$E_3 = C \times f \times L_H$$

$$f = tang 30^{\circ} = 0.57735$$

$$E_3 = 1000 \frac{kg}{HR} \times 0.57735 \times 3.98m$$

$$E_3 = 2297.853 \frac{kg \ m}{HR} = 277 \frac{lb \ x \ pie}{min}$$

$$E_3 = \frac{277 \frac{lb \times pie}{\min}}{182.59 \frac{pie^3}{\min} \times 5.2} = 0.2917 \, pu \, \text{lg } H_2O$$

 $E_3 = 7.410 \text{ mm } H_2O$ 

# TOTAL DE PERDIDAS DEL PRODUCTO 78.1392mm H₂O

4. Energía necesaria para vencer la resistencia al pasaje de los sólidos por los codos y curvas

$$E_4 = \frac{C \times V^2}{g} \times f \times \frac{\pi \times \alpha}{180}$$

$$E_4 = \frac{1000 \frac{Kg}{HR} x \left(19 \frac{m}{Sg}\right)^2 x \, 0.57735 x \, \pi \, x \, 90}{9.81 \frac{m}{S^2} \, x \, 180}$$

$$E_4 = 33373.1532 \frac{kg \times m}{HR} = 40187.806 \frac{lb \ pie}{min}$$

$$E_4 = \frac{4023.100 \frac{lb \ pie}{\min}}{183.59 \frac{pie^3}{\min}} = 4.2141 \ pu \lg H_2O$$

 $E_4 = 107.039 \text{ mm } H_2O \times 2$ 

$$E_4 = 214.078 \text{ mm H}_2\text{O}$$

# Longitud equivalente de los codos:

$$Leq = \left(\frac{\pi x R x \alpha}{180}\right) x 2$$

$$R = 12 \times D = 12 \times 3" = 36"$$

$$Leq = \left(\frac{\pi x 0.9144 \ x90}{180}\right) x 2$$

$$R = 914.4 \text{ mm}$$

$$Leq = 2.8726 m$$

# 5. Longitud equivalente de la tubería

 $L_T = 3.98 + 3.657 + 2.8726 = 10.5096 \text{ m}$ 

De la FIGURA TN2 (ANEXO  $N^{\circ}3$ ) de perdidas de carga em mm  $H_2O$  por cada metro de largo obtenemos:

Peq = 10.5096m x 
$$\frac{7.3mmH_2O}{1m}$$

Peq = 76.72 mm H₂O

# TOTAL DE PÉRDIDAS EN EL DUCTO 290.798 mm H₂O

#### 6.Pérdidas Totales

Perdida = Perd.producto + Perd.ducto

 $P_T = 78.1392 + 290.798$ 

 $P_T = 368.9372 \text{ mm H}_2O$ 

### 7. Pérdidas en los ciclones

$$P_{ciclones} = 100 \text{ mm H}_2O$$

$$P_{\text{totales}} = 368.9372 \text{ mm H}_2\text{O} + 100 \text{ m H}_2\text{O}$$

$$P_{\text{totales}} = 468.9372 \text{ mm H}_2\text{O}$$

$$P_{totales}$$
 +14% = 534.588 mm  $H_2O$ 

$$P_{\text{totales}} = 550 \text{ mm H}_2\text{O}$$

# 4.1.4.2 Segunda Línea Neumática:

Datos: OBTENIDOS DEL PLANO DE LA PLANTA PILOTO

$$L_H = 3.6294 + 1.539 = 3.2m$$

$$L_V = 8.801 \text{ m}$$

$$\rho = 610 \frac{Kg}{m^3}$$

$$C = 500 \frac{Kg}{HR}$$

De la FIGURA NI (ANEXO N°3) obtenemos: φ 50/55 = 2" φ

Velocidad de : V = 
$$20\frac{m}{S}$$
 = 3937 *pies*/min

Caudal:

Diametro de tubo = 2"

Q = V x A = 
$$20 \frac{m}{Sg} x (\frac{\pi}{4} x 0.0508^2 m^2. \frac{60 S_g}{1 \text{ min}})$$

$$Q = 2.4322 \frac{m^3}{\min} x \frac{1pie^3}{0.3048^3 m^3} = 85.8924 \frac{pie^3}{\min}$$

1. Energia de aceleración (E₁)

$$E_{1} = \frac{C \times V^{2}}{2 \times g} = \frac{500 \frac{Kg}{HR} X \left(20 \frac{m}{sg}\right)^{2}}{2 \times 9.81 \frac{m}{sg^{2}}}$$

$$E_1 = 10193.6799 \times \frac{kg.m}{HR} \cdot \frac{2.2046lb}{1kg} \cdot \frac{1pie}{0.3048m} \cdot \frac{1h_R}{60 \text{ min}}$$

$$E_1 = \frac{1228.8378 \frac{lb \ pie}{\min}}{85.8924 \frac{pie^3}{\min} x \ 5.2} = 2.7513 \ pu \lg \ de \ H_2O$$

 $E_1 = 69.8828 \text{ mm } H_2O$ 

2. Enérgica necesaria para elevar los sólidos o material a granel (E2)

$$E_2 = C \times Lv$$

$$E_2 = 500 \frac{kg}{HR} x8.801m = 4400.5 \frac{kg \times m}{HR}$$

$$E_2 = \frac{530.476 \frac{lb \times pie}{\min}}{85.8924 \frac{pie^3}{\min}} = 1.1877 \ pu \lg H_2O$$

 $E_2 = 30.1676 \text{ mm H}_2\text{O}$ 

3. Energía requerida para vencer la resistencia, que el ducto ofrece al pasaje de los sólidos en sentido horizontal.

$$E_3 = C \times f \times L_H$$

$$f = tang 30^{\circ} = 0.57735$$

$$E_3 = 500 \frac{kg}{HR} \times 0.57735 \times 3.2m$$

$$E_3 = 923.76 \frac{kg \ m}{HR} = 111.3583 \frac{lb \ x \ pie}{min}$$

$$E_3 = \frac{111.3583 \frac{lb \times pie}{\min}}{85.8924 \frac{pie^3}{\min} \times 5.2} = 0.2493 \ pu \lg H_2O$$

$$E_3 = 6.333$$
mm  $H_2$ O

# TOTAL DE PERDIDAS DEL PRODUCTO 106.3834mm H₂O

4. Energía necesaria para vencer la resistencia al pasaje de los sólidos por los codos y curvas

$$E_4 = \frac{C \times V^2}{g} \times f \times \frac{\pi \times \alpha}{180}$$

$$E_4 = \frac{500 \frac{Kg}{HR} x \left(20 \frac{m}{Sg}\right)^2 x 0.57735 x \pi x 90}{9.81 \frac{m}{S^2} x 180}$$

$$E_4 = 18489.2815 \frac{kg \ x \ m}{HR} = 2228.8643 \frac{lb \ pie}{min} \times 2$$

$$E_4 = \frac{4457.7286 \frac{lb \ pie}{min}}{85.8924 \frac{pie^3}{min}} = 9.9806 \ pu \lg H_2O$$

 $E_4 = 253.5066$ mm  $H_2O$ 

# Longitud equivalente de los codos:

$$Leq = \left(\frac{\pi x R x d}{180}\right) x 2$$

$$R = 12 \times D = 12 \times 2" = 24"$$

R = 609.6 mm

$$Leq = \left(\frac{\pi x 0.6096 x 90}{180}\right) x 2$$

Leq = 1.915 m

# 5. Longitud equivalente de la tubería:

 $L_T = 3.2 + 8.801 + 1.915m = 15.916m$ 

De la FIGURA TN2 (ANEXO N°3) de perdidas de carga em mm  $H_2O$  por cada metro de largo obtenemos:

Peq = 13.916 m x 
$$\frac{10mmH_2O}{1m}$$

Peq = 139.16 mm H₂O

TOTAL DE PÉRDIDAS EN EL DUCTO 392.6666mm H₂O

## 6. Pérdidas Totales

Perdida = Perd.producto + Perd.ducto

 $P_T = 106.3834 + 392.6666$ 

 $P_T = 499.05 \text{ mm H}_2O$ 

### 7. Pérdidas en los ciclones

 $P_{ciclones} = 100 \text{ mm H}_2O$ 

 $P_{\text{totales}} = 499.05 \text{ mm H}_2\text{O} + 100 \text{ m H}_2\text{O}$ 

 $P_{\text{totales}} = 599.05 \text{ mm H}_2\text{O}$ 

 $P_{\text{totales}}$  +14% = 682.917 mm  $H_2O$ 

 $P_{totales} = 700 mm H_2O$ 

# 4.1.4.3 Tercera Línea Neumática:

Datos: OBTENIDOS DEL PLANO DE LA PLANTA PILOTO

$$L_{H} = 0.983 + 0.996 = 1.979 \text{m} = 2 \text{m}$$

$$L_V = 4.719 m$$

$$\rho = 729 \frac{Kg}{m^3}$$

$$C = 500 \frac{Kg}{HR}$$

De la FIGURA NI (ANEXO N°3 ) obtenemos: $\phi$  50/55 = 2"  $\phi$ 

Velocidad de : V =  $16\frac{m}{S}$  = 3149.606 pies / min

Caudal:

Q = V x A = 
$$16 \frac{m}{Sg} x (\frac{\pi}{4} x 0.0508^2 m^2 . \frac{60 S_g}{1 \text{ min}})$$

$$Q = 1.94576 \frac{m^3}{\min} x \frac{1pie^3}{0.3048^3 m^3} = 68.7139 \frac{pie}{\min}$$

# 1. Energia de aceleración (E₁)

$$E_1 = \frac{C \times V^2}{2 \times g} = \frac{500 \frac{Kg}{HR} X \left(16 \frac{m}{sg}\right)^2}{2 \times 9.81 \frac{m}{sg^2}}$$

$$E_1 = 6523.95515 \times \frac{kg.m}{HR} \cdot \frac{2.2046lb}{1kg} \cdot \frac{1pie}{0.3048m} \cdot \frac{1h_R}{60 \text{ min}}$$

$$E_1 = \frac{786.456 \frac{lb \ pie}{min}}{68.7139 \frac{pie^3}{min}} = 1.4674 \ pu \lg \ de \ H_2O$$

 $E_1 = 55.906 \text{ mm } H_2O$ 

# 2. Enérgica necesaria para elevar los sólidos o material a granel (E₂)

$$E_2 = C \times Lv$$

$$E_2 = 500 \frac{kg}{HR} x 4.719 m = 2359.5 \frac{kg \ x \ m}{HR}$$

$$E_2 = \frac{284.435 \frac{lb \times pie}{\min}}{68.713910 \frac{pie^3}{\min}} = 0.7960 \, pu \, \text{lg } H_2O$$

$$E_2 = 20.25126 \text{ mm } H_2O$$

3. Energía requerida para vencer la resistencia, que el ducto ofrece al pasaje de los sólidos en sentido horizontal.

$$E_3 = C \times f \times L_H$$

$$f = tang 30^{\circ} = 0.57735$$

$$E_3 = 500 \frac{kg}{HR} \times 0.57735 \times 2m$$

$$E_3 = 577.35 \frac{kg \ m}{HR}$$

$$E_3 = \frac{69.5989 \frac{lb \ x \ pie}{\min}}{68.71391076 \frac{pie^3}{\min} x \ 5.2} = 0.19478 \ pu \ lg \ H_2O$$

$$E_3 = 4.9475 \text{ mm } H_2O$$

# TOTAL DE PERDIDAS DEL PRODUCTO 81.0732 mm H₂O

4. Energía necesaria para vencer la resistencia al pasaje de los sólidos por los codos y curvas

$$E_4 = \frac{C \times V^2}{g} \times f \times \frac{\pi \times \alpha}{180}$$

$$E_4 = \frac{500 \frac{Kg}{HR} x \left(16 \frac{m}{Sg}\right)^2 x \, 0.57735 x \, \pi \, x \, 90}{9.81 \frac{m}{S^2} \, x \, 180}$$

$$E_4 = 11833.14 \frac{kg \ x \ m}{HR} \times 2 = 23666.28 \frac{kg \ x \ m}{HR}$$

$$E_4 = \frac{2852.9463 \frac{lb \ pie}{\min}}{68.7139 \frac{pie^3}{\min}} = 7.9845 \ pu \lg H_2O$$

 $E_4 = 202.822$ mm  $H_2$ O

## Longitud equivalente de los codos:

## 5. Longitud equivalente de la tubería

 $L_T = 4.719m + 2m + 1.915m = 8.634 m$ 

De la **FIGURA TN2 (ANEXO N°3)** de perdidas de carga em mm  $H_2O$  por cada metro de largo obtenemos:

Peq = 8.634 m x 
$$\frac{10mmH_2O}{1m}$$
  
Peq = 86.34 mm H₂O

TOTAL DE PÉRDIDAS EN EL DUCTO 289.162 mm H₂O

#### 6. Pérdidas Totales

Perdida = Perd.producto + Perd.ducto

 $P_T = 81.0732 + 289.162 \text{ mm H}_2\text{O}$ 

 $P_T = 370.2366 \text{ mm } H_2O$ 

#### 7. Pérdidas en los ciclones

 $P_{ciclones} = 100 \text{ mm H}_2O$ 

 $P_{\text{totales}} = 370.2366 \text{ mm H}_2\text{O} + 100 \text{ m H}_2\text{O}$ 

 $P_{\text{totales}} = 470.237 \text{ mm H}_2\text{O}$ 

 $P_{\text{totales}}$  +14 % = 536.07mm  $H_2O$ 

 $P_{\text{totales}} = 600 \text{ mm H}_2\text{O}$ 

# 4.1.5 SELECCIÓN DE CICLONES

El ciclón es una máquina sencilla que sirve para extraer las partículas en suspensión en el aire , se emplea principalmente para purificar aire viciado cuyo contenido inicial de polvo sea muy elevado. Sus principales ventajas es la sencillez de fabricación, el fácil mantenimiento y la elevada eficacia. El aire cargado de polvo se alimenta tangencialmente por la parte superior cilíndrica a través de una entrada de sección transversal cuadrada.

La corriente sigue una trayectoria en espiral que primero se dirige hacia el fondo del cono y después asciende por el eje de simetría, moviéndose aún en espiral. El aire, más o menos libre de polvo, abandona el ciclón por un tubo situado en la parte superior.

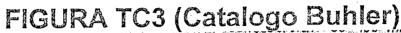
Debido a su tendencia a mantener la dirección inicial, las partículas arrastradas por la corriente giratoria de aire, se acercan gradualmente a la pared externa del ciclón , el polvo precipitado descarga por un tubo que sale del fondo del cono.

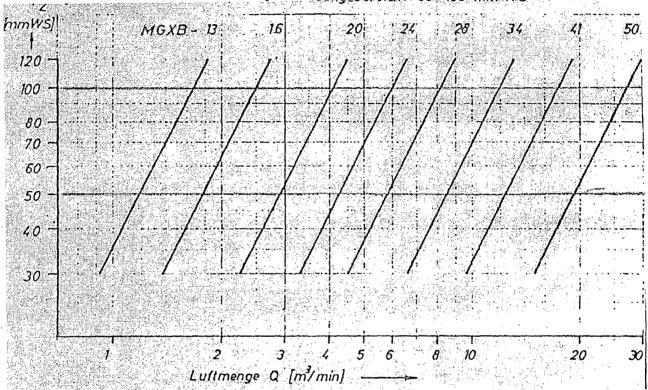
El efecto extractor no depende de la posición del eje del ciclón el cual puede ser horizontal, vertical o inclinado.

En los ciclones cónicos, las velocidades máximas se observan en la mitad del radio o incluso más cerca del eje.

Observando los movimientos de aire o agua en ciclones de paredes de vidrio, se ve que en la parte cónica hay dos corrientes helicoidales coaxiales que giran en el mismo sentido. La corriente externa que se dirige hacia abajo es adyacente a las paredes del ciclón, al llegar al fondo del cono se convierte en la corriente interna ascendente.

Las partículas en suspensión en el aire que entra en el ciclón, siguen este movimiento giratorio y a consecuencia del mismo, son transferidas gradualmente hacia las paredes externas y después caen al fondo del cono en parte por gravedad y en parte porque son arrastradas por la corriente.


En el eje del ciclón, particularmente en la parte inferior del cono, se produce una considerable reducción de presión, la cual en los ciclones cónicos es aproximadamente igual a la presión estática de entrada. A consecuencia de esta disminución de la presión en la parte inferior del cono, resulta imposible descargar directamente el polvo a la atmósfera, pues entraría aire del exterior a través del tubo de descarga arrastrando la mayoría del polvo hacia la salida de aire, anulando así casi totalmente el efecto extractor del ciclón.


Por otro lado no se puede permitir que el polvo se acumule en el cono, el cual no debe considerarse como una tolva. En este caso, el polvo depositado, también empezaría a ser agitado por la corriente giratoria que lo arrastraría hacia la salida de aire limpio.

El diámetro del tubo de salida está determinado por la velocidad media del aire que sale del ciclón. Es deseable que el aire salga del ciclón a una velocidad considerable ya que así se puede reducir el diámetro del ciclón pero esta reducción tiene un limite, debido a que aumenta la resistencia aerodinámica del ciclón, disminuyendo el diámetro del tubo de salida.

disminuye también la cantidad de aire que penetra por el orificio de descarga de polvo del ciclón.

Nos guiamos según tablas BUHLER para la construcción de estos:





En la primera línea neumática tenemos por cálculos  $Q=5.1988~m^3/min$ , con este dato nos dirigimos a la **FIGURA TC3 (Pag 50)** dándonos la selección de un ciclón  $\emptyset$  240 .

El diámetro de salida del ciclón lo obtenemos según selección de la TABLA TC2 (Anexo N°3) arrojándonos Ø85mm.

A continuación calculamos la velocidad.

$$V = \frac{Qx21220}{d^2}$$

$$V = \frac{5.1988 \frac{m^3}{\min} x21220}{(85mm)^2} = 15.27194 m/sg$$

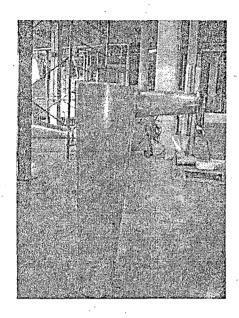
En la segunda línea neumática tenemos por cálculos  $Q=2.4322~\text{m}^3/\text{min}$ , con este dato nos dirigimos a la FIGURA TC3 (Pag 50) dándonos la selección de un ciclón Ø 200 .

El diámetro de salida del ciclón lo obtenemos según selección de la TABLA TC2 (ANEXO Nº3) arrojándonos Ø70mm.

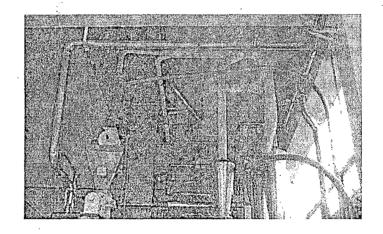
A continuación calculamos la velocidad.

$$V = \frac{Qx21220}{d^2}$$

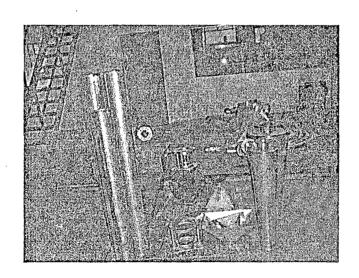
$$V = \frac{2.4322 \frac{m^3}{\min} x21220}{(70mm)^2} = 10.5329m/sg$$


En la tercera línea neumática tenemos por cálculos  $Q=1.946~\text{m}^3/\text{min}$ , con este dato nos dirigimos a la **FIGURA TC3** (Pag 50) dándonos la selección de un ciclón Ø 160 .

El diámetro de salida del ciclón lo obtenemos según selección de la TABLA TC2 (ANEXO N°3) arrojándonos Ø55mm.


A continuación calculamos la velocidad.

$$V = \frac{Qx21220}{d^2}$$


$$V = \frac{2.9186 \frac{m^3}{\min} x21220}{(70mm)^2} = 13.65m/sg$$



CILON DE Ø 200.



MONTAJE DE CICLONES



#### 4.1.6 ESCLUSA

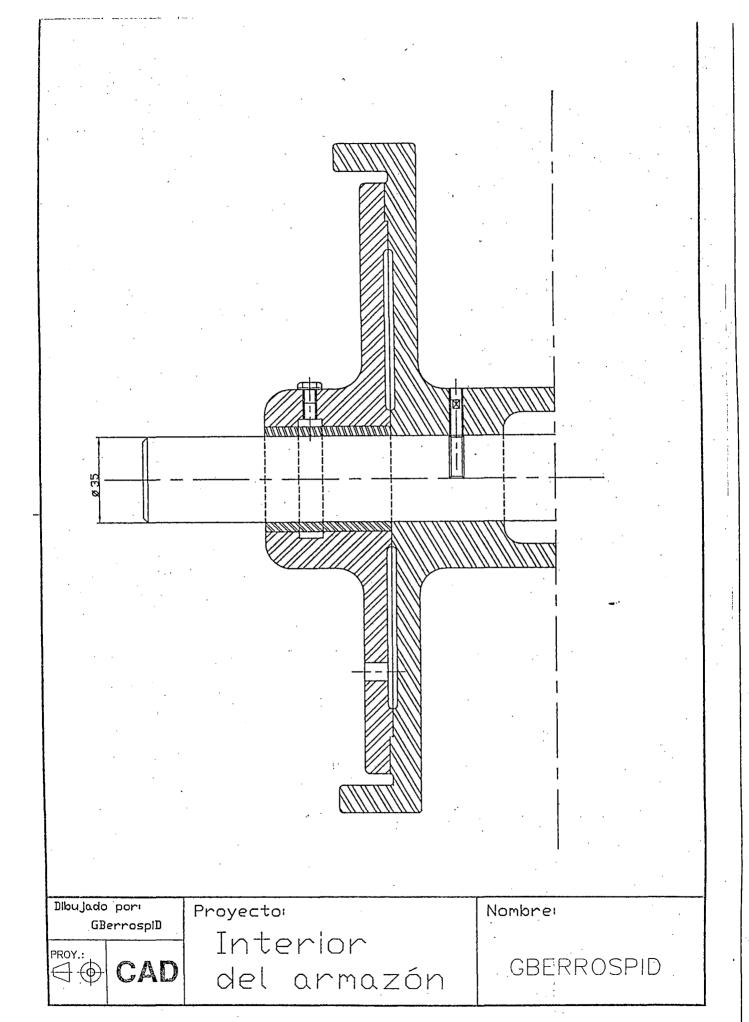
#### 4.1.6.1 Definición:

La esclusa son las válvulas rotativas, ideadas según un criterio de máxima universalidad de aplicación, son adecuadas para la alimentación o la descarga controlada de los productos en polvo o granulados de silos, tolvas, instalaciones para transporte neumático, filtros de manga y ciclones.

En el interior del armazón gira un rotor dividido en varias partes (celdas). El producto entra por la parte superior, se distribuye en cada celda y descarga por la parte inferior de la celda. El paso desde la entrada hasta la salida se realiza de forma hermética, gracias al preciso acoplamiento constructivo celda-armazón.

# a) Engrase y mantenimiento:

No necesitan mucho mantenimiento.


Pero para operación continua es ventajoso añadir adicionalmente un poco de aceite.

Basta quitar una vez por año el tornillo, y llenar con lubricante el espacio para aceite alrededor del casquillo.

El aceite en el espacio entra por los poros en el casquillo del cojinete y engrasa automáticamente el eje.

Es importante que la superficie corrediza de los cojinetes no se ensucie debido a la entrada de polvo.

Por la apertura en la tapa de las esclusas modelo MPS 22/13(para transporte de succión), entra aire adicional en el espacio, entre la rueda celular y la tapa e impide con este el amontonamiento de producto así que la limpieza del cojinete esta garantizada.



#### b) Desmontaje:

La rueda está acuñada por un lado sobre el árbol y asegurada contra desplazamiento axial mediante un tornillo de fijación.

Si debido a una revisión o por otras razones la tapa de la esclusa debe desmontarse, entonces hay que limpiar primeramente el terminal del eje que sobresale.

Antes del montaje también hay que frotar ligeramente con un trapo bañado en aceite el casquillo del cojinete.

En las esclusas hay que poner cuidado que durante el montaje de las tapas la empaquetadura esté asentada correctamente sobre el eje y que no quede dañada.

# 4.1.6.2 Cálculo de la capacidad requerida:

Llenamos cada celda con agua y pesamos :

0.344lts x 8 celdas = 2.752 lt

Su capacidad será:

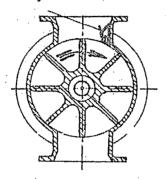
Cap =  $2.75 \text{ dm}^3 \text{ x y}$ 

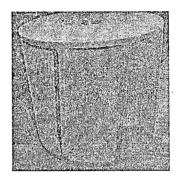
Cap = 
$$2.75 lit \times 590 \frac{kg}{m^3} \cdot \frac{0.001 m^3}{1 lit} = 1.6225 Kg$$

Cap = 1.6225Kg

El catalogo Buhler (Pag. 58) recomienda que la esclusa debe trabajar a 54 rev/min pero en el mercado existe motoreductores(Delcrosa) de 56.6 rev/min (Anexo  $N^{\circ}5$ )

Capt = 1.6225Kg x 56.6 rev/min


Capt = 
$$91.833 \frac{kg}{\min} \cdot \frac{1T}{1000kg} x \frac{60 \min}{1hr} = 5.51 \frac{ton}{H_R}$$


Capt = 
$$5.51 \frac{ton}{H_P} / 2$$
 (media vuelta)

$$Capt = 2.755 \frac{ton}{H_R}$$

De esta manera tenemos que eliminar celdas o rellenarlas hasta conseguir una capacidad de 1000 Kg /Hr para la primera línea y 500 Kg/Hr para la segunda y tercera línea neumática.

Para conseguir esta capacidad tendremos que reducir el número de celdas. Si en cada celda hay 0.344lit, eliminando 4 celdas =1.376lit.





Cap = 
$$1.376 lit \times 590 \frac{kg}{m^3} \cdot \frac{0.001 m^3}{1 lit} = 0.81184 Kg$$

Cap = 0.81184Kg

Trabajando con 56.6 rev/min.

Capt = 0.81184Kg x 56.6 rpm

Capt = 
$$45.95 \frac{kg}{\min} \cdot \frac{1T}{1000 kg} x \frac{60 \min}{1hr} = 2.757 \frac{ton}{H_R}$$

Capt = 
$$2.757 \frac{ton}{H_R} / 2$$
 (media vuelta)

$$Capt = 1.378 \frac{ton}{H_R}$$

La capacidad satisface a la primera línea neumática pero en el caso de las otra dos tendremos que bajar el porcentaje de alimentación.

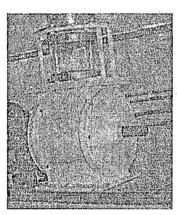
Si en cada celda hay 0.344lit lo disminuimos a la mitad , teniendo en cuenta que ahora contamos con cuatro celdas tendremos:

$$\frac{0.344 lit}{2} = 0.172 litx 4 celdas = 0.688 lit$$

Cap = 
$$0.688 lit \times 590 \frac{kg}{m^3} \cdot \frac{0.001 m^3}{1 lit} = 0.4059 Kg$$

Cap = 0.4059Kg

Trabajando con 56.6 rev/min


Capt = 0.4059Kg x 56.6 rpm

Capt = 22.97 
$$\frac{kg}{\min} \cdot \frac{1T}{1000kg} \times \frac{60\min}{1hr} = 1.378 \frac{ton}{H_R}$$

Capt = 
$$1.378 \frac{ton}{H_R} / 2$$
 (media vuelta)

$$Capt = 0.689 \frac{ton}{H_R} = 689 \frac{Kg}{H_R}$$

Esta es la capacidad aproximada que necesitamos para la segunda y tercera línea neumática.



El catalogo Buhler (Pag. 58) recomienda que la esclusa debe trabajar a 0.55Kw

#### Selección del motorreductor:

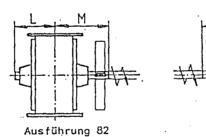
Motorreductor Marca DELCROSA (ANEXO Nº5)

Pot. = 0.55 kW

Velocidad de entrada = 1700

Velocidad de salida = 56.6 RPM

Reducción = 30/1


Tipo = 150



SCHLEUSE

MPSA-22/13, 22/19, 28/22





Grösse	Zellenrad V in dm ³	Anzahl Schleusen	Motor kW	A	В	С	D	Е
22/13 22/19 28/22	2,75 4,1 8,5	12	0,55 1,1	220 220 280	130 190 220	205 265 300	185 235 240	130 190 220

Ausführung 83

Grösse		G		J		М	ď	Zeichnungs-Nr. MPSA-
22/13	110	160	320	282	143	200	35	91009-
22/19	150	160	320	282	173	230	35	91010-
28/22	158	.225	450	350	199	255	40	91011-
::::::								

Abteilung Visum	Erstelldatum	Änderungen:				,
						UNP-13006
NB /		Ersetzt durch	v. Datum	Ersatz für	v. Datum	

#### 4.2 SISTEMA DE ASPIRACION:

El aire extraído del equipo productor de polvo por medio de aspiración localizada, contiene cantidades considerables de polvo, las cuales alcanzan a menudo cifras de varios gramos por metro cúbico de aire.

A fin de prevenir una contaminación excesiva de la atmósfera, establecen que la concentración de polvo en el aire que descargan a la atmósfera los sistemas de ventilación, no debe pasar de 150 mg/m³.

Por tanto, todo aire viciado que contenga polvo en proporción mayor, debe someterse a purificación.

# 4.2.1 CALCULO DEL SISTEMA DE ASPIRACIÓN:

Calculado por tramos según esquema:

#### Tramo 1:

 $Q = 8.624 \text{m}^3 / \text{min}$ 

 $\emptyset$  = 120mm (tablas de ciclones)

$$V = \frac{Q \times 21200}{d^2} = \frac{8.624 \frac{m^3}{\min} \times 21220}{(120mm)^2}$$

V=12.7m/sg

## Tramo 2:

 $Q = 8.624 \text{ m}^3/\text{min} + 1.946\text{m}^3/\text{min} = 10.57\text{m}^3/\text{min}$ 

 $\emptyset$  = 130mm (tablas de ciclones)

$$V = \frac{Q \times 21200}{d^2} = \frac{10.57 \frac{m^3}{\min} \times 21220}{(130mm)^2}$$

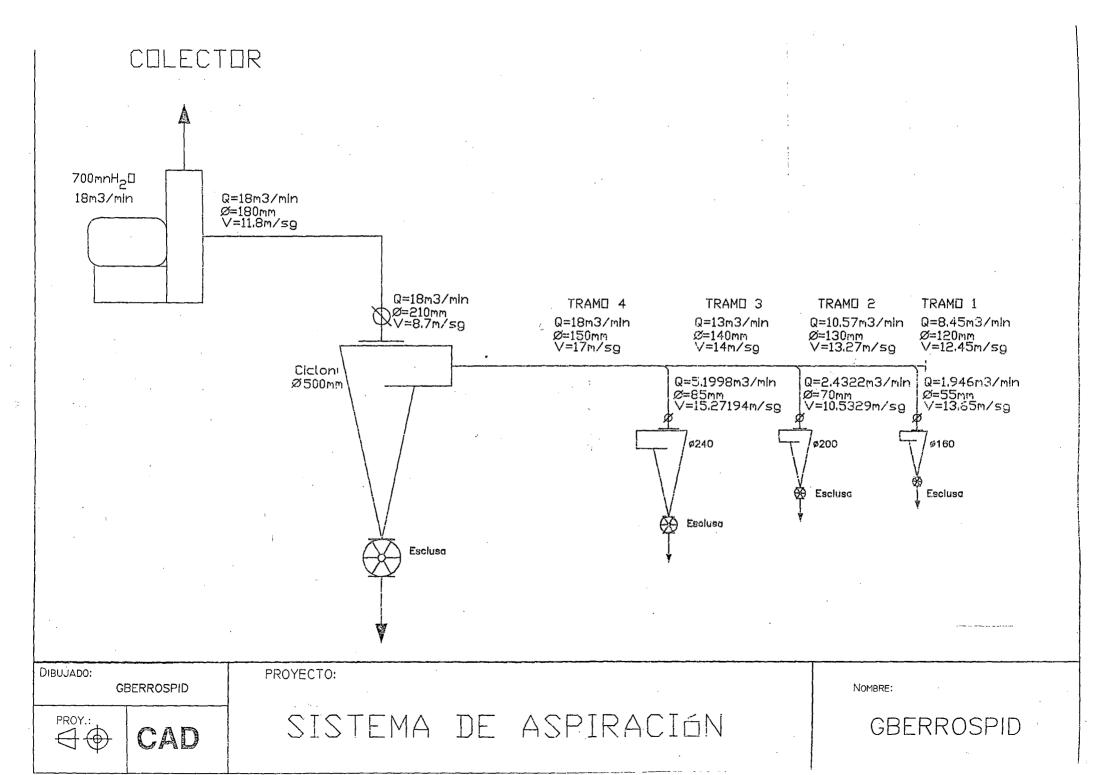
V=13.27 m/sg

#### Tramo 3:

 $Q = 10.57m^3/min+2.4322m^3/min = 13m^3/min$ 

Ø = 140mm (tablas de ciclones)

$$V = \frac{Q \times 21200}{d^2} = \frac{13 \frac{m^3}{\min} \times 21220}{(140mm)^2}$$


V=14m/sg

# Tramo 4:

Q =  $13.\text{m}^3/\text{min}+5.1988 \text{ m}^3/\text{min} = 18 \text{ m}^3/\text{min}$ Ø = 150mm (tablas de ciclones)

$$V = \frac{Q \times 21200}{d^2} = \frac{18 \frac{m^3}{\min} \times 21220}{(150 mm)^2}$$

V=17m/sg



#### 4.2.1.1 Selección de ciclón de colector:

Llega:

Q= 18m³ /min = Calculo de aspiración

H= 700mm H₂O = Cálculo neumático

Teniendo los siguientes datos mencionados obtenemos de la

TABLA TC4 (Pag 64) lo siguiente:

El ciclón a seleccionar es de Ø 500

## Ciclón Ø 500:

 $Q = 18m^3/min$ 

Ø = 210mm TABLAS TC2(ANEXO N°3)

$$V = \frac{Q \times 21200}{d^2} = \frac{18 \frac{m^3}{\min} X 21220}{(210mm)^2}$$

V=8.7m/sg

#### Entrada al ventilador:

 $Q = 18m^3/min$ 

Ø = 180mm (el diámetro debe bajar para evitar mucho ruido)

$$V = \frac{Q \times 21200}{d^2} = \frac{18 \frac{m^3}{\min} \times 21220}{(180 mm)^2}$$

V=11.8 m/sg

# 4.2.1.2 Selección de ciclón de aspiración:

Llega:

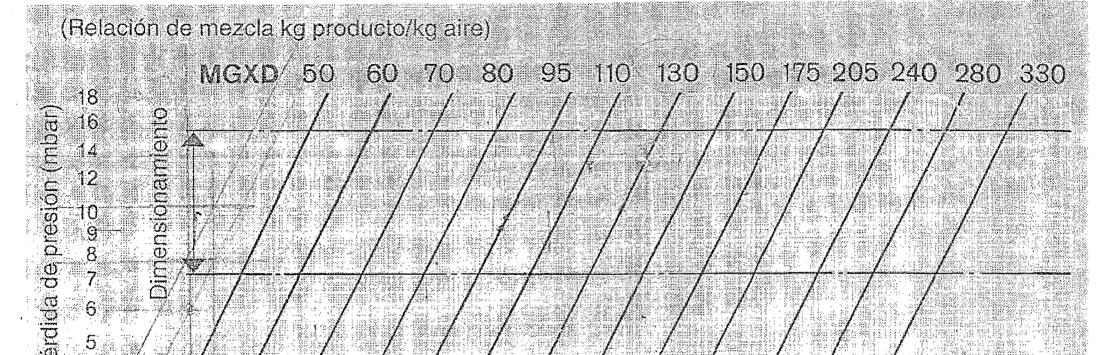
Q= 50m³/min = Cálculo de aspiración

 $H= 180mm H_2O = De la tabla de ciclones Tabla TC4 (Pag 64)$ 

Teniendo los siguientes datos mencionados obtenemos de la TABLA TC4 (Pag 64) lo siguiente:

El ciclón a seleccionar es de Ø 600

Ciclón Ø 600:

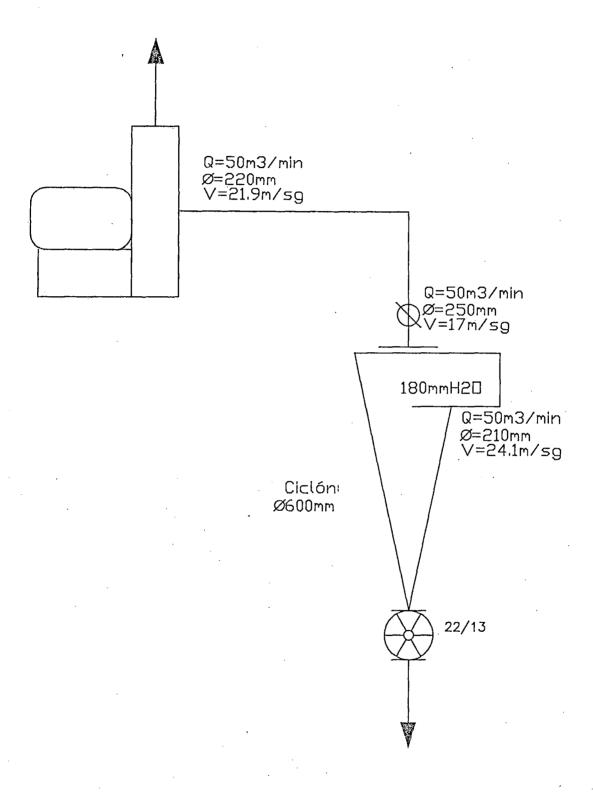

 $Q = 50m^3 /min$ 

 $\emptyset$  = 250mm TABLAS TC2 (ANEXO N°3)

$$V = \frac{Q \times 21200}{d^2} = \frac{50 \frac{m^3}{\min} \times 21220}{(250 mm)^2}$$

V= 17 m/sg

Con estos mismos datos entramos a calcular el ventilador




50 60 70 80 90 100

600 800 1000

400

# Aspiración



DIBUJADO:

**GBERROSPID** 

PROYECTO:

Nombre:





CICLON DE ASPIRACIÓN

**GBERROSPID** 

#### 4.3 TRANSPORTADOR POR TORNILLO SIN FIN

Se llaman así a los que ejecutan el desplazamiento del producto a través de un alimentador volumétrico.

El alimentador está formado por un tornillo alimentador giratorio que es operado por un motorreductor. El tornillo gira dentro de una cámara que contiene la mezcla e impulsa esta a través de una descarga.

El tornillo helicoidal servirá para transportar una mezcla formulada para peletizar, el cual tendrá un transporte de pasos diferenciales, ayudando a una descarga uniforme, sin alteraciones en la fuerza del torque del motorreductor y amperaje.

#### 4.3.1 DISEÑO DEL TRANPORTADOR POR TORNILLO SIN FIN

Material a Transportar = Pellets

Peso especifico = 
$$590 \frac{kg}{m^3} \cdot \frac{2.2046lb}{1kg} \cdot \frac{(0.3048m)^3}{(1pie)^3} = 36.8 \frac{lb}{pie^3}$$

Angulo de reposo = 36º

Abrasividad = no abrasivo

Corrosividad = no corrosivo

Tamaño max = 1mm

Temperatura de trabajo = 20°C

Capacidad = 
$$500 \frac{kg}{H_R} \cdot \frac{1T}{1000 kg} = 0.5 \frac{ton}{H_R} = 1102.3 \text{lb/hr}$$

Condiciones de operación = 8hr/día

Longitud del gusano = 2m

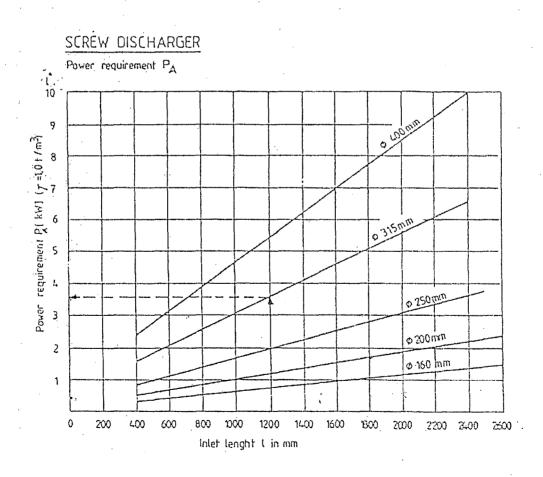
# 1. Capacidad del transportador tornillo sin fin en pie³/hr:

$$C = \frac{Cp}{\gamma} = \frac{0.5 \frac{ton}{H_R} x \frac{2204.6lb}{1ton}}{36.8 \frac{lb}{pie^3}} = 29.95 \frac{pie^3}{H_R}$$

# 2. Hallamos la velocidad del tornillo sin fin: referente a la TABLA 2 ( ANEXO Nº4)de Screw Conveyors of Link Belt

$$V(RPM) = \frac{29.95 \, pie^3 / hr}{2.27 \, pie^3 / hr} = 13.2 RPM$$

# 3. Potencia requerida para la rosca de pasos variables:


Ver SCREW DISCHARGER del SWISS INSTITUTE OF FEED TECHNOLOGY Li = 1475mm

d =120mm

Peso especifico = 590kg/m³ =0.59 Tn/ m³

Potencia requerida:

 $PA(\gamma_1) = 0.45 \text{ KW} = 0.6 \text{ Hp}$ 



4. Potencia requerida para la rosca de pasos continuos Ø120 P=120mm

$$C = 29.95 \text{pie}^3/\text{hr} = 0.01412 \text{m}^3/\text{min}$$

Potencia en el eje del tornillo sin fin:

$$C(cv) = \frac{CxLx\gamma xF}{4500}$$

Donde:

C= Capacidad del transportador(m3/min)

L= Longitud del tornillo sin fin (m)

y=Peso especifico del material a transportar (Kg/m3)

F= Factor del material D1(ANEXO N°3)

4500= constante

Remplazando:

$$C(cv) = \frac{0.01412x0.525x590x0.4}{4500}$$

$$C(cv) = 0.0038877Cv$$

5. Sumando las dos potencias:

$$P_T = P_{PV} + P_{PC}$$

$$P_T = 0.6CV + 0.0038877CV$$

$$P_T = 0.6CV$$

$$P_T = 0.6HP$$

Para diseñar esta transmisión debemos tomar en cuenta los diámetros de los ejes tanto del transportador como el eje del motorreductor, para la selección en forma adecuada del piñón y la catalina.

6. Selección del motorreductor:

Del catálogo seccionado (DELCROSA) (ANEXO Nº5) el motorreductor tendrá las siguientes características:

Motorreductor: 1HP

Velocidad de entrada: 1700 RMP

Velocidad de salida: 42.5 RPM

Reducción: 40/1

Potencia necesaria en el eje = 0.6HP

# 7. Relación de transmisión del transportador (mg):

$$mg = \frac{\text{RPM del Motorectuctor}}{\text{RPM del transportador}}$$

$$mg = \frac{42.5RPM}{13RPM} = 3.27$$

Así mismo el número de dientes del piñón  $Z_1$  = 12 dientes.

#### 8. Número de dientes de la catalina :

$$Z_2$$
= mg x Z1 = 3.27 x 12 = 39.24  $Z_2$ = 39 dientes

# 9. Relación de transmisión correcta será:

$$mg = \frac{Z_2}{Z_1} = \frac{39}{12} = 3.25$$

# TABLA T2

Numero de dientes	Factor	Numero de dientes	Factor	Numero de dientes	Factor
11	1.73	19	1.00	27	0.68
12	1.64	20	0.95	28	0.66
13	1.51	21	0.90	29	0.63
14	1.39	22	0.85	30	0.61
15	1.29	23	0.81	31	0.59
16	1.20	24	0.78	32	0.57
17	1.13	25	0.74	33	0.55
18	1.06	26	0.71	34	0.53

# 10. Potencia de Diseño (HPd):

De la TABLA R2(ANEXO Nº3) el factor de servicio correspondiente para una maquina motriz tipo por B será :

HPd= HP eje del transportador x fs

 $HPd = 0.6 \times 1$ 

HPd = 0.6 HP

# 11. Potencia nominal equivalente (Hpe):

HPe = HPd x factor modificatorio de la potencia a transmitir.

De la TABLA T2 (Pag.69)

Para Z1 = 12 dientes

fmod = 1.64

 $HPe = 0.6 \times 1.64$ 

HPe= 0.984 HP nP= 42.5 RPM

Seleccionamos la cadena FIGURA 1(ANEXO Nº3)

Tomamos:

Cadena ASA-60

# 12. Diámetros de paso:

$$d_P = \frac{P = 3/4"}{sen\left(\frac{180}{Z_1}\right)} = \frac{0.75}{sen\left(\frac{180}{12}\right)}$$

$$d_P = 2.897"\emptyset$$

$$Dc = \frac{P}{sen\left(\frac{180}{Z_2}\right)} = \frac{0.75}{sen\left(\frac{180}{39}\right)}$$

$$Dc = 9.32$$
"Ø

#### Donde:

dp = diámetro de paso del piñón en (pulgadas)

Dc= Diámetro de paso de la catalina en (pulgadas)

P = paso de la cadena (pulgadas)

Z₁= número de dientes del piñón

Z₂= número de dientes de la catalina

# 13. Velocidad tangencial de la cadena (v)

$$V = \frac{\pi x dp x Np}{12} = \frac{\pi x 2.897" x 42.5 RPM}{12}$$

$$V = 32.23 pies/min$$

#### Donde:

V = velocidad tangencial de la cadena en (pies/min)

Np = Número de RPM del piñón

Dp = diámetro de paso del piñón en (pulg).

#### 14. Distancia entre centros (Cp):

Se debe tomar entre 30 y 50 pasos de la cadena asumiendo Cp= 30 pasos longitud aproximada de la cadena en N1 de pasos (Lp).

Lp = 
$$2$$
Cp +  $0.53$  ( $Z_1 + Z_2$ )  
Lp=  $2 \times 30 + 0.53$  ( $12 + 39$ )  
Lp=  $87.03$  pasos

Tomamos Lp= 87 pasos

# 15. Distancia entre centros correcta (c):

$$Lp = 2Cp + \left(\frac{Z_1 + Z_2}{2}\right) + \left(\frac{(Z_1 - Z_2)^2}{4x\pi^2 x Cp}\right)$$

$$87 = 2Cp + \left(\frac{12+39}{2}\right) + \left(\frac{(12-39)^2}{4x\pi^2 x Cp}\right)$$

$$Cp^2 - 30.75Cp + 9.235 = 0$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$a = 1$$

$$b = -30.75$$

$$c = 9.235$$

$$x_{1,2} = \frac{-(-30.75) \pm \sqrt{(-30.75)^2 - 4(1)(9.235)}}{2(1)}$$

$$x_{1,2} = 30.447$$

$$Cp = 30.447 \, pasos$$

La distancia entre centros correcta será:

$$C = Cp xp = 30.447 \times 3/4$$
"  
 $C = 22.8$ "

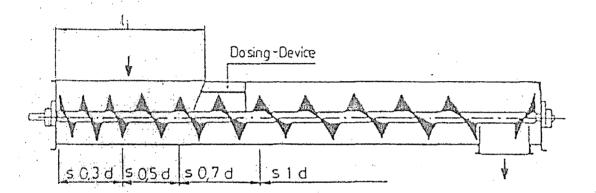
Conclusión se debe usar:

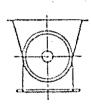
Cadena ASA-60 (Simple)

Con ruedas dentadas de 12 y 39 dientes

Longitud de cadena 87 pasos.

# 4.3.2 Cálculo de la hélices :


# Los pasos son determinados según SWISS INSTITUTE OF FEED TECHNOLOGY de la siguiente manera :


 $P1 = 0.3d = 0.3 \times 120mm = 36mm$ 

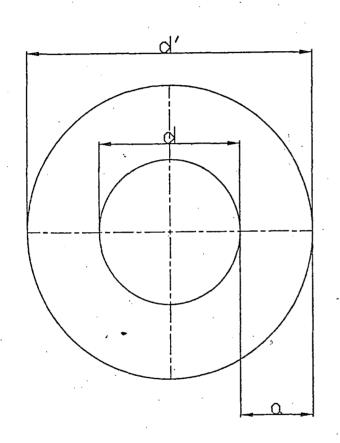
 $P2 = 0.5d = 0.5 \times 120mm = 60mm$ 

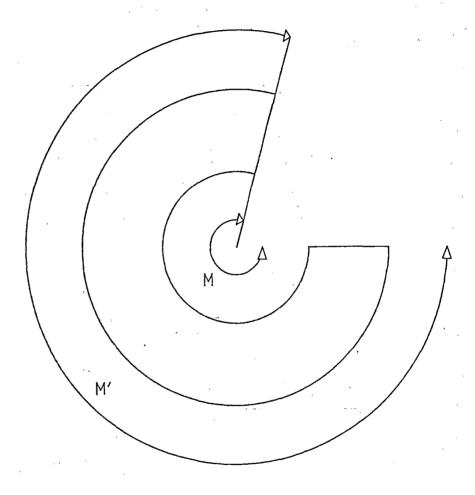
 $P3 = 0.7d = 0.7 \times 120mm = 84mm$ 

 $P4 = 1 d = 1 \times 120 mm = 120 mm$ 






Long 1 =1475 x 0.25 =368.75mm


Long  $2 = 1475 \times 0.35 = 516.25 \text{mm}$ 

Long 1 =1475-long1-long2 =590mm

Long 1 =2000-long1-long2-lomg3 =525mm

# TORNILLO SIN FIN





DIBUJADO:

**GBERROSPID** 

PROY.:

CAD

PROYECTO:

TRANSPORTADOR POR TORNILLO SIN FIN

PROYECTO:

GBERRUSPID

# PLANCHA DE 1/16"; CEDULA 40 DE EJE

# 1. Primer Paso:

$$P = 36mm$$

$$d = 60mm$$

$$D = 120mm$$

$$M = \sqrt{\Pi^2 x d^2 + P^2}$$

$$M = \sqrt{\Pi^2 x 60^2 + 36^2}$$

$$M = 191.9 \ mm \approx 192 \ mm$$

$$M' = \sqrt{\Pi^2 x 120^2 + P^2}$$

$$M' = \sqrt{\Pi^2 x 120^2 + 36^2}$$

$$M' = 378.7 mm$$

$$R = \frac{M \times a}{M' - M}$$

$$a = 120-60/2 = 30mm$$

$$R = \frac{192 \times 30}{378.7 - 192}$$

$$R=30.85\approx 31~mm$$

$$\phi_i = 61.7 mm$$

$$\phi_e = 2 x a + 2 x R$$

$$\phi_e = 2 \times 30mm + 2 \times 30.85mm$$

$$\phi_e = 121.7mm$$

$$\phi_e = 122mm$$

# 2.Segundo Paso:

$$P = 60mm$$

$$d = 60mm$$

$$D = 120mm$$

$$M = \sqrt{\Pi^2 x d^2 + P^2}$$

$$M = \sqrt{\Pi^2 x 60^2 + 60^2}$$

$$M = 197.8mm$$

$$M' = \sqrt{\Pi^2 x D^2 + P^2}$$

$$M' = \sqrt{\Pi^2 x 120^2 + 60^2}$$

$$M' = 381.7mm$$

$$R = \frac{M x a}{M' - M}$$

$$a = 120-60/2 = 30mm$$

$$R = \frac{197.8 \times 30}{381.7 - 197.8}$$

$$R = 32.267mm$$

$$\phi_i = 32.267x2 = 64.53$$

$$\phi_i = 64.5 mm$$

$$\phi_e = 2 x a + 2 x R$$

$$\phi_e = 2 \times 30 \text{ mm} + 2 \times 32.267 \text{mm}$$

$$\phi_e = 124.5 mm$$

# 3. Terser Paso:

$$P = 84mm$$

$$d = 60mm$$

$$D = 120mm$$

$$M = \sqrt{\Pi^2 x d^2 + P^2}$$

$$M = \sqrt{\Pi^2 x 60^2 + 84^2}$$

$$M = 205.36mm$$

$$M' = \sqrt{\Pi^2 x D^2 + P^2}$$

$$M' = \sqrt{\Pi^2 x 120^2 + 84^2}$$

$$M' = 385.24mm$$

$$R = \frac{M \times a}{M' - M}$$

$$a = 120-60/2 = 30mm$$

$$R = \frac{206.36 \times 30}{386.24 - 206.36}$$

$$R = 34.42 \ mm$$

$$\phi_i = 34.42x2 = 68.8mm$$

$$\phi_i = 68.8 mm$$

$$\phi_e = 2 x a + 2 x R$$

$$\phi_e = 2 \times 30 \text{ mm} + 2 \times 34.42 \text{mm}$$

$$\phi_e = 128.84mm$$

# 4.Cuarto Paso:

$$P = 120mm$$

$$d = 60mm$$

$$D = 120mm$$

$$M = \sqrt{\Pi^2 x d^2 + P^2}$$

$$M = \sqrt{\Pi^2 x 60^2 + 120^2}$$

$$M = 223.45mm$$

$$M = 223.5mm$$

$$M' = \sqrt{\Pi^2 x D^2 + P^2}$$

$$M' = \sqrt{\Pi^2 x 120^2 + 120^2}$$

$$M' = 395.628mm$$

$$R = \frac{M \times a}{M' - M}$$

$$a = 120-60/2 = 30mm$$

$$R = \frac{223.45 \times 30}{395.628 - 223.45}$$

$$R = 38.9335mm$$

$$R = 39mm$$

$$\phi_{i} = 78$$

$$\phi_e = 2 x a + 2 x R = 2 x 30 mm + 2 x 39 mm = 138 mm$$

#### 4.4 TAMBOR ROCEADOR

Estas máquinas generalmente se emplean justo después del cernido del pellets, puesto que al permitir agregar los líquidos zarandeados, el producto conseguirá más consistencia en su formulación.

Las cartelas interiores del tambor roceador facilitan la buena distribución del producto ..

#### 4.4.1 DISEÑO DEL TAMBOR ROCEADOR

Para un buen roceado este debe funcionar a 9 rpm TABLA R1

# TABLA R1

Tamaño diámetro x longitud	Kg. / vueltas	Capacidad Kg./HR.	RPM	HP
400 x 900	0.8	450	8 ½ - 9	0.5
590 x 1210	0.926	500 ·	8 1/2- 9	1
457.2 x 1000	1.25	600	7 1/2 - 8	1
610 x 1829	1.56	750	7 1/2 - 8	1 1/2
762 x 2438	2	1,000	7 1/2 - 8	2
914 x 4572	6.4	2,500	6 – 7	5
1219 x 6096	12.8	5,000	6 - 7	10
1524 x 7620	25.6	10,000	6-7	20

Decimos:

Producto = 50 Kg

Pmáquina = 80 Kg

 $Ft = (Pm\acute{a}quina + Pproducto)$ 

Ft = 130 Kgf / 4 = 32.5 Kgf = 318.825 N = 0.3188 KN

Seleccionaremos un tipo de rodamiento rígido de bolas con obturación en tipo 2RS(jebe) (ANEXO Nº5) para eliminar totalmente la posibilidad de ingreso de agua, polvo o cualquier otro contaminante que perjudique la acción lubricante de la grasa.

A la vez que sirve como retenedor de grasa del rodamiento.

El rodamiento como consecuencia es lubricado de por vida.

La selección seria la siguiente:

d = 12mm; D =28mm (otros datos en ANEXO N°5)

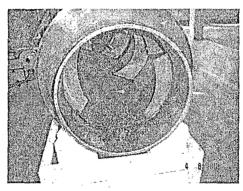
C = 5070N = 5.07 KN

C = Capacidad de carga dinámica

L10 = Vida Nominal

t = Tiempo

p = Carga aplicada en el punto ; p = Rodamiento de bolas 3,


p = Rodamiento de rodillos 10/3

$$L10 = \left(\frac{C}{Ft}\right)^p$$

$$L10 = \left(\frac{5.07 \, KN}{0.3188 \, KN}\right)^3 = 4022.249 \text{ millones de revoluciones}$$

$$t = \left(\frac{4022.249x10^6 revoluciones}{71.76rpm}\right) = 934190.12horas$$

Según recomendación SKF es suficiente de 20000 a 30000 horas



#### 1. Selección del motorreductor:

Motorreductor = 1HP

Velocidad de entrada = 1700

Velocidad de salida = 53

Para diseñar la transmisión del roceador debemos seleccionar en forma adecuada el piñón y la catalina.

# 2. Relación de transmisión (mg):

$$mg = \frac{\text{RPM del Motorectuctor}}{\text{RPM del transportador}}$$

$$mg = \frac{53}{9} = 5.9$$

Asumimos el número de dientes del piñón:

 $z_1 = 18$  dientes

# 3. Número de dientes de la catalina (z₂):

$$z_2 = mg \times z_1 = 53.9 \times 18 \text{ dientes}$$

 $z_2 = 106.2 dientes$ 

# 4. La relación de transmisión correcta será:

$$mg = \frac{Z_2}{Z_1} = \frac{106}{18} = 6$$

De la TABLA R2(ANEXO N°3) el factor de servicio correspondiente para una maquina motriz tipo B , fs = 1.0

# 5. Potencia de diseño (HPd):

 $HPd = HP \times fs$ 

 $HPd = 1HP \times 1 = 1 HP$ 

De la FIGURA 1 (ANEXO N°3) para H = 1HP, np = 53 RPM.

Seleccionamos la cadena:

ASA - 60 (simple)

#### 6. Diámetros De Paso:

$$d_{P} = \frac{P}{sen\left(\frac{180}{Z_{1}}\right)} = \frac{3/4"}{sen\left(\frac{180}{18}\right)}$$

$$d_P = 4.32$$
"



$$Dc = \frac{P}{sen\left(\frac{180}{Z_2}\right)} = \frac{3/4}{sen\left(\frac{180}{106}\right)}$$

$$Dc = 25.3$$
"

Donde:

dp = diámetro de paso del piñón en (pulgadas)

Dc= Diámetro de paso de la catalina en (pulgadas)

P = paso de la cadena (pulgadas)

Z₁= número de dientes del piñón

Z₂= número de dientes de la catalina

# 7. Velocidad tangencial de la cadena (v):

$$V = \frac{\pi x dp x Np}{12} = \frac{\pi x 4.32'' x 53 RPM}{12}$$

$$V = 59.9 pies / min$$

Donde:

V = velocidad tangencial de la cadena en (pies/min)

Np = Número de RPM del piñón

Dp = diámetro de paso del piñón en (pulg).

# 8. Distancia entre centros (Cp):

Se debe tomar entre 30 y 50 pasos de la cadena asumiendo Cp= 30 pasos longitud aproximada de la cadena en N1 de pasos (Lp).

$$Lp = 2Cp + 0.53 (Z_1 + Z_2)$$

Lp= 125.75pasos

Tomamos Lp= 126 pasos

# 9. Distancia entre centros correcta (c)

$$Lp = 2Cp + \left(\frac{Z_1 + Z_2}{2}\right) + \left(\frac{(Z_1 - Z_2)^2}{4x\pi^2 x Cp}\right)$$

$$115 = 2xCp + \left(\frac{18 + 106}{2}\right) + \left(\frac{(18 - 106)^2}{4x\pi^2 xCp}\right)$$

$$Cp^2 - 26.5Cp + 56.81 = 0$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$a=1$$

$$b = -26.5$$

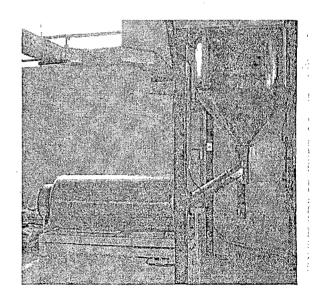
$$c = 56.81$$

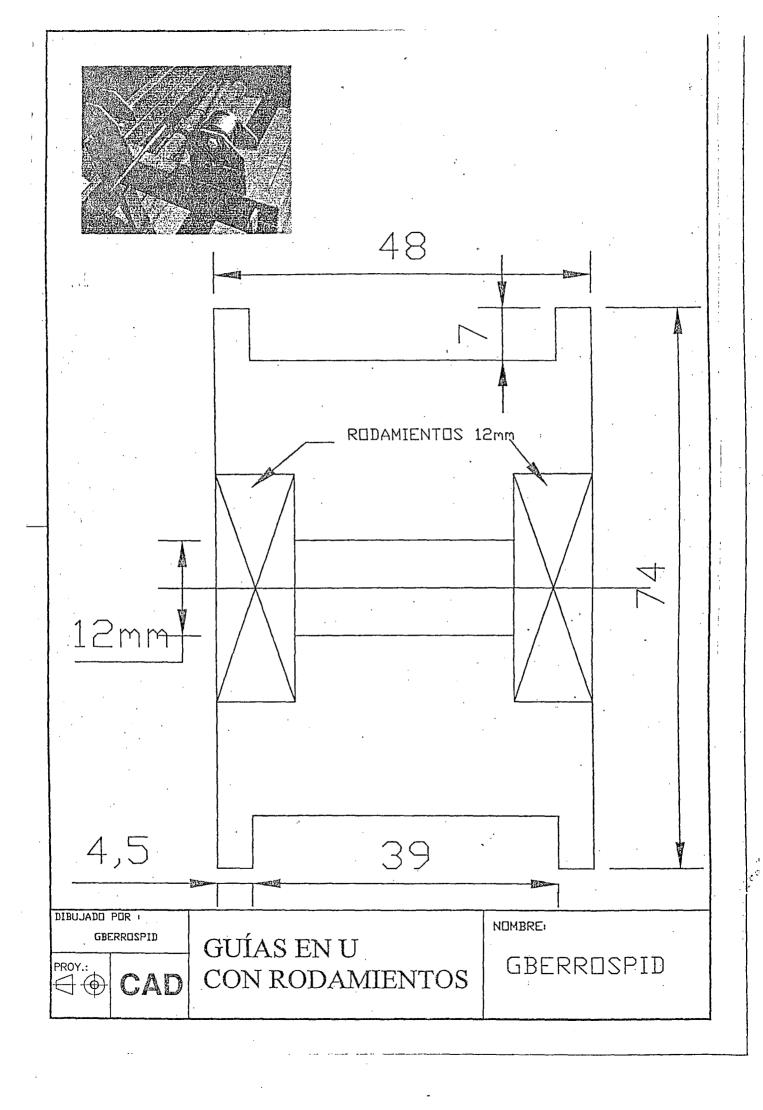
$$x_{1,2} = \frac{-(-26.5) \pm \sqrt{(-26.5)^2 - 4(1)(56.81)}}{2(1)}$$

$$x_{1,2} = 24.14$$

$$Cp = 24.14 \, pasos$$

La distancia entre centros correcta será:


$$C = Cp xp = 26.14 \times 3/4$$
"


$$C = 18"$$

Conclusión se debe usar:

Cadena ASA - 60 (Simple)

Con ruedas dentadas de 18 y 106 dientes Longitud de cadena 126 pasos.





#### 4.5 VENTILADOR

#### 4.5.1 OBJETIVO

Determinar los parámetros característicos de un ventilador centrífugo, como son: la altura real ( $H_R$ ), potencia (Hidráulica y al eje), eficiencia Hidráulica ( $\eta_H$ ) y la eficiencia total ( $H_T$ ) con respecto a un caudal que nos brinda el giro del motor.

#### 4.5.2 FUNDAMENTO TEÓRICO

Los ventiladores pertenecen al grupo de las máquinas hidráulicas, ya que la variación de presión a la entrada y a la salida del ventilador es menor del 8 %, así el aire se puede considerar como un fluido incompresible.

Los ventiladores son considerados como tales cuando el incremento de presión es menor de 1000 mmH20 (mm.c.a), razón por la cual se incluyen estos equipos en el grupo de las Máquinas Hidráulicas. Cuando la máquina le comunica al aire un gradiente de presión mayor de 1000 mmH₂0 estaremos en presencia de una Máquina Térmica (Compresores).

#### Potencia al eje:

El objetivo de un ventilador es incrementar la presión del fluido que transporta, a expensas de un aporte de energía mecánica.

Una parte de esa energía se emplea para vencer las pérdidas externas: rozamiento en cojinetes, rozamiento del fluido contra las paredes externas del rotor, etc Estas pérdidas representan, generalmente un 5 Ó 6 % de la potencia en el eje.

Esta potencia interna es la que se aprovecha para incrementar la carga del fluido y vencer las pérdidas de carga internas en el rotor y estator.

#### Potencia hidráulica:

Si las juntas de entrada y de salida tienen el mismo diámetro, no habrá variación de velocidad del fluido, antes y después del ventilador.

En estas condiciones la potencia interna de un ventilador (máquina en la cual el fluido circula con un peso específico prácticamente constante) se expresa de la siguiente forma:

#### Rendimiento de un ventilador:

La potencia transmitida al fluido por medio del rotor permite, en teoría, elevar el caudal del fluido a la altura Ht. De hecho una parte de la potencia se pierde en vencer los rozamientos del fluido contra las paredes de los canales y las debido a las turbulencias.

#### **Ventilador Centrífugo:**

Se llaman ventiladores centrífugos las máquinas para el mezclado de gases puros y mezclas de gases con materiales sólidos menudos que poseen un grado de elevación de la presión no mayor de 1,15 con la densidad del flujo de l,2 kg/m3. El índice característico de los ventiladores centrífugos es la elevación de la presión a cuenta del trabajo de la fuerza centrífuga del gas, que se desplaza en la rueda de trabajo del centro de la periferia.

Al elevar insignificativamente la presión del gas se puede menospreciar la variación de su estado termodinámico. Por esta razón a los ventiladores centrífugos se les puede aplicar la teoría de la máquina para el medio incompresible.

Los ventiladores centrífugos están ampliamente divulgados en la industria y en la economía.

Los ventiladores centrífugos o radiales, como también suele llamárseles, son aquellos que producen el flujo de aire en forma paralela al radio de rotación y que basan su funcionamiento en el principio elemental de la fuerza Centrífuga de donde toman su nombre.

# 4.5.3 CÁLCULO DEL VENTILADOR PROTOTIPO

$$De = 178$$

$$Dc = 28$$

$$D_{1i} = 170$$

$$D_{1e} = 252$$

$$D_2 = 678$$

$$D_{2e} = 700$$

$$\frac{D_2}{Ds} = \frac{678}{178} = 3,809$$

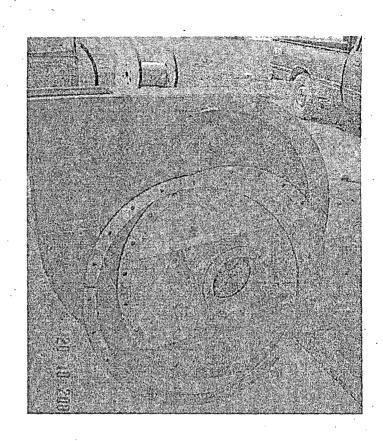
$$D_2 / D_{1e} = 2,7$$

$$Dm = 455$$

$$b_{1e} = 35$$

$$b_2 = 35$$

$$B_1 = 72$$


$$B_2=48$$

$$Z_1 = 12$$

$$Z_2 = 36$$

$$e = 0.9 mm$$

$$N = 3500 RPM$$



# Asumiendo valores de eficiencias y constantes de diseño:

$$\eta_V = 0.97$$

$$\eta_m = 0.98$$

$$\eta_h = 0.78$$

$$\eta_T = 0.97 \, x \, 0.98 \, x \, 0.78 = 0.74$$

$$Kmo = 0.26$$

#### 4.5.3.1 Parámetro de diseño:

1. Determinación de la velocidad periférica en la sección de entrada.

$$U_{1} = \pi x D_{1e} x N$$

$$U_{1} = \pi x 252 mm x 3500 \frac{rev}{min} x \frac{1m}{1000 mm} \cdot \frac{1 mit}{60 sg}$$

$$U_{1} = 46.18 m/s$$

2. El factor de estrechamiento para la sección de entrada

$$fe_{1} = \frac{\pi \times D_{1e}}{\pi \times D_{1e} - \frac{Z_{1}xe}{Sen \ B_{1}}} = \frac{\pi \times 252}{(\pi \times 252 - \frac{12\times0.9}{sen \ 72})} = 1.015$$

3. Calculo de la velocidad meridiana antes de la sección de entrada.

$$Cm_0 = Kmo \sqrt{2x9.81x \frac{H}{1.2}}$$
 $Cm_0 = 0.26 \sqrt{2x9.81x \frac{1101.5}{1.2}}$ 
 $Cm_0 = 34.89 \ m/s$ 

4. Proyección de la velocidad absoluta en la dirección tangencial antes de la sección de entrada.

$$CU_O = U_1 - \frac{Cm_O}{Tg B_1} = 46.18 \frac{m}{s} - \frac{34.89}{Tg 72} m/s$$
  
 $CU_O = 34.84 m/s$ 

5. Calculo de la velocidad relativa respecto al alabe antes de la sección de entrada del rotor.

$$Wo = \sqrt{Cmo^2 + (U_1 + CU_0)^2}$$

$$Wo = \sqrt{(34,89m/s)^2 + (46,18m/s - 34,84m/s)^2}$$

$$Wo = 36,69m/s$$

6. Calculo de la velocidad antes de la sección de entrada.

$$Co = \sqrt{CUo^2 + Cmo^2}$$

$$Co = \sqrt{(34,84m/s)^2 + (34,89m/s)^2}$$

$$Co = 49,31m/s$$

7. Determinación del caudal de descarga.

$$Q = Cm_0 x \pi x D_{1e} x b x \eta_v$$

$$Q = 34,89 \frac{m}{s} x \pi x 252 mm x 35 mm x 0.97 \frac{1m^2}{(1000mm)^2} x \frac{60 sg}{1 mit}$$

$$Q = 56,27m^3 / min$$

8. Calculo de la velocidad del flujo en la boca de entrada.

$$Ce = \frac{4xQ}{\pi x De^2} = \frac{4x56,27m^3 / \min}{\pi x (178 mm)^2}$$

$$Ce = 37,69 m/s$$

9. El valor de ε

$$\varepsilon = \frac{Ce}{\sqrt{2xg \, x \, H}} = \frac{37,69m/s}{\sqrt{2 \, x \, 9.81m/s^2 \, x \, 1101,5m/1.2}} = 0.28$$

10. Determinación del valor de la velocidad meridiana en la sección de entrada

$$Cm_1 = (Cm_0 \ x \ fe_1)$$
  
 $Cm_1 = 34,89 \ m / sx1,015$   
 $Cm1 = 35,41 \ m / s$ 

11. Proyección de la velocidad absoluta en la dirección tangencial en la sección de entrada.

$$CU_1 = U_1 - \frac{C_e}{Tg B_1} = 46.18 \frac{m}{s} - \frac{37.69}{Tg 72} m/s$$
  
 $CU_1 = 34.67 m/s$ 

12. Calculo de la velocidad relativa respecto al alabe en la sección de entrada del rotor.

$$W_1 = \sqrt{Cm_1^2 + (U_1 + CU_1)^2}$$

$$W_1 = \sqrt{(35.41m/s)^2 + (46.18m/s - 34.67m/s)^2}$$

$$W_1 = 37.23m/s$$

13. Calculo de la velocidad en la sección de entrada.

$$C_1 = \sqrt{CU_1^2 + Cm_1^2}$$

$$C_1 = \sqrt{(34,67m/s)^2 + (35,41m/s)^2}$$

$$C_1 = 49,56m/s$$

14. Determinación de la velocidad meridiana después de la sección de salida.

$$Cm_3 = \frac{Q}{\eta_v x \pi x D_2 x b} = \frac{1mit}{60 s} \frac{56,27 m^3 / \text{min}}{0.97 x \pi x 678 mm x 35 mm} \cdot \frac{(1000 mm^2)}{1 m^2}$$

$$Cm_3 = 12,97 m/s$$

15. Determinación de la velocidad periférica en la sección de salida.

$$U_2 = \pi x D_2 x N = \pi x 678 mm x 3500 \frac{rev}{min} x \frac{1m}{1000 mm} \frac{1mt}{60 sg}$$

$$U_2 = 124.2499 m/s$$

16. El factor de resbalamiento para la sección de salida.

$$fe_2 = \frac{\pi x D_2}{\pi x D_2 - (Z_1 + Z_2)x \frac{e}{Sen (B_2)}}$$

$$fe_2 = \frac{\pi x 678 \ mm}{\pi x 678 \ mm - (12 + 36)x \frac{0.9}{sen (48)}} = 1.028$$

17. Proyección de la velocidad absoluta en la dirección tangencial después de la sección de salida.

$$CU_3 = U_2 - \frac{Cm_3}{Tg B_2} = 124,249 \frac{m}{s} - \frac{12,97}{Tg 48} m/s$$
  
 $CU_3 = 112,57m/s$ 

18. Calculo de la velocidad relativa respecto al alabe antes de la sección de salida del rotor.

$$W_3 = \sqrt{Cm_3^2 + (U_2 + CU_3)^2}$$

$$W_3 = \sqrt{(12,97m/s)^2 + (124,249m/s - 112,57m/s)^2}$$

$$W_3 = 17,454m/s$$

19. Calculo de la velocidad después de la sección de salida.

$$C_3 = \sqrt{CU_3^2 + Cm_3^2}$$

$$C_3 = \sqrt{(112,57m/s)^2 + (12,97m/s)^2}$$

$$C_3 = 113,31m/s$$

20. Determinación del valor de la velocidad meridiana en la sección de salida.

$$Cm_2 = (Cm_3 x fe_2)$$
  
 $Cm_2 = 12,97 m / sx1,028$   
 $Cm_2 = 13,33 m / s$ 

21. Proyección de la velocidad absoluta en la dirección tangencial en la sección de salida.

$$CU_2 = U_2 - \frac{Cm_2}{Tg B_2} = 124,25 \frac{m}{s} - \frac{13,33}{Tg 48} m/s$$
  
 $CU_2 = 112,25 m/s$ 

22. Calculo de la velocidad relativa respecto al alabe en la sección de salida del rotor.

$$W_2 = \sqrt{Cm_2^2 + (U_2 + CU_2)^2}$$

$$W_2 = \sqrt{(13,33m/s)^2 + (124,249m/s - 112,25m/s)^2}$$

$$W_3 = 17,935m/s$$

23. Calculo de la velocidad en la sección de salida.

$$C_2 = \sqrt{CU_2^2 + Cm_2^2}$$

$$C_2 = \sqrt{(112,25m/s)^2 + (13,33m/s)^2}$$

$$C_2 = 113,287m/s$$

24. Calculo de la altura de Euler

$$HR_{\infty} = (U_2 \times CU_2 - U_1 \times CU_1)/g = (124,2499 \frac{m}{s} \times 112,25 \frac{m}{s} - 46,18 \frac{m}{s} \times 34,67 \frac{m}{s})/9.81 m/s^2$$
 
$$HR_{\infty} = 1258,51192 m$$

25. Calculo de los momentos estáticos.

$$S_{1} = \frac{D_{2}^{2} - D_{1e}^{2}}{8} = \frac{(678mm)^{2} - (252mm)^{2}}{8} = 49522,5 \ mm^{2}$$

$$S_{2} = \frac{D_{2}^{2} - Dm^{2}}{8} = \frac{(678mm)^{2} - (455mm)^{2}}{8} = 31582,375 \ mm^{2}$$

$$Zs = Z1xS1 + Z2xS2$$
  
 $Zs = 12x49522,5mm^2 + 36x31582,375mm^2$   
 $Zs = 1731236,5mm^2$ 

26. El valor de la disminución de altura debido al efecto de Vortice.

$$P = \frac{0.6 (1 + sen(B_2) \left(\frac{D_2^2}{4}\right)}{(S_1 + Z_1 + Z_2 x S_2)}$$

$$P = \frac{0.6 (1 + sen 48) \left(\frac{678^2}{4}\right)}{(49522.5 \times 12 + 36 \times 31582.375)}$$

$$P = 0.069469$$

27. Determinación del factor de resbalamiento.

$$\mu = \frac{1}{(1+p)} = \frac{1}{1+0.069469} = 0.93508$$

28. Determinación de la altura teórica.

$$H_{th} = H_{th\infty} x \mu = 1258,51192m x 0.93508 = 1176,8 m$$

29. Determinación de la altura efectiva.

$$H = H_{Th} x \eta_h = 1176,8 x 0.78$$
  
 $H = 917,9m$   
 $H(mm) = H x 1.2 = 1101,5 mmH_2O$ 

30. Cálculo de algunos parámetros de diseño

$$Nq = \frac{N\sqrt{\frac{Q}{60}}}{H^{3/4}} = \frac{3500 \ x \sqrt{\frac{50,27m^3 / \min}{60}}}{(917,9m)^{3/4}}$$

$$Nq = 20,325$$

$$\frac{Kmo}{\varepsilon} = \frac{0.26}{0.28} = 0.93$$

31. Cálculo de la Potencia del eje.

$$P_{eje} = \frac{H \ (mmH_2O) \times Q}{60 \ \eta_t \ 102}$$

$$P_{eje(kw)} = \frac{1101.5 \ mmH_2O}{102 \times 0.74} \times \frac{56.27 m^3 / \min}{60} = 13,686 \ kw$$

$$P_{eje(Hp)} = \frac{13,686}{0.746} = 18,3459 Hp$$

- 4.5.3.2 Determinación de los triángulos de velocidades en la sección de entrada:
- 1) Para el punto inmediatamente anterior a la sección de entrada:

$$U1 = 46,18$$
m/s

$$Cmo = 34,89m/s$$

$$Co = 49,31 \text{m/s}$$

$$\beta_0 = 72^{\circ}$$

$$\alpha_0 = 45^{\circ}$$

2) Para el punto en la sección de entrada:

$$U_1 = 46,18$$
m/s

$$Cm_1 = 35,41 \text{m/s}$$

$$CU_1 = 34,67 \text{m/s}$$

$$C_1 = 49,56 \text{m/s}$$

$$W_1 = 37,23 \text{m/s}$$

$$\beta_1 = 72^{\circ}$$

$$a_1 = 46^{\circ}$$

# 4.5.3.3 Determinación De Los Triángulos De Velocidades En La Sección De Salida:

# 1)Para el punto en la sección de salida:

 $U_2 = 124,249 \text{m/s}$ 

 $Cm_2 = 13,33m/s$ 

 $CU_2 = 112,25 \text{m/s}$ 

 $C_2 = 113,287 \text{m/s}$ 

 $W_2 = 17,935 \text{m/s}$ 

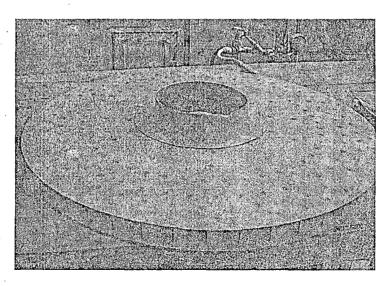
 $\beta_2 = 48^{\circ}$ 

 $\alpha_2 = 7^{\circ}$ 

# 2)Para el punto inmediatamente posterior a la sección de salida:

 $U_2 = 124,249/s$ 

 $Cm_3 = 12,97m/s$ 


 $CU_3 = 112,57 \text{m/s}$ 

 $C_3 = 113,31 \text{m/s}$ 

 $W_3 = 17,454 \text{m/s}$ 

 $\beta_3 = 48^{\circ}$ 

 $a_3 = 7^{\circ}$ 



# 4.5.4 CÁLCULO DEL VENTILADOR DE ASPIRACIÓN

# H = 180 mm H₂O

 $Q = 50 \text{ m}^3/\text{min}$ 

# 4.5.6.1 Parámetros de diseño:

H = 180 mm

 $Q = 50 \text{ m}^3/\text{min}$ 

N = 1750 RPM

 $Ng = 37,27 (RPM, m^3/s, m)$ 

# Valores asumidos del ventilador de prueba:

 $\varepsilon = 0.3$ 

 $\eta_{V} = 0.98$ 

 $\eta_{\rm m} = 0.98$ 

 $\eta_{h} = 0.75$ 

 $\eta_{T} = 0.72$ 

 $B_1 = 72^{\circ}$ 

 $B_2 = 48^{\circ}$ 

 $Z_1 = 12$  álabes

 $Z_2 = 36$  álabes

E = 1.5 mm

# Valores iniciales:

$$D_2/D_1 = 2,114$$

Km, 
$$e/\epsilon = 0.9$$

 $Km_1 = 0.27$ 

# Cálculos:

#### 1. Cálculo de la velocidad de entrada:

$$Ce = \varepsilon \ x \sqrt{2x9.81xH(m)}$$
 $Ce = 0.3 \ x \sqrt{2x9.81 \ x \frac{180}{1.2}}$ 
 $Ce = 16.275 \ m/s$ 

# 2.Diámetro del cubo:

DC = 60mm por tablas

#### 3.Determinación del diámetro de la boca de entrada

$$De = \sqrt{\frac{4xQ}{\eta_v \ x \ Ce \ x \ \pi} + Dc^2}$$

$$De = \sqrt{\frac{4x50 \frac{m^3}{\min} \cdot \frac{1 mit}{60 sg}}{0.98 \times 16.275 \frac{m}{sg} \times \pi} + (60 \ mm)^2 \cdot \frac{1m^2}{(1000 \ mm)^2}}$$

$$De = 0.265 \ m = 265 mm$$

#### 4. Determinación del diámetro de entrada al rodete

$$D_{1e} = De \times 1.0717$$
 $D_{1e} = 265 \text{ mm} \times 1.0717$ 
 $D_{1e} = 284 \text{ mm}$ 

# 5. Determinación de la velocidad periférica para la sección de entrada

$$U_1 = \pi x D_1 ex N$$

$$U_1 = \pi x 284mmx 1750 \frac{rev}{\min t} \cdot \frac{1mt}{60g} \cdot \frac{1m}{1000m} = 26.02 \text{m/sg}$$

6.Determinación del valor de la velocidad meridiana en la sección de entrada

$$Cm_1 = C_e x \frac{Km}{e}$$
 $Cm_1 = 16,275 \frac{m}{s} x 0,9$ 
 $Cm_1 = 14.64 m/s$ 

7. Factor de resbalamiento para la sección de entrada

$$fe_{1} = \frac{\pi x D_{1}e}{(\pi x De_{1} - Z_{1} x \frac{e}{Sem B_{1}})}$$

$$fe_{1} = \frac{\pi x 284}{\left(\pi x 284 - 12 x \frac{1.5}{sen 72}\right)} = 1.0217$$

8. Determinación de la velocidad meridiana antes de la sección de entrada

$$Cm_0 = \frac{Cm_1}{fe_1} = \frac{14.64 \, m/s}{1.0217}$$
 $Cm_0 = 14.33 \, m/s$ 

9. Proyección de la velocidad absoluta en la dirección tangencial antes de la sección de entrada.

$$CU_o = U_1 - \frac{Cm_o}{Tg B_1} = 26,02 \frac{m}{s} - \frac{14,33}{Tg 72} m/s$$
  
 $CU_0 = 21,36 m/s$ 

10. Calculo de la velocidad antes de la sección de entrada.

$$Co = \sqrt{Cmo^{2} + CUo^{2}}$$

$$Co = \sqrt{(14,33m/s)^{2} + (21,36m/s)^{2}}$$

$$Co = 25,72m/s$$

11. Calculo de la velocidad relativa respecto al alabe antes de la sección de entrada del rotor.

$$Wo = \sqrt{Cmo^{2} + (U_{1} + CU_{0})^{2}}$$

$$Wo = \sqrt{(14,33m/s)^{2} + (26,02m/s - 21,36m/s)^{2}}$$

$$Wo = 15,0687m/s$$

12. Proyección de la velocidad absoluta en la dirección tangencial

$$CU_1 = U_1 - \frac{Cm_1}{Tg B_1} = 26.02 \frac{m}{s} - \frac{14.64 \frac{m}{s}}{Tg 72}$$
  
 $CU_1 = 21.26 \text{ m/s}$ 

13. Calculo de la velocidad en la sección de entrada.

$$C_1 = \sqrt{CU_1^2 + Cm_1^2}$$

$$C_1 = \sqrt{(21,26m/s)^2 + (14,64m/s)^2}$$

$$C_1 = 25,813m/s$$

14. Calculo de la velocidad relativa respecto al alabe en la sección de entrada del rotor.

$$W_1 = \sqrt{Cm_1^2 + (U_1 + CU_1)^2}$$

$$W_1 = \sqrt{(14,64m/s)^2 + (26,02m/s - 21,26m/s)^2}$$

$$W_1 = 15,39m/s$$

# 15. Determinación del ancho del alabe en la sección de entrada

$$b_{1} = \frac{Q}{Cm_{0} \times D_{1}ex \pi \times \eta_{v}}$$

$$b_{1} = \frac{50 \text{ m}^{3}/\text{min.} \cdot \frac{1mit}{60 \text{ sg}}}{14.33 \frac{m}{s} \times 284 \text{ mm.} \cdot \frac{1m}{1000 \text{ mm}} \times \pi \times 0.98}$$

$$b_{1} = 67 \text{ mm}$$

# 16. Cálculo del diametro exterior del rodete:

$$D_{2} = \frac{D_{2}}{D_{1}} \times D_{1e}$$

$$D_{2} = 2,114 \times 284 \text{ mm}$$

$$D_{2} = 600 \text{mm}$$

# 17. Cálculo de la velocidad periférica en la sección de salida

$$U_{2} = \frac{U_{1} \times D_{2}}{D_{1v}}$$

$$U_{2} = \frac{26,02 \, m/s \times 600 \, mm}{284 \, mm}$$

$$U_{2} = 54.97 \, m/s$$

# 18. Determinación de la velocidad meridiana después de la sección de salida

$$Cm_{3} = \frac{Q}{\eta v \ x \pi x D_{2} x b}$$

$$Cm_{3} = \frac{50 \frac{m^{3}}{mit} \cdot \frac{1 mit}{60 sg}}{0.98 \ x \pi \ x \ 600 \ mm \ x \ 67 \ mm} \cdot \frac{(1000 \ mm)^{2}}{1m^{2}}$$

$$Cm_{3} = 6.73 \ m/s$$

19. Proyección de la velocidad absoluta en la dirección tangencial después de la sección de salida.

$$CU_{3} = U_{2} - \frac{Cm_{3}}{Tg B_{2}}$$

$$CU_{3} = 54.97 \frac{m}{s} - \frac{6,73m/s}{Tg 48^{\circ}}$$

$$CU_{3} = 48,91 m/s$$

20. Calculo de la velocidad después de la sección de salida.

$$C_3 = \sqrt{Cm_3^2 + CU_3^2}$$

$$C_3 = \sqrt{(6,73m/s)^2 + (48,91m/s)^2}$$

$$C_3 = 49,37m/s$$

21. Calculo de la velocidad relativa respecto al alabe despues de la sección de salida del rotor.

$$W_3 = \sqrt{Cm_3^2 + (U_2 + CU_3)^2}$$

$$W_3 = \sqrt{(6,73m/s)^2 + (54,97m/s - 48,91m/s)^2}$$

$$W_3 = 9,056m/s$$

22. Factor de resbalamiento para la sección de salida

$$fe_{2} = \frac{\pi x D_{2}}{\pi x D_{2} - \frac{(Z_{1} + Z_{2})xe}{sen \beta_{2}}}$$

$$fe_2 = \frac{\pi x 600 mm}{\pi x 600 mm - \frac{(12+36)}{sen 48^{\circ}} x1.5}$$

$$fe_2 = 1,0542$$

23. Determinación de la velocidad meridiana en la sección de salida.

$$C_{m2} = Cm_3 x fe_2$$
  
 $C_{m2} = 6,73 \text{ m/sg } x 1.0542$ 

- $C_{m2} = 7,09 \text{ m/sg}$
- 24. Proyección de la velocidad absoluta en la dirección tangencial en la sección de salida.

$$CU_2 = U_2 - \frac{Cm_2}{Tg \ \beta_2}$$
 $CU_2 = 54,97 \ m/sg \frac{7,09m/sg}{Tag \ 48^\circ}$ 
 $CU_2 = 48,59 \ m/sg$ 

25. Calculo de la velocidad en la sección de salida.

$$C_2 = \sqrt{Cm_2^2 + CU_2^2}$$

$$C_2 = \sqrt{(7,09m/s)^2 + (48,59m/s)^2}$$

$$C_2 = 49,01m/s$$

26. Calculo de la velocidad relativa respecto al alabe en la sección de salida del rotor.

$$W_2 = \sqrt{Cm_2^2 + (U_2 + CU_2)^2}$$

$$W_2 = \sqrt{(7,09m/s)^2 + (54,97m/s - 48,59m/s)^2}$$

$$W_2 = 9,538m/s$$

27. Determinación de la altura de Euler:

$$Hth_{00} = (U_2 x (U_2 - U_{1e} x CU_1) / g$$

$$Hth_{00} = (54,97 \frac{m}{s} x 48,59 \frac{m}{s} - 26,02 \frac{m}{s} x 21,26 \frac{m}{s}) / 9.81$$

$$Hth_{00} = 215,88 m$$

$$\Psi = 0.55 + 0.6 \ x sen (B_2)$$
  
 $\Psi = 0.55 + 0.6 \ x sen (48)$   
 $\Psi = 0.99589$ 

### 28.Diámetro medio

$$Dm = \frac{De_1}{2} + D_2$$

$$Dm = \frac{284mm}{2} + 600 mm$$

$$Dm = 442 mm$$

### 29. Determinación de los momentos estáticos

$$S_{1} = \frac{D_{2}^{2} - De_{1}^{2}}{8} = \frac{(600 \text{ mm})^{2} - (284 \text{ mm})^{2}}{8}$$

$$S_{1} = 34918 \text{ m}^{2}$$

$$S_{2} = \frac{D_{2}^{2} - Dm^{2}}{8} = \frac{(600 \text{ mm})^{2} - (442 \text{ mm})^{2}}{8}$$

$$S_{2} = 20579,5 \text{ mm}^{2}$$

$$Z_5 = Z_1 x S_1 + S_2 x Z_2$$
  
 $Z_5 = 12x 34918 mm^2 + 20579,5x 36 mm^2$   
 $Z_5 = 1159878mm^2$ 

### 30. Calculamos el valor de disminución de altura

$$P = \frac{\Psi x D_2^2}{4x Z_5} = \frac{0.996 \ x (600 \ mm)^2}{4 \ x \ 1159878 \ mm^2}$$

$$P = 0.07728$$

### 31. Determinación del factor de resbalamiento

$$\mu = \frac{1}{1+p} = \frac{1}{1+0.07728} = 0,92826$$

### 32. Determinación de la Altura teórica.

$$Hth = Hth_{00} x \mu$$
  
 $Hth = 215,88m x 0.92826$   
 $Hth = 200,39 m$ 

### 33. Determinación de la altura efectiva.

$$H = Hth \ x \ \eta h$$

$$H = 200,39 \ m \ x \ 0,75$$

$$H_{(m)} = 150,29 \ m$$

$$H_{(mm)} = H_{(m)} \ x \ 1.2$$

$$H_{(mm)} = 180,35 \ mm \ H_2O$$

### 34.Cálculo de la potencia al eje del vetilador

$$P_{eje} = \frac{H(mmH_2O) \times Q}{\eta_t \times 102}$$

$$P_{eje} = \frac{180,35 \ mm H_2O \times 50 \frac{m^3}{mit} \cdot \frac{1mt}{60 \ sg}}{0.72 \times 102}$$

$$P_{eje} = 2,05 \ kw = 2,75 \ Hp$$

### 35. Selección del motor eléctrico

De catálogos seleccionados el motor eléctrico trifásico con las siguientes características:

### 4.5.4.2 Cálculo de la carcasa del ventilador:

 $r_2 \approx 300$ mm

CU3 = 48.91 m/sg

 $b_2 = 67$ mm

 $Q = 50 \text{ m}^3/\text{min}$ 

e = 2.71828

A = 240mm

b = 160mm del grafico

A/b = 1.5

 $A \times b = 0.0384 \text{mm}^2$ 

Cll = 21.701m/sg

 $Kp = 1/360 \times \log((2_x r_{max})/D_2)$ 

Kp = 0.00050026

Para determinar re:

Log  $\underline{r}_e = k_p \theta$ 

	r ₂
θ	re
0	360
45_	379,152786
90	399,324541
. 135	420,569478
180	442,944692
. 225	466,510316
270	491,329683
315	517,469494
360	545

- 4.5.4.3 Determinación de los triángulos de velocidades en la sección de entrada:
- i)Para el punto inmediatamente anterior a la sección de entrada:

$$U1 = 26,02$$
m/s

$$Cmo = 14,33m/s$$

$$Co = 25,72 \text{m/s}$$

$$Wo = 15,0687 \text{m/s}$$

$$\beta_0 = 72^{\circ}$$

$$\alpha_0 = 34^{\circ}$$

2)Para el punto en la sección de entrada:

$$U_1 = 26,02$$
m/s

$$Cm_1 = 14.64 \text{m/s}$$

$$CU_1 = 21,26$$
m/s

$$C_1 = 25.813 \text{m/s}$$

$$W_1 = 15,39 \text{m/s}$$

$$\beta_1 = 72^{\circ}$$

$$\alpha_1 = 35^{\circ}$$

- 4.5.4.4 Determinación De Los Triángulos De Velocidades En La Sección De Salida:
- 1)Para el punto en la sección de salida:

$$U_2 = 54,97 \text{m/s}$$

$$Cm_2 = 7.09 \text{m/s}$$

$$CU_2 = 48,59 \text{m/s}^{-1}$$

$$C_2 = 49,01 \text{m/s}$$

$$W_2 = 9,538 \text{m/s}$$

$$\beta_2 = 48^{\circ}$$

$$a_2 = 8^{\circ}$$

# 2)Para el punto inmediatamente posterior a la sección de salida:

$$U_2 = 54,97/s$$

$$Cm_3 = 6,73 \text{m/s}$$

$$CU_3 = 48,91 \text{m/s}$$

$$C_3 = 49,37 \text{m/s}$$

$$W_3 = 9,056 \text{m/s}$$

$$\beta_3 = 48^{\circ}$$

$$a_3 = 8^{\circ}$$

# 4.5.5 CÁLCULO DEL VENTILADOR COLECTOR

 $H = 700 \text{ mm } H_2O$ 

 $Q = 18 \text{ m}^3/\text{min}$ 

### 4.5.5.1 Parámetros de diseño:

H = 700 mm

 $Q = 18 \text{ m}^3/\text{min}$ 

 $N = 3500 RPM^{-1}$ 

 $Ng = 16.15 (RPM, m^3/s, m)$ 

# Valores asumidos del ventilador de prueba:

$$\varepsilon = 0.3$$

$$\eta_{V} = 0.98$$

$$\eta_{\rm m} = 0.98$$

$$\eta_{h} = 0.75$$

$$\eta_T = 0.72$$

$$B_1 = 72^{\circ}$$

$$B_2 = 48^{\circ}$$

$$Z_1 = 12$$
 álabes

$$Z_2 = 36$$
 álabes

 $E = 1.5 \, mm$ 

### Valores iniciales:

$$D_2/D_1 = 3,291$$

Km, 
$$e/\epsilon = 0.9$$

$$Km_1 = 0.18$$

### 1.Cálculo de la velocidad de entrada:

$$Ce = \varepsilon x \sqrt{2x9.81xH(m)}$$

$$Ce = 0.3 x \sqrt{2x9.81 x \frac{700}{1.2}}$$

$$Ce = 21.4 m/s$$

### 2.Diámetro del cubo:

DC = 60mm por tablas

### 3. Determinación del diámetro de la boca de entrada

$$De = \sqrt{\frac{4xQ}{\eta_v \ x \ Ce \ x \ \pi} + Dc^2}$$

$$De = \sqrt{\frac{4x18 \frac{m^3}{\min} \cdot \frac{1mit}{60sg}}{0.98 x \, 21, 4 \frac{m}{sg} x \, \pi} + (60 \ mm)^2 \cdot \frac{1m^2}{(1000 \ mm)^2}}$$

$$De = 148mm$$

### 4. Determinación del diámetro de entrada al rodete

$$D_{1e} = De \times 1.0717$$

$$D_{1e}$$
= 148 mm x 1.081 = 160 mm

5.Determinación de la velocidad periférica para la sección de entrada

$$U_1 = \pi x D_1 ex N$$

$$U_1 = \pi x 160 mm x 3500 \frac{rev}{\min t} \cdot \frac{1 mt}{60 g} \cdot \frac{1m}{1000 m} = 29,32 m/sg$$

6.Determinación del valor de la velocidad meridiana en la sección de entrada

$$Cm_1 = C_e x \frac{Km}{e}$$

$$Cm_1 = 21.4 \frac{m}{s} x 0.9$$

$$Cm_1 = 19.26 m/s$$

7. Factor de resbalamiento para la sección de entrada

$$fe_{1} = \frac{\pi \ x D_{1}e}{(\pi x De_{1} - Z_{1} x \frac{e}{Sem B_{1}})}$$

$$fe_{1} = \frac{\pi x 160}{\left(\pi x 160 - 12 x \frac{1.5}{sen 72}\right)} = 1.0391$$

8.Determinación de la velocidad meridiana antes de la sección de entrada

$$Cm_0 = \frac{Cm_1}{fe_1}$$
  $\frac{19,26 \, m/s}{1.0391}$   
 $Cm_0 = 18,54 \, m/s$ 

9. Proyección de la velocidad absoluta en la dirección tangencial antes de la sección de entrada.

$$CU_O = U_1 - \frac{Cm_O}{Tg B_1} = 29,32 \frac{m}{s} - \frac{18,54}{Tg 72} m/s$$
  
 $CU_O = 23,06 m/s$ 

10. Calculo de la velocidad antes de la sección de entrada.

$$Co = \sqrt{Cmo^{2} + CUo^{2}}$$

$$Co = \sqrt{(18,54m/s)^{2} + (23,06m/s)^{2}}$$

$$Co = 29,5888m/s$$

11. Calculo de la velocidad relativa respecto al alabe antes de la sección de entrada del rotor.

$$Wo = \sqrt{Cmo^{2} + (U_{1} + CU_{0})^{2}}$$

$$Wo = \sqrt{(18,54m/s)^{2} + (29,32m/s - 23,06m/s)^{2}}$$

$$Wo = 19,57m/s$$

12. Proyección de la velocidad absoluta en la dirección tangencial en la sección de entrada.

$$CU_1 = U_1 - \frac{Cm_1}{Tg B_1} = 29,32 \frac{m}{s} - \frac{19,26 \frac{m}{s}}{Tg 72}$$
  
 $CU_1 = 23,06 \, m/s$ 

13. Calculo de la velocidad en la sección de entrada.

$$C_1 = \sqrt{CU_1^2 + Cm_1^2}$$

$$C_1 = \sqrt{(23,06m/s)^2 + (19,26m/s)^2}$$

$$C_1 = 30,045m/s$$

14. Calculo de la velocidad relativa respecto al alabe en la sección de entrada del rotor.

$$W_1 = \sqrt{Cm_1^2 + (U_1 + CU_1)^2}$$

$$W_1 = \sqrt{(19,26m/s)^2 + (29,32m/s - 23,06m/s)^2}$$

$$W_1 = 20,25m/s$$

### 15. Determinación del ancho del alabe en la sección de entrada

$$b_{1} = \frac{Q}{Cm_{0} \times D_{1}ex \pi x \eta_{v}}$$

$$b_{1} = \frac{18m^{3}/\min..\frac{1mit}{60 sg}}{18,54 \frac{m}{s} \times 160mm.\frac{1m}{1000 mm} \times \pi \times 0.98}$$

$$b_{1} = 33 mm$$

### 16. Cálculo del diametro exterior del rodete:

$$D_{2} = \frac{D_{2}}{D_{1}} \times D_{1e}$$

$$D_{2} = 3,291 \times 160 \text{ mm}$$

$$D_{2} = 527 \text{mm}$$

### 17. Cálculo de la velocidad periférica en la sección de salida

$$U_{2} = \frac{U_{1} \times D_{2}}{D_{1e}}$$

$$U_{2} = \frac{29,32 \, m/s \times 527 \, mm}{160 mm}$$

$$U_{2} = 96,57 \, m/s$$

# 18. Determinación de la velocidad meridiana después de la sección de salida

$$Cm_{3} = \frac{Q}{\eta v \ x \pi x D_{2} x b}$$

$$Cm_{3} = \frac{18 \frac{m^{3}}{mit} \cdot \frac{1 mit}{60 sg}}{0.98 \ x \pi \ x \ 527 \ mm \ x \ 33 mm} \cdot \frac{(1000 \ mm)^{2}}{1m^{2}}$$

$$Cm_{3} = 5,6m/s$$

19. Proyección de la velocidad absoluta en la dirección tangencial después de la sección de salida.

$$CU_{3} = U_{2} - \frac{Cm_{3}}{Tg B_{2}}$$

$$CU_{3} = 96,57 \frac{m}{s} - \frac{5,6m/s}{Tg 48^{\circ}}$$

$$CU_{3} = 91,53 m/s$$

20. Calculo de la velocidad después de la sección de salida.

$$C_3 = \sqrt{Cm_3^2 + CU_3^2}$$

$$C_3 = \sqrt{(5,6m/s)^2 + (91,53m/s)^2}$$

$$C_3 = 91,7m/s$$

21. Calculo de la velocidad relativa respecto al alabe despues de la sección de salida del rotor.

$$W_3 = \sqrt{Cm_3^2 + (U_2 + CU_3)^2}$$

$$W_3 = \sqrt{(5,6m/s)^2 + (96,57m/s - 91,53m/s)^2}$$

$$W_3 = 7,534m/s$$

22. Factor de resbalamiento para la sección de salida

$$fe_2 = \frac{\pi x D_2}{\pi x D_2 - \frac{(Z_1 + Z_2)xe}{sen \beta_2}}$$

$$fe_2 = \frac{\pi x \ 527mm}{\pi x \ 527 \ mm - \frac{(12+36)}{sen \ 48^{\circ}} x1.5}$$

$$fe_2 = 1,0622$$

23. Determinación de la velocidad meridiana en la sección de salida.

$$C_{m2} = Cm_3 x fe_2$$
  
 $C_{m2} = 5.6 \text{ m/sg } x 1.0622$   
 $C_{m2} = 5.95 \text{ m/sg}$ 

24. Proyección de la velocidad absoluta en la dirección tangencial en la sección de salida.

$$CU_{2} = U_{2} - \frac{Cm_{2}}{Tg \beta_{2}}$$

$$CU_{2} = 96,57 \ m/sg \frac{5,95m/sg}{Tag 48^{\circ}}$$

$$CU_{2} = 91,21m/sg$$

25. Calculo de la velocidad en la sección de salida.

$$C_2 = \sqrt{Cm_2^2 + CU_2^2}$$

$$C_2 = \sqrt{(5.95m/s)^2 + (91.21m/s)^2}$$

$$C_2 = 91.4m/s$$

26. Calculo de la velocidad relativa respecto al alabe en la sección de salida del rotor.

$$W_2 = \sqrt{Cm_2^2 + (U_2 + CU_2)^2}$$

$$W_2 = \sqrt{(5,95m/s)^2 + (96,57m/s - 91,21m/s)^2}$$

$$W_3 = 8m/s$$

27. Determinación de la altura de Euler:

$$Hth_{00} = (U_2 x (U_2 - U_{1e} x CU_1) / g$$

$$Hth_{00} = (96,57 \frac{m}{s} x 91,21 \frac{m}{s} - 29,32 \frac{m}{s} x 23,06 \frac{m}{s}) / 9.81$$

$$Hth_{00} = 828,95m$$

$$\Psi = 0.55 + 0.6 \ x sen (B_2)$$

$$\Psi = 0.55 + 0.6 \text{ x sen } (48)$$

$$\Psi = 0.99589$$

### 28.Diámetro medio

$$Dm = \frac{De_1}{2} + D_2$$

$$Dm = \frac{160mm}{2} + 527 mm$$

$$Dm = 343.5 \ mm$$

### 29. Determinación de los momentos estáticos

$$S_1 = \frac{D_2^2 - De_1^2}{8} = \frac{(527 \, mm)^2 - (160 \, mm)^2}{8}$$

$$S_1 = 31516,125 \, m^2$$

$$D_2^2 - Dm^2 - (527 \, mm)^2 - (343.5 \, mm)$$

$$S_2 = \frac{D_2^2 - Dm^2}{8} = \frac{(527 \, mm)^2 - (343,5mm)^2}{8}$$

$$S_2 = 19967,0938 \ mm^2$$

$$Z_5 = Z_1 x S_1 + S_2 x Z_2$$
  
 $Z_5 = 12x 31516,125 mm^2 + 19967,0938x 36 mm^2$ 

$$Z_5 = 12x \ 51510,125mm^2 + 19907,0938x \ 30$$
  
 $Z_5 = 1097008,88mm^2$ 

### 30. Calculamos el valor de disminución de altura.

$$P = \frac{\Psi x D_2^2}{4x Z_5} = \frac{0.996 \ x (527 \ mm)^2}{4 \ x 1097008,88 \ mm^2}$$

$$P = 0.06303$$

### 31. Determinación del factor de resbalamiento

$$\mu = \frac{1}{1+p} = \frac{1}{1+0.06303} = 0,94071$$

### 32. Determinación de la Altura teórica

$$Hth = Hth_{00} x \mu$$
  
 $Hth = 828,95m x 0,94071$   
 $Hth = 779,8m$ 

### 33. Determinación de la altura efectiva

$$H = Hth \ x \ \eta h$$
  
 $H = 779,8 \ m \ x \ 0,75$   
 $H_{(m)} = 584,85 \ m$   
 $H_{(mm)} = H_{(m)} \ x \ 1.2$   
 $H_{(mm)} = 701,82 \ mm \ H_2O$ 

### 34.Cálculo de la potencia al eje del vetilador

$$\begin{split} P_{eje} &= \frac{H \left( mmH_2O \right) x \ Q}{\eta_t \ x \ 102} \\ P_{eje} &= \frac{701,82 \ mm \ H_2O \ x 18 \frac{m^3}{mit} \cdot \frac{1mt}{60 \ sg}}{0.72 \ x \ 102} \\ P_{eje} &= 2,87 \ kw = 3,85 \ Hp \end{split}$$

### 35. Selección del motor eléctrico

De catálogos seleccionados el motor eléctrico trifásico con las siguientes características:

### 4.5.5.2 Cálculo de la carcasa del ventilador :

 $r_2 = 263,5 mm$ 

CU3 = 91,53 m/sg

 $b_2 = 33$ mm

 $Q = 18 \text{ m}^3/\text{min}$ 

e = 2.71828

A = 200mm

b = 130mm del grafico

A/b = 1.53846

 $A \times b = 0.026 \text{mm}^2$ 

CII = 11,54 m/sg

 $Kp = 1/360 \times \log((2_x r_{max})/D_2)$ 

Kp = 0.0004743

Para determinar re:

$$Log \underline{r}_e = k_p \theta$$

$$r_2$$

θ	re
0	316,2
45	332,127879
90	348,858089
135	366,431048
180	384,889205
225	404,277151
270	424,641722
315	446,032114
360	468,5
·	<del></del>

# 4.5.5.3 Determinación de los triángulos de velocidades en la sección de entrada:

1)Para el punto inmediatamente anterior a la sección de entrada:

$$U1 = 29,32$$
m/s

$$Cmo = 18,54m/s$$

$$Co = 29,589 \text{m/s}$$

$$Wo = 19,57 \text{m/s}$$

$$\beta_0 = 72^{\circ}$$

$$a_0 = 39^{\circ}$$

2)Para el punto en la sección de entrada:

$$U_1 = 29,32 \text{m/s}$$

$$Cm_1 = 19,26 m/s$$

$$CU_1 = 23,06 \text{m/s}$$

$$C_1 = 30,045 \text{m/s}$$

$$W_1 = 20,25 \text{m/s}$$

$$\beta_1 = 72^{\circ}$$

$$\alpha_1 = 40^{\circ}$$

# 4.5.5.4 Determinación de los triángulos de velocidades en la sección de salida:

1)Para el punto en la sección de salida:

$$U_2 = 95,57$$
m/s

$$Cm_2 = 5,95 \text{m/s}$$

$$CU_2 = 91,21 \text{m/s}$$

$$C_2 = 91,4m/s$$

$$W_2 = 8m/s$$

$$\beta_2 = 48^{\circ}$$

$$\alpha_2 = 4^{\circ}$$

# 2)Para el punto inmediatamente posterior a la sección de salida:

 $U_2 = 95,57 \text{m/s}$ 

 $Cm_3 = 5,6m/s$ 

 $CU_3 = 91,53 \text{m/s}$ 

 $C_3 = 91,7 \text{m/s}$ 

 $W_3 = 7,534 \text{m/s}$ 

 $\beta_3 = 48^{\circ}$ 

 $\alpha_3 = 4^{\circ}$ 

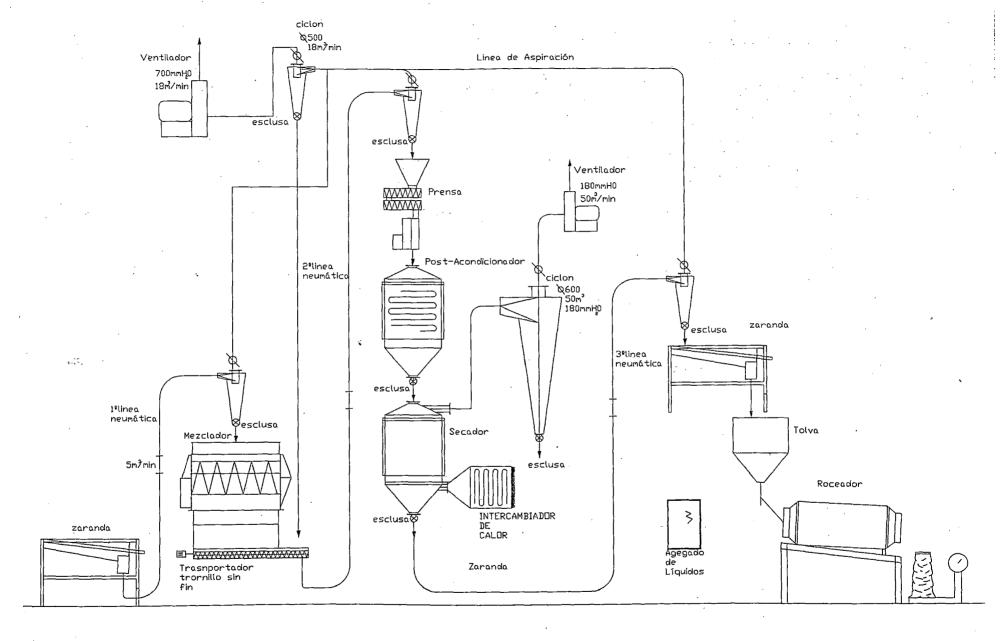
### CAPITULO V

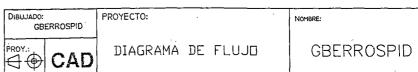
# DESCRIPCIÓN DE LAS CARACTERÍSTICAS PRINCIPALES DE LA PLANTA:

# 5.1 DESCRIPCIÓN DE LOS PRINCIPALES COMPONENTES DE LA PLANTA

El contar con un alimento de calidad que cumpla con las expectativas del mercado y las exigencias del productor es de vital importancia para el éxito de la planta piloto , ya que el costo del alimento puede llegar a ser el 60% del costo de producción. La calidad del alimento depende de tres factores: el contenido nutricional formulado, la calidad de los ingredientes y la tecnología o control de proceso empleado en la fabricación.

Los dos primeros factores interactúan y afectan de gran forma al tercero. El desarrollo de parámetros ó tipos de proceso se ha dado en muchos casos para poder fabricar ciertas formulaciones o introducir nuevos ingredientes.


La variación en la calidad de un alimento está relacionada principalmente con variaciones en la calidad de los ingredientes y en menor grado con variaciones en los parámetros de producción.


Sin embargo, el tipo de proceso y parámetros de producción utilizados determinan las características físicas del alimento como forma, tamaño y estabilidad en el agua. También, el procesar un alimento adecuadamente contribuye a bajar los costos de producción del mismo por menor desgaste de piezas y más eficiente uso de la energía eléctrica por parte de la maquinaria utilizada en la fabricación.

La mayoría de alimentos comerciales para acuicultura se ofrecen hoy en día en dos formas:

Peletizados y Extruidos. Existen diferencias considerables entre una peletizadora y un extrusor.

La utilización de una u otra máquina ofrece al productor diversas ventajas o desventajas, y el uso de una u otra depende de la especie hacia la cual está dirigido el alimento.





Existen otros procesos comunes en la fabricación de alimentos para acuicultura como son el transporte, la mezcla, el secado y roseado de agregados, para los cuales también se recomendarán a continuación los principales puntos o parámetros de control.

Comparación de los Procesos de Peletizado y Extrusión.

### Peletizado:

Menor Inversión de Capital
Menor Costo de Mantenimiento
Menor Costo de Energía por Tonelada
Aproximadamente 50% de Cocción
Menor Temperatura de Operación
Máximo Nivel de Humedad 17%
Mayor Generación de Finos
Fácil Operación
Adición de Grasa más Baja
Uso Restringido de Ingredientes
no Tradicionales

### Extrusión:

Mayor Inversión de Capital

Mayor Costo de Mantenimiento

Mayor Costo de Energía por Tonelada

Aproximadamente 90% de Cocción

Mayor Temperatura de Operación

Máximo nivel de Humedad 55%

Menor Generación de Finos

Operación más Complicada

Capacidad de Adicionar más Grasa

Mayor Versatilidad en el Uso de Ingredientes

no Tradicionales

Para nuestro caso se utilizara la peletizadora ,como hablamos de una planta piloto donde se realizaran pruebas ,no es de vital importancia contar con tan alta eficiencia como es el que nos brinda la extrusión.

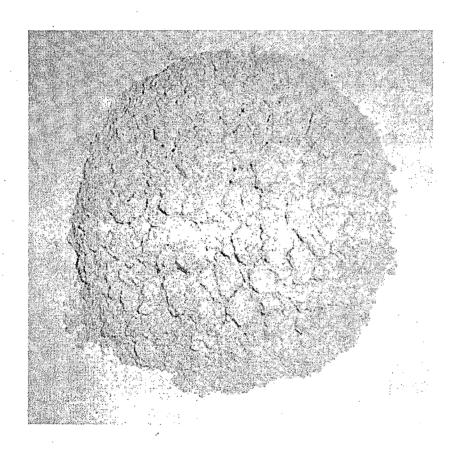
### 5.2 DESCRIPCIÓN DEL PROCESO

#### 5.2.1 Almacenamiento De Materias Primas:

La materia prima que ingresa a la planta de alimento debe ser únicamente aquella que cumpla con los estándares de calidad, dentro de los cuales debe especificarse el máximo contenido de humedad y grasa de acuerdo a las condiciones climáticas en las que va a ser almacenada. La mayoría de las materias primas utilizadas en la fabricación de alimentos balanceados son higroscópicas y por lo tanto absorberán humedad cuando la presión de vapor de agua del ambiente (humedad relativa) es mayor que la presión de vapor de agua interna, determinada por el contenido de humedad de la materia prima.

Como norma general, todos los ingredientes que tengan un contenido de grasa de 7% o más deben almacenarse con contenidos de humedad que no pasen del 10% (o en ambientes cuyas condiciones climáticas garanticen una humedad de equilibrio de 10% o menos). Los demás ingredientes, generalmente de origen no vegetal, cuyo contenido de grasa es inferior a 7% deben tener un contenido de humedad de 13% o inferior.

Las materias primas deben almacenarse en áreas secas, frescas, y bien ventiladas, preferentemente por debajo de 30°C. En zonas tropicales donde la temperatura es mayor debe ponerse mayor atención a la ventilación, especialmente de la parte superior de las bodegas.


La materia prima debe colocarse en sacos sobre estibas de madera, evitando siempre el contacto directo de estos con el piso , y a más de 50 cm de las paredes de las bodegas. Para el almacenamiento de materia prima de origen animal como harina de pescado se recomienda no hacer grandes pilas o arrumes de sacos. Es preferible almacenarla en lotes más pequeños,

separados entre sí por una distancia mayor a 50 cm y debidamente codificados.

### 5.2.2 zarandeo de repaso:

El primer zarandeo por la que pasara el producto será solo de repaso por lo que contara con una sola malla de diámetro 3/32", la alimentación será en forma manual.

Para alimentar animales muy pequeños generalmente se pasa el producto por un granulador o molino de rodillos con el objeto de lograr el tamaño de partícula deseado.



### 5.2.3 Primera Línea De Transporte Neumático:

La salida de la zaranda contará con una pequeña tolva el que será el encargado de recepcionar el producto, luego contará con una pipa por el cual se controlará el flujo de aire, la tubería de transporte será de ø3" inoxidable calculado para una tonelada, esta manera el mezclador se llenara

rápidamente, contando con un visor de acrílico liso de color cristal transparente moldeados con costura de diámetro interior 83mm x 250mm de alto x 3mm de espesor.

Al termino de la tubería nos toparemos con el ciclón de Ø240 este producirá un movimiento de torbellino, debido al cual las partículas de polvo son transportadas hacia abajo siguiendo una trayectoria espiral, para finalmente ser extraída a través de una esclusa 22/13 y de esta manera abandona el ciclón.

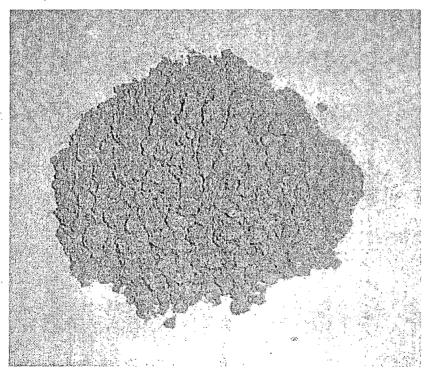
#### 5.2.4 Mezcla:

A pesar de ser una operación básica y muy importante dentro del proceso de fabricación, en ocasiones no se le da a la mezcla la importancia y cuidado que merece. Una planta que no posea una buena mezcladora no podrá sacar alimento con calidad consistente.

El proceso de mezcla es más exigente en una planta de alimentos balanceados para acuicultura que en una planta que sólo produce alimento para animales terrestres, el factor más importante a controlar es lo que comúnmente se denomina coeficiente de variación de la mezcla (CV). El CV no solamente representa la exactitud con que la unidad puede mezclar o el tiempo de mezcla necesario, si no también es una indicación del estado de funcionamiento de la mezcladora y puede utilizarse para detectar problemas de segregación o desmezclado en el transporte del alimento después de la mezcladora.

Existen varios métodos para determinar el CV o eficiencia de una mezcladora, siendo uno de ellos el análisis Químico para determinar el contenido de un ingrediente aditivo, vitamina, etc.

En este caso el adicionar aditivos o premezclas directamente a la mezcladora, la cantidad a agregar debe ser tal que por la exactitud de la mezcladora pueda ser homogenizada adecuadamente.


Cuando se deban agregar cantidades inferiores en una planta de gran producción sin conocer la exactitud de la mezcladora, se recomienda hacer una

dilución o premezcla en otra mezcladora (Planta piloto) con algún otro ingrediente cuyas características de partícula sean similares a las del aditivo. Además del adecuado tiempo de mezcla, es también recomendable observar que el tamaño de las partículas sea lo más homogéneo posible. Otros puntos que con frecuentes observaciones deben controlarse son la acumulación de material sobre las cintas o paletas de la mezcladora y la descarga incompleta de la mezcladora. En el primer caso, la acumulación excesiva de material sobre las cintas o paletas de la mezcladora disminuye su eficiencia, y el hecho de que se quede gran cantidad de material dentro de la mezcladora después del ciclo de descarga no solamente es una indicación de desgaste de los componentes de la unidad, si no que constituye un grave riesgo de contaminación entre los

### 5.2.5 Dosificación:

diferentes batch o tandas.

Toda la materia prima que compone un batch o tanda de alimento debe ser cuidadosamente dosificada en este caso la dosificación se realizara con un tornillo sin fin a la salida del mezclador para ser llevado luego por trasporte neumático a la prensa.



### 5.2.6 Segunda línea del trasporte neumático:

La salida del tornillo sin fin cuenta con un tuvo de  $\emptyset$ 120 luego siguiendo su trayectoria desemboca a una pipa por el cual se controlará el flujo de aire , la tubería de transporte será de  $\emptyset$ 2" inoxidable calculado para media tonelada , contando con un visor de acrílico liso de color cristal transparente moldeados con costura de diámetro interior 55mm x 250mm de alto x 3/32" de espesor .

Al termino de la tubería nos toparemos con el ciclón de Ø200 este producirá un movimiento de torbellino , debido al cual las partículas de polvo son transportadas hacia abajo siguiendo una trayectoria espiral , para finalmente ser extraída a través de una esclusa 22/13 y de esta manera abandona el ciclón .

### 5.2.7 Acondicionamiento antes de entrar a la peletizadora :

El correcto acondicionamiento de la mezcla antes de entrar al proceso de peletizado es de vital importancia para garantizar la calidad del alimento. Es en ésta fase donde se inicia la cocción o gelatinización de almidones se garantizara un buen producto y estabilidad en el agua .

Un correcto acondicionamiento también reducirá el desgaste excesivo de partes del extrusor, contribuyendo enormemente a bajar los costos de producción por concepto de repuestos y consumo de energía eléctrica.

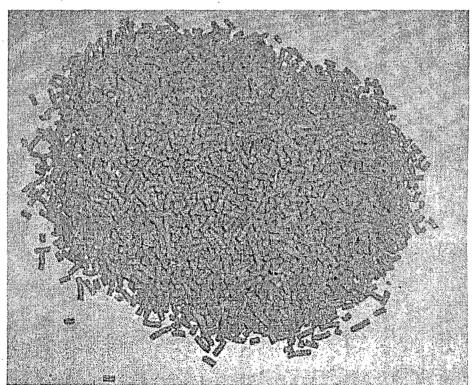
El grado de gelatinización depende de tres factores: Calor, Humedad y Tiempo. El calor en el acondicionador es suministrado por el vapor, el mismo que debe ser saturado y de la más alta calidad posible (seco). El calor no sólo es suministrado por contacto con el vapor, sino también por el calor de condensación. Al condensarse el vapor se está agregando la humedad requerida.

De aquí la importancia de que el vapor sea saturado. Un vapor sobre calentado no se condensará a menos que se enfríe y un vapor de baja calidad no producirá el necesario calor de condensación.

El alimento en el acondicionador debe alcanzar una temperatura de más de 80°C, y si es posible 90°C.

En el caso de alimentos peletizados, la humedad del alimento entrando a la peletizadora debe ser de 16%, lo que se logra agregando agua directamente en la mezcladora. Como guía práctica para el diseño del tamaño de la tubería de vapor, la velocidad en el tramo de alta presión (desde la caldera hasta el regulador) debe limitarse a 30 m/seg, y en el tramo de baja presión a 20 m/seg. Después de la válvula reguladora siempre es recomendable ensanchar el diámetro de la tubería, no solamente para lograr la velocidad deseada, si no también para evitar sobre calentamiento del vapor.

### 5.2.8 Peletizado:


El peletizado es considerado como los procesos más importantes en una fábrica de alimentos. Es muy importante desde el principio no equivocarse ni en la selección de la máquina adecuada para los requerimientos de producción, especificaciones de la matriz y rodillos de la peletizadora. En muchos casos se cometen errores, especialmente cuando los alimentos para acuicultura no constituyen la única línea de producción en una planta y además se fabrican en porcentajes minoritarios. Una vez que se cuenta con la máquina apropiada y configurada correctamente, lo primordial es seguir las recomendaciones básicas de operación del fabricante y contar con operadores muy bien entrenados.

Los encargados de la operación de peletizadoras deben conocer la teoría adquirida con la experiencia. En la máquina siempre hay que graduar bien la alimentación, aplicar los principios de seguridad industrial, y evitar el roce de metal con metal.

En el caso de la peletizadora las variables más importantes de operación son la adición de agua, la temperatura, y la presión que es controlada por el dado. La adición de agua es muy importante para el control de la densidad del producto, el grado de expansión y la apariencia del producto. No es extraño observar que dependiendo de la cantidad de agua agregada a una misma formulación el producto final flote o se hunda. De aquí la importancia de que una vez que se obtiene un buen producto, la tasa de adición y la presión de agua se

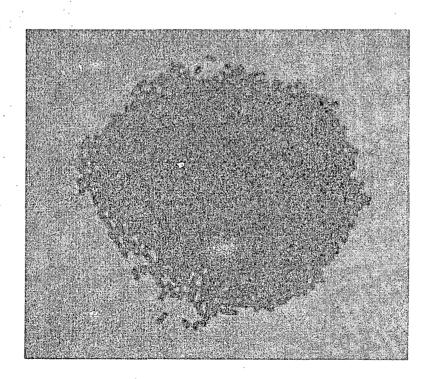
mantengan constantemente. La temperatura del producto dentro de la peletizadora debe ser controlada para que sea superior a 80°C para garantizar la cocción. En ocasiones, cuando hay mucha adición de agua, o en los arranques, es conveniente que la peletizadora cuente con un sistema de calentamiento del barril.

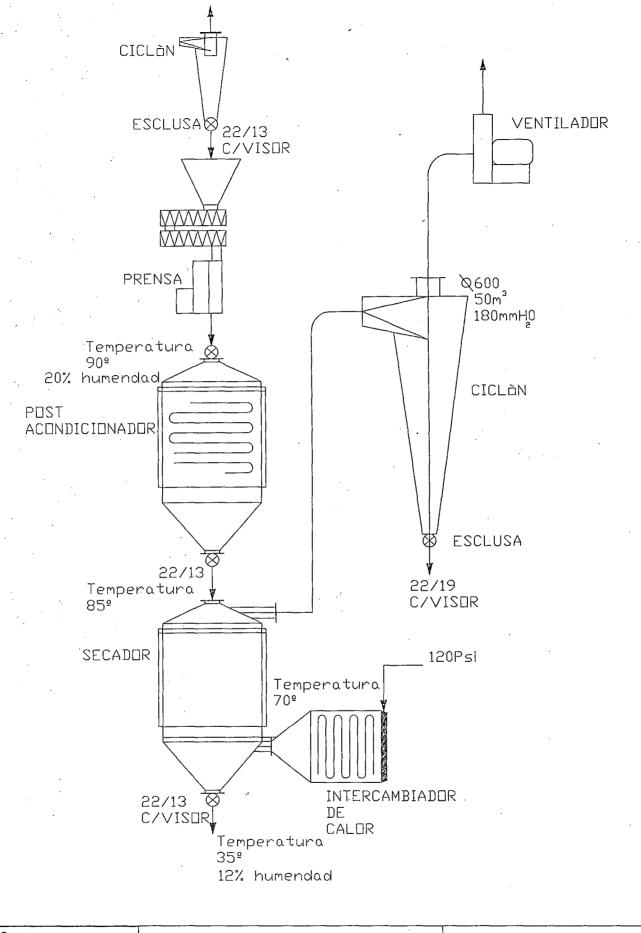
Un factor crítico tanto en las peletizadoras es el poder graduar la correcta longitud del producto. Cuando las cuchillas no están bien afiladas no producen el efecto de corte si no de barras rompedoras, comprometiendo seriamente la apariencia (calidad) del producto. Las cuchillas deben ser afiladas cada 24 a 36 horas de operación. Este procedimiento curiosamente es uno de los más difíciles de implantar en las fábricas de balanceado. El ángulo de las cuchillas con relación al producto debe ser de 90°.



### 5.2.9 Secado y Enfriamiento:

Debido a que los productos que salen de una peletizadora suelen tener más de 20% de humedad, es necesario secarlos. El manejo de los productos que


salen de la peletizadora debe hacerse con mucho cuidado, pues son frágiles y si no se manipulan adecuadamente se romperán creando gran cantidad de finos. El producto que sale de una peletizadora debe llevarse directamente por gravedad al enfriador.


La temperatura del producto peletizado en el secador no debe exceder de 95°C pues se corre el riesgo de pérdida adicional de vitaminas o aditivos.

El secado o enfriamiento debe realizarse lentamente, permitiendo el flujo de humedad desde la parte interna del producto hacia afuera y evitando choques térmicos que puedan crear fisuras en el producto. Se recomienda secar o enfriar el producto hasta una humedad no inferior a 11 o 12%, pues ésta es considerada como un nivel seguro y el remover mayor cantidad de humedad causa grandes perjuicios económicos.

El enfriamiento de productos peletizados es aconsejable que se lleve a cabo en un enfriador de contra-flujo, pues este equipo evita choques térmicos y resulta económico.

En nuestro caso utilizaremos un post acondicionador el cual permite la cocción del producto por calor , pasara por una esclusa 22/13 y este le entregará al secador el cual por medio de intercambiador de calor el producto será secado.





DIBUJADO:
GBERROSPID

PROYECTO:

Nombre:

PROY.:

CAD

DIAGRAMA DE SECADO

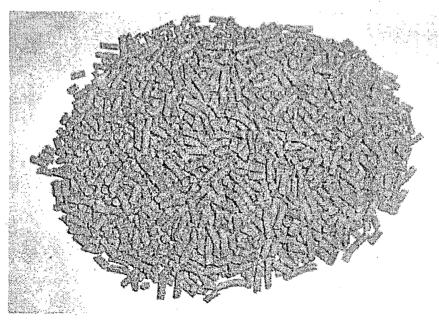
**GBERROSPID** 

### 5.2.10 Tercera línea del trasporte neumático:

A la salida del secador nos topamos con una esclusa 22/13 luego siguiendo su trayectoria desemboca a una pipa por el cual se controlará el flujo de aire , la tubería de transporte será de  $\emptyset 2$ " inoxidable calculado para media tonelada , contando con un visor de acrílico liso de color cristal transparente moldeados con costura de diámetro interior  $55 \, \mathrm{mm} \times 250 \, \mathrm{mm}$  de alto  $\times 3/32$ " de espesor .

Al termino de la tubería nos toparemos con el ciclón de Ø200 este producirá un movimiento de torbellino , debido al cual las partículas de polvo son transportadas hacia abajo siguiendo una trayectoria espiral , para finalmente ser extraída a través de una esclusa 22/13 y de esta manera abandona el ciclón .

### 5.2.11 Zarandeo y Clasificado:


Después de enfriado el producto se pasa por una zaranda para remover los finos. En la mayoría de los casos una zaranda de una malla con orificios de 1/16" apropiados para el tamaño del producto es suficiente. Debe evitarse el zarandeo de producto que no ha sido enfriado, pues se producirá rotura de los granulos o pellets y mayor cantidad de finos que deben ser retornados al sistema. Se recomienda que la mayor cantidad de finos que son retornados al sistema no pase del rango de 5 a 8%, pues es necesario recordar que este producto ya ha sido gelatinizado, proceso irreversible y el agregar de nuevo estos finos al sistema causa problemas en la peletizadora y un producto final de inferior calidad. Cuando se tiene un retorno mayor de finos generalmente se debe a deficiencias en el acondicionamiento del peletizado, o a mal trato del producto en las etapas intermedias. El producto final no debe tener más de 2% de finos.

### 5.2.12 Roceado:

La salida de la zaranda contará con una pequeña tolva el que será el encargado de recepcionar el producto, esta alimentará a un pulmón encargado de la retención del producto el cual alimentará al roceador.

El roceado de los productos con aceite de pescado o de origen marino presenta varias ventajas como aumentar la atractabilidad y palatabilidad del alimento, hacerlo también más estable en el agua y mejorar su presentación. Adicionalmente, con un equipo bien diseñado pueden agregarse vitaminas o aditivos termo-sensibles mezclados con el aceite. Teóricamente el aceite debe añadirse sobre el producto caliente para que sea absorbido más fácilmente, pero en la práctica se presentan problemas de producción de finos, taponamiento de zarandas, retorno de finos con grasa y suciedad en los equipos. El agregar el aceite sobre el producto frío y zarandeado es una práctica común y resulta mejor si el producto con aceite se deja reposar en un tanque o silo antes del empaque.

Independientemente del tipo de equipo que se utilice, éste debe garantizar una buena homogeneidad y debe prestarse especial atención a su correcta calibración. Deben realizarse todas las pruebas necesarias que permitan determinar el flujo de producto seco que se alimenta al sistema y la tasa de adición del líquido, según varíen las velocidades de producción o los porcentajes de aceite a agregar. Estas pruebas deben ser realizadas cuando se instala el equipo y periódicamente deben chequearse las calibraciones, pues éstas pueden variar con el desgaste de los elementos que componen el sistema.



# CAPITULO VI

# COSTOS DE CONSTRUCCIÓN Y OPERACIÓN

### 6.1 COSTOS DE CONSTRUCCIÓN Y INSTALACIÓN:

### **6.1.1 COSTOS DE MATERIALES:**

A continuación damos la cantidad de materiales a emplear en la construcción de las maquinas y accesorios.

### 6.1.1.1 Tolvas:

Salida de las cernedores horizontales

Salida del Mezclador

A la entra del Roceador

Accesorios como tuberías de  $\phi$  120

Cant.	Descripción	C/U \$	Total \$
2	Plancha inoxidable 304-2B de 1/16"	128,16	255.32
50	Pernos inoxidable 3/8" x 1 ½" con tuerca y arandela.	0,36	18.00
1	Platina de 3/8" x 1 1/4"	4,11	6.11
	<u>.                                    </u>	TOTAL \$	278.43

### 6.1.1.2 Primera Línea Neumática:

Cant.	Descripción	C/U \$	Total \$
1 ½	Tubo inoxidable aisi 304 de 3" SCH40 x 6 m	150.00	225.00
•	(neumático y pipa)		
1	Visor de diámetro 83 mm de 250 mm alto x 3 mm de espesor	13.28	13.28
1	Ciclón φ 240	<u> </u>	
1/2	Plancha inoxidable 304 – 2 B de 1/16"	132.77	66.40

1	Esclusa: 22/13		
1	Cuerpo de Esclusa (fundición)	240.00	240.00
1	Cojinete de bronce φ 35 mm	7.64	7.64
1 .	Eje bonificado longitud de φ 350 mm, φ 35 mm	4.00 el kilo	12.00
1	Visor (fundición)	8.00	8.00
1	El acrílico liso de φ 130 ext x 125 mm de alto x 3/16" de espesor	15.81	15.81
1	Motorreductor 0.55Kw	250	250
	<del></del>	TOTAL \$	840.13

# 6.1.1.3 Segunda y Tercera Línea Neumática:

Cant.	Descripción	C/U \$	Total \$
4	Tubos inoxidable aisi 304 de 2" SCH 40 x 6	112.67	450.68
	mm (para el neumático y las pipas)		
2	Visores acrílicos de diámetro 55 mm ext x 250	18.16	35.32
	mm de alto x 3/32" de espesor		
2	Ciclón φ 200		
1.	Plancha inoxidable 304-2B de 1/16"	132.77	132.77
2	Esclusas: 22/13	<del></del>	
2	Cuerpos de esclusa (fundición)	240.00	480.00
2	Ejes bonificados, longitud de 700, φ 35 mm	4.00 el kilo	24.00
2	Visores (fundición)	8.00	16.00
2	Acrilicos lisos de φ 130 ext x 125 mm de alto x	15.81	31.6
	3/16" de espesor		
1	Motorreductor 0.55Kw	250	250
L		TOTAL \$	1421.37

# Para Las 3 Líneas Neumáticas:

Cant.	Descripción	C/U \$	Total \$
1/2	Plancha inoxidable aisi 304-2B 5/32	91.00	45.50
50	Pernos imán 5/16" x 1"	0.23	11.5
	<u> </u>	TOTAL \$	57

# 6.1.1.4 Transportador de Tornillo Sin Fin:

Cant.	Descripción	C/U \$	Total \$
1	Tubo inoxidable aisi 304 de 2" SCH40	112.67	112.67
1/4	Plancha inoxidable 304-2B de 5/32"	91	22.75
2	Chumaceras de pared UCF marca NKB 1"	15	30.00
1	Eje φ 60 x 600 mm de longitud	4.00	53
50	Pernos inoxidable con tuerca y arandela 3/8" x 1 1/2"	0.24	12
1/2	Plancha inoxidable 304-2B de 1/16" (cuerpo más accesorios)	132.77	66.00
8	Pernos inoxidable (chumacero) 5/16" x 3/4 con tuerca y arandela plana	0.23	1.8
1	Motoreductor 1 HP 1700 RPM	250	250
1	Piñón de 12 T paso 3/4" Asa-60	8.70	8.70
1	Piñón de 39 T paso 3/4" Asa-60	31.00	31.00
1	Cadena paso 3/4" simple Asa-60	7.00	7.00
1	Candado paso 3/4" simple Asa-60	0.6	0.6
		TOTAL \$	595.52

# 6.1.1.5 Tambor Roceador:

Cant.	Descripción	C/U \$	Total \$
1	Plancha inoxidable 304-2B de 1/16"	132.77	132.77
1	Platina 3/8" x 1 1/2"	24.00	24.00

1/2	Plancha inoxidable 304-2B 1/8" x 4' x 8'	260.00	132.77
1	Ángulo 1/8" x 1 ½"	8.36	8.36
1	Tubo rectangular 2" x 3"	88.84	88.84
1/2	Plancha estriada 1/8" x 3' x 8'	120.00	60.00
8	Rodajes   12mm	13.2	105.6
1	Motoreductor de 1HP de 1700 RPM	346.45	346.45
1	Piñón de 18T paso ¾ Asa 60	13	13
1	Piñón de 106T paso ¾ Asa 60	70	70
1	Cadena de paso ¾ simple Asa 60	8.5	8.5
1	Candado de paso ¾ Asa 60	0.7	0.7
		TOTAL \$	990.99
		L	

# 6.1.1.6 Ciclón de Aspiración:

Cant.	Descripción	C/U \$	Total \$
3	Planchas galvanizadas 1/27" espesor	29.00	88.00
20	Anillos	2.00	40.00
50	Pernos 5/16" x ¾" con tuerca	0.2	10.00
1	Ciclón φ 600	<u> </u>	
1.	Plancha inoxidable 304-2B de 1/16"	132.77	132.77
1	Esclusa 22/13		<del></del>
1	Cuerpo de esclusa (fundición)	240.00	240.00
1	Cojinete de bronce φ 35 mm	7.64	7.64
1	Eje bonificado longitud de 350 mm φ 35 mm	4.00	4.00
1	Visor (fundición)	8.00	8.00
1 .	Acrílico liso φ 130 ext x 125 mm de alto x	15.81	15.81
	3/16" de espesor		
1	Motorreductor 0.55Kw	250	250
[		TOTAL \$	795.22

# 6.1.1.7 Ciclón Neumático:

Cant.	Descripción	C/U \$	Total \$
1	Ciclón $\phi$ 500	J	· · · · · · · · · · · · · · · · · · ·
1	plancha inoxidable 304-2B de 1/16"	132.77	132.77
1	Esclusa 22/13		
1	Cuerpo de esclusa (fundición)	240.00	240.00
1	Cojinete de bronce φ 35 mm	7.64	7.64
1	Eje bonificado longitud de 350 mm φ 35 mm	4.00	4.00
1	Visor (fundición)	8.00	8.00
1	Acrílico liso $\phi$ 130 ext x 125 mm de alta x 3/16" de espesor	15.81	15.81
1	Motorreductor 0.55Kw	250	250
<u> </u>		TOTAL \$	658.22

# 6.1.1.8 Ventiladores:

Descripción	C/U \$	Total \$
Planchas 1/16" Fe	35.60	71.20
Planchas 3/16"	95.33	385.32
Planchas 3/16" x 1 ½ "	7.05	16.10
Ángulo 3/16" x 1 ½" x 1 ½"	13.67	13.67
Pernos ½" x 1 ½"	0.25	25.00
Motor de 3HP 1750 RPM	113.20	113.20
Motor de 4HP 3500 RPM	119.00	119.00
	TOTAL \$	743.49
	Planchas 1/16" Fe  Planchas 3/16"  Planchas 3/16" x 1 ½ "  Ángulo 3/16" x 1 ½" x 1 ½"  Pernos ½" x 1 ½"  Motor de 3HP 1750 RPM	Planchas 1/16" Fe       35.60         Planchas 3/16"       95.33         Planchas 3/16" x 1 ½"       7.05         Ángulo 3/16" x 1 ½" x 1 ½"       13.67         Pernos ½" x 1 ½"       0.25         Motor de 3HP 1750 RPM       113.20         Motor de 4HP 3500 RPM       119.00

#### 6.1.1.9 Plataforma

CANT.	DESCRIPCIÓN	C/U \$	TOTAL \$
4	Tubo 4" x 4" x 3/16"	58.00	232.00
10	Planchas estriadas 4' x 8' x 3/16'	101.85	1018.50
	Escalera		·
8	Tubo 1 1/4"	8.00	64.00
2	Canales 4" x 2" x 3/16"	34.00	68.00
3	Plancha estriado 1/8"	120.00	360.00
26	Tacos de expansión ½"	0.39	10.14
26	Pernos galvanizados con arandela	0.25	6.50
	plana ½" x 1 ½"		
· .		TOTAL \$	1759.14

# 6.1.1.10 Consumibles:

Cant.	Descripción	C/U S/.	Total S/.
4	Tarro de Exanox	214.50	858.00
40	Pliegos de lija de agua 400	0.5	20.00
100	Trapo industrial	0.3	30.00
7Kg.	Supercito 7018 1/8"	10.00	70.00
5 Kg.	Cellocor 60" y1/8"	8.00	40.00
20	Pliegos de Lija 200	0.7	14.00
75	Discos de corte inoxidable 4 1/2	15.00	1,125.00
35	Discos de desbaste 4 ½	7.00	245.00
10	Aporte 1/16"	50	500.00
5	Aporte 3/32"	50	250.00
12	Tungstenos 3/32"	12	144.00
25	Polifan 4 1/2"	20	500
15	Botellas argón	330.00	4,950.00
5	Lunas negras nº11	1.7	8.5

15	Lunas blancas		0.3	4.50
3	Par de guantes	· ·	6	18.00
10	Motas 2"		10.5	105.00
			TOTAL S/.	8,882.00
		v	TOTAL \$	2,716.2

COSTO TOTAL EN MATERIALES:	10,772.51	

# 6.1.2. COSTOS DE COMPRA DE MAQUINARIA:

CANT.	DESCRIPCIÓN	C/U \$	TOTAL \$
1	Prensa de 500 Kg/Hr	35,000.00	35,000.00
2	Cernedores de 1.7 x 1 x 1 m	4000.00	8,000.00
1	Post-acondicionador	4000.00	4,000.00
1	Secador Ducto radiador calentado por vapor (intercambiador de calor)	6000.00	6,000.00
1	Mezclador horizontal	8000.00	8,000.00
		TOTAL \$	61,000.00

#### 6.1.3. COSTOS DE MANO DE OBRA:

# FABRICACIÓN:

Personal	Diario a ganar	Tiempo	c/u s/	Total \$
2soldadores inox	80	3semanas	3360	1028
2sodaduras fe	65	1semana	455	139
3 armadores	50	4semanas	4200	1285
6 obreros	35	8semanas	11760	3596
2 pintores	35	1semana	490	150
1 Tornero	50	1semana	350	107
1 Ingeniero	75	8semanas	4200	1284

TOTAL \$	7,589.0

#### 6.1.4 COSTOS DE TRASLADO:

Si el taller donde se efectuará la construcción se encuentra en Huachipa y los lugares donde se efectúan los servicios por general están en el callao .

Si el auto a trasladar los equipos es una camioneta que consume petróleo y el tiempo de montaje es de dos semanas, nuestro costo de traslado seria, 5 galones/día que por dos semanas consumirá 60 galones de petróleo lo que nos llevaría a un costo total de S/. 570 = \$ 173

#### 6.1.5 COSTOS DEL MONTAJE:

Personal	Diario a ganar	Tiempo	C/U S/	TOTAL \$
3 Montajistas	50	8 semanas	8,400.00	2,568.80
2 soldador	65	3 semanas	2,730.00	834.86
6 obrero	35	8 semanas	11,760.00	3,596.33
1 Ingeniero	75	8 semanas	4,200.00	1284.40
	TOTAL	\$	<u> </u>	8,284.39

#### 6.1.6 COSTO DEL MONTAJE ELÉCTRICO:

Suministro e instalaciones eléctricas de la Planta Piloto, la cual incluye lo siguiente:

- Tendido, cableado del alimentador general desde el Tablero General de Ampliación, hasta el Tablero de Distribución Planta Piloto, Incluido tubería conduit, soportes cajas y accesorios de fijación y conexión.
- Tablero de Distribución Planta Piloto, panel metálico para adosar en pared hermético con puerta frontal, incluido en su interior lo siguiente:
  - 01 Interruptor termo magnético x x 100 A, Merling Gerin
  - 02 arrancador directo 6.0 HP, 440V, trifásico, Telemecanique
  - 01 arrancador directo 5.0 HP, 440V, trifásico, Telemecanique
  - 01 arrancador directo 2.5 HP, 440V, trifásico, Telemecanique
  - 02 arrancador directo 1. 0HP, 440V, trifásico, Telemcanique
  - 02 arrancador directo 0.75kw, 440V, trifásico, Telemecanique

- 12 arrancador directo 0.37kw, 440V, trifásico, Telemecanique
- Indicadores luminosos, pulsadores de arranque y parada
- Elementos de control para enclavamiento automático de fuerza
- Elementos de control para el sistema de emergencia
- Transformador de tensión 440V/220V, 1.5KW, monofásico
- Borneras, señalización cableado, accesorios de conexión.
- Tuberías conduit, tuberías flexibles herméticas, conectores herméticos, cajas condulet, soportes, accesorios de fijación, para los circuitos derivados de fuerza, emergencia, alumbrado y tomacorrientes desde el tablero de distribución Planta Piloto.
- Tendido y conexiones eléctricas con cable vulcanizado MNT para los circuitos derivados de fuerza, emergencia, alumbrado y tomacorrientes desde el tablero de distribución Planta Piloto.
- Sistema de emergencia: 01 Sirena, 07 pulsadores de emergencia
- Sistema de iluminación: 04 artefactos de iluminación 2 x 40 W, alto factor, hermético equipo completo, 03 tomacorrientes dobles 15 A con puesta a tierra, en caja hermético TICINO. 03 interruptores simples en caja TICINO.
- Pruebas y puesta en funcionamiento.
- Automatización por tiempo del poso acondicionador y secador. Incluyen pistones y electro válvulas.

#### **TOTAL \$**

13,200.00

#### 6.1.7 COSTOS DEL TENDIDO DE VAPOR:

#	Cant	U/M	DESCRIPCION	P Unit	Sub.Total
1)	2.0	UNI	Filtro tipo "Y", marca SPIRAX SARCO  * Modelo : IT  * Conexión : 1/2"  * Cuerpo : Fierro Fundido  * Malla : Acero inoxidable 20 mesh  PURGA SECADOR Y POST- ACONDICIONADOR	13.20	30.40
2)	1.0	UNI		26.72	26.72

			Manometro en acero inoxidable marca NOUVA FIMA (NFMGS-0655)  * Modelo: MGS18/3  * Dial: 2 1/2"  * Conexión: 1/4" NPT INFERIOR  * Rango: 0 - 160 PSI.  * Caja: Acero SS304  * Tubo, internos y conexión: SS316  SALIDA DE MANIFOLD		
3)	3.0	UNI	Tubo sifón de 1/4" con copla zincado para Manómetro. (ATCBR-0030)	8.00	24.00
4)	1.0	UNI	Válvula de globo, marca CRANE. (CRVGL-1030)  * Cuerpo: Bronce  * Conexión: 1/2"  * Modelo: D14  * Manufacturada: BS5154 PN32 clase 200  * Threaded BS21  * Rango: - 10 °C (a 32 Bar) a 260 °C (a 14 Bar)  B-PASS REDUCTORA INGRESO A PRENSA	17.30	17.30
5)	4.0	UNI	Válvula de esfera de tres cuerpos marca SPIRAX SARCO (SXVES-0020 / 3397300)  * Modelo: M10S2  * Conexión: 1/2" roscada NPT  * Cuerpo: Acero al carbono  * Esfera: Acero inoxidable 316  * Asiento: R-PTFE reforzado con carbón y grafito.  * Límites máx de operación: 62 bar g @ 72°C 10 bar g @230°C  * Límite máx. vapor saturado: 17.5 bar g @ 208°C INGRESO A SECADOR Y POST- ACONDICIONADOR	33.20	140.80
6)	2.0	UNI	Válvula de globo, marca CRANE. (CRVGL-1030)  * Cuerpo: Bronce  * Conexión: 1/2"  * Modelo: D14  * Manufacturada: BS5154 PN32 clase 200  * Threaded BS21  * Rango: -10 °C (a 32 Bar) a 260 °C (a 14 Bar)  B-PASS INGRESO SECADOR Y POST- ACONDICIONAD	17.30 OR	34.61
7)	2.0	UNI	Filtro tipo "Y", marca SPIRAX SARCO (SXFIL-0020 / 60310)  * Modelo : IT  * Conexión : 1/2"  * Cuerpo : Fierro Fundido  * Malla : Acero inoxidable 20 mesh  PROT. SOLENOIDE INGRESO SECADOR Y POST- ACO	13.2 N.	30.40

8)	1.0	UNI	VALVULA DE GLOBO DE 1", SHORITSU ROSC., ACERO FORJADO SALIDA DE MANIFOLD	46.15	46.15
•	1	٠.			
9).	1.0	UNI	Trampa tipo Flotador marca SPIRAX SARCO	176.00	176.6
			( SXTRA-0512 / 66667 ) * Modelo FTI-125 * Conexión : 1/2" NPT		
		. •	* Cuerpo: Fierro Fundido  * Internos: Acero inoxidable  * Presión máxima operativa: 125 psig (8.6 barg)  * Temperatura máxima operativa: 45°F (25°C).  PURGA DE SECADOR		•
. 10)	2.0	UNI	1 .	26.72	53.44
. 10)	2.0		Manometro de acero inoxidable, marca NUOVA FIMA (NFMGS-0640) * Modelo : MGS18/3 * Dial : 2 1/2"		23.11
			* Conexión : 1/4" NPT INFERIOR * Rango de 0 - 100 PSI.		
			* Caja en acero: AISI 304,  * Mecanismo, internos: AISI 306 INDICACION PRESION INGRESO Y REG. A PRENSA		
11)	4.0	UNI		32.00	128.0
,		0112	Válvula de esfera de tres cuerpos marca SPIRAX SARCO (SXVES-0140 / 3392010)  * Modelo: M10V2	52,00	120.0
			* Conexión: 1/2" roscada NPT		
			<ul> <li>* Cuerpo: Acero al carbono</li> <li>* Esfera y vástago: Acero inoxidable 316</li> <li>* Asiento: PTFE virgen.</li> </ul>		
		•	* Límites máx de operación : 62 bar g @ 25°C 5 bar g @200°C		
·			* Límite máx en vapor saturado : 10 bar g @ 183°C PURGA SECADOR Y POST-ACONDICIONADOR		
12)	2.0	UNI		71.20	142.4
			Visor para condensado, marca SPIRAX SARCO (SXVIS-0020 / 0222091)  * Ventana: Simple o una mirilla		
			* Conexión : 1/2" NPT PURGA SECADOR Y POST- ACONDICIONADOR		
13)	2.0	UNI	Válvula check tipo swing, marca CRANE (CRVCK-0610)	6.90	13.79
			* Cuerpo : Bronce * Conexión : 1/2" * Modelo : D138		
			* Manufacturada : BS5154 PN25 clase 150 * Threaded BS21 * Rango : - 10°C / 186°C ( 25 / 10.5 Bar)		

#### PURGA SECADOR Y POST - ACONDICIONADOR

			*		
14)	2.0	UNI	• ·	33.20	70.40
	,	· · ·	Válvula de esfera de tres cuerpos		
•			marca SPIRAX SARCO		
			(SXVES-0020/3397300)		
			* Modelo: M10S2		
	•		* Conexión: 1/2" roscada NPT  * Cuerpo: Acero al carbono		
			* Esfera: Acero inoxidable 316		
			* Asiento : R-PTFE reforzado con carbón y grafito.		
			* Límites máx de operación:		
			62 bar g @ 72°C		·
			10 bar g @230°C		
			* Límite máx. vapor saturado: 17.5 bar g @ 208°C REDUCTORA INGRESO A PRENSA		
			REDUCTORA INGRESO A FRENSA		
15)	1.0	UNI		13.20	13.20
13)	1.0	OIVI	Filtro tipo "Y", marca SPIRAX SARCO	13.20	13.20
	•		(SXFIL-0020 / 60310)		
			* Modelo : IT		
			* Conexión : 1/2"		
		٠.	* Cuerpo : Fierro Fundido		
			* Malla: Acero inoxidable 20 mesh		•
•			PROTECCION REDUCTORA INGRESO A PRENSA		
•				•	
16)	1.0	UNI		248.00	248.00
•			Válvula reductora de presión de acción directa		
b.			marca SPIRAX SARCO. (SXVRP-0020 / 0457490)		
			* Modelo : BRV2S de 1/2"  * Pagga de Pagg : 20 a 60 Paig / 1 4 a 4 0 Pagg		
			* Rango de Reg. : 20 a 60 Psig / 1.4 a 4.0 Barg * Resorte : Verde		
			* Cuerpo : Fierro dúctil		
			* INternos : Acero inoxidable		
			PRESION REDUCIDA INGRESO A PRENSA		
17)	1.0	UNI	VALVULA DE GLOBO DE 1/2", SHORITSU	27.25	27.25
.,			ROSC., ACERO FORJADO	<del>-</del>	
			REGULACION INGRESO A PRENSA		
			· .	,	
18)	1.0	UNI	T	84.00	84.00
10)	1.0	0111	rampa tipo balde invertido, marca SPIRAX SARCO	0-1.00	04.00
			(SXTRA-0940 / 64150 )		
			* Modelo : B1H-125		
			* Conexión: 1/2" roscada NPT		
			* Internos : Acero inoxidable		
			PURGA DE POST-ACONDICIONADOR		
,					•
19)	2.0	UNI		32.00	64.00
			Válvula de esfera de tres cuerpos marca SPIRAX SARCO		
			( SXVES-0140 / 3392010 ) * Modelo: M10V2		
			MODELO. MITO A Z		

		* Conexión: 1/2" roscada NPT  * Cuerpo: Acero al carbono  * Esfera y vástago: Acero inoxidable 316.  * Asiento: PTFE virgen.  * Límites máx de operación: 62 bar g @ 25°C  5 bar g @ 200°C  * Límite máx en vapor saturado: 10 bar g @ 183°C  PURGA DE PRENSA		
20)	1.0 UNI	Filtro tipo "Y", marca SPIRAX SARCO  * Modelo : IT  * Conexión : 1/2"  * Cuerpo : Fierro Fundido  * Malla : Acero inoxidable 20 mesh  PURGA DE PRENSA	13.20	13.20
21)	1.0 UNI	Trampa tipo Flotador marca SPIRAX SARCO (SXTRA-0512 / 66667) * Modelo FTI-125 * Conexión: 1/2" NPT * Cuerpo: Fierro Fundido * Internos: Acero inoxidable * Presión máxima operativa: 125 psig (8.6 barg) * Temperatura máxima operativa: 45°F (25°C). PURGA DE PRENSA	176.00	176.6
22)	1.0 UNI	Visor para condensado, marca SPIRAX SARCO (SXVIS-0020 / 0222091)  * Ventana: Simple o una mirilla  * Conexión: 1/2" NPT	71.20	71.20

Total de materiales \$	1,633.86
Mano de obra \$	1400
TOTAL \$	3,033.86

# 6.1.8 COSTOS DE TENDIDO DE LÍNEA DE AIRE COMPRIMIDO:

#	Cant U/M	DESCRIPCION	P Unit	Sub.To	otal
1)	1.0 MTS	Tubo de poliuretano 12, marca MICRO.  ( MMTUB-0030 / 0.000.012.530 )  * Diámetro Externo : 8mm  * Diámetro Interno : 5.5mm  CANTIDAD A DETERMINAR EN EL SITIO		1.58	1.58
2)	2.0 UNI	Perno para basculante, marca MICROMECANICA (MMRCI-0740 / 0.011 000 007)		5.73	11.46

		Empleado en :  * Cilindro : SP10  * Diámetro de émbolo : 80mm		
3)	2.0 UNI	Montaje basculante trasero macho, marca MICROMECANICA (MMRCN-0440 / 0.031.000.005)  * Diámetro de émbolo :80mm	40.22	80.44
4)	2.0 UNI	Montaje basculante trasero hembra, marca MICROMECANICA (MMRCN-0340 / 0.031.000.004)  * Diámetro de émbolo : 80mm	31.86	63.72
5)	4.0 UNI	Regulador de escape, marca MICROMECANICA.  (MMRES-0040 / 0.400.001.222)  * Conexión: 1/4"  * Silenciador: incorporado  * Presión de Trabajo: 0 - 10 bar (0 - 43 PSI)	19.95	79.8
6)	6.0 UNI	Conector instántaneo a 90° orientable marca MICRO (MMCON-9045 / 0.431.990.813) * Conexión: 1/4" * Empleado: Para tubo de ø 8mm	2.73	15.38
7)	1.0 UNI	Electroválvula 5/2, marca MICROMECANICA ( MMEB1-0171 / 0.220.002.522.112 ) * Serie : SB1 * Conexión : 1/4" * Reacción : Resorte * Tensión : 24 Vcc * Presión de Trabajo : 2.5 - 10 bar COMPUERTA DE MEZCLADOR	72.24	72.24
8)	2.0 UNI	Electroválvula 5/2, marca MICROMECANICA ( MMEB1-0171 / 0.220.002.522.112 )  * Serie: SB1  * Conexión: 1/4"  * Reacción: Resorte  * Tensión: 24 Vcc  * Presión de Trabajo: 2.5 - 10 bar	72.24	144.48

9) 4.0 UNI 3.01 12.04

Conector instántaneo a 90º orientable

marca MICRO

(MMCON-9055 / 0.431.990.817)

* Conexión: 3/8"

* Empleado: Para tubo de ø 8mm

10) 2.0 UNI

60.65 121.3

Horquilla para vástago, marca MICROMECANICA (MMRCI-1740 / 0.011.000.010)

* Rosca Hembra: 20 x 1.5

* Diámetro de émbolo: 80mm y 100mm

11) 2.0 UNI 175.80 351.6

Cilindro neumático doble efecto, doble amortiguación SIN imán marca MICROMECANICA (MMCAB-5100 / 0.051.060.100)

* Serie: CN10

* Diámetro de Embolo: 80mm

* Carrera: 100mm

12) 1.0 UNI VALVULA DE MARIPOSA VM 32 DE 8",MARCA 182.00 182.00 SPIRAX SARCO,CUERPO DE FIERRO FUNDIDO,DISCO Y VASTAGO EN ACERO INOXIDABLE ASIENTO DE EPDM

Y VASTAGO EN ACERO INOXIDABLE, ASIENTO DE EPDM 150 PSIG, 120 *C, MANDO A PALANCA 10 POSICIONES

Total de materiales \$	1,137.04	
Mano de obra \$	1400	
TOTAL \$	2,537.04	

#### 6.1.9 COSTOS DE LA PUESTA EN MARCHA:

Personal	Diario a ganar	TIEMPO	C/U S/	TOTAL \$
2 obrero	35	2 semanas	980.00	300.00
1 Ingeniero	75	_	1,050.00	321.10
	TOTA	L\$		621.00

#### 6.1.10. COSTO TOTAL DE HORA MÀQUINA:

Nos referimos a los costos de las máquinas necesarias para la construcción y montaje tales como:

Máquinas a cortar, Máquinas a soldar; Torno; Fresadora, esmeriladora, Taladros, Equipos de oxi corte, Máquina Tic, Limadoras, etc.

Todos los equipos para la fabricación de las máquinas y accesorios estimamos:

%2,500.00

#### **CONCLUSIONES Y RECOMENDACIONES**

La experiencia en fabricación de maquinas de alimentos balanceados para cardúmenes efectuada en plantas piloto, permiten lograr un procesos con eficiencia y productividad.

El trabajo realizado en plantas piloto reducen considerablemente el costo de experimentar el proceso de alimentos balanceados en plantas de gran producción.

En el análisis del pellets como la humedad la materia prima es un factor presente para establecer la calidad de los mismos, es por esa razón que se toma muy en cuenta el secado en el proceso de la planta piloto.

De la tesis podemos demostrar que el transporte de pellets es muy delicado a comparación a otros alimentos ya que el producto es muy frágil, podemos concluir que es muy recomendable que el producto saliendo de la prensa se dirija directamente al post acondicionador, no habiendo entre ellos algún trasporte ya que es muy fácil de producir rotura en el camino.

Teóricamente los agregados de líquidos deben añadirse en el producto caliente para que sea absorbido con facilidad, pero en la práctica se presentan problemas de rotura taponeando las zaranda, retornos de finos con grasa y suciedad en los equipos es por eso que se recomienda el agregar los líquidos en un producto frío y zarandeado.

El utilizar el transporte neumático nos resulto muy bueno ya que el producto transportado llega en su totalidad sin quedarse en el camino , esto hace que el mantenimiento sea mínimo en comparación a otros transportes como es el elevador.

La elección de un transportador tornillo sin fin con pasos diferenciales ayudo a la mejor dosificación del producto a la salida de la tolva del mezclador.

Los ventiladores tanto del colector como el de aspiración resultaron muy factibles para la planta ya que resultaron eficientes, ocuparon poco espacio y sobre todo el decibel que era uno de los problemas mas grandes se pudo solucionar gracias al estudio de este.

La aspiración guiándonos de normas BUHLER resultaron muy factibles para la planta piloto brindándonos un trabajo limpio sin partículas de polvo en el ambiente.

La propuesta diseñada en la presente tesis debe ser tomada muy en cuenta ya que permitirá que los usuarios puedan ejecutar las experiencias que sean necesarias sin ninguna dificultad.

#### **BIBLIOGRAFÍA**

Perry, Robert

MANUAL DEL INGENIERO QUÍMICO

CIUDAD DE PUBLICARON COLOMBIA

EDITORIAL UTHA

QUINTA EDICIÓN, 1966

Pita, Edgard
ACONDICIONAMIENTO DE AIRE – PRINCIPIOS Y SISTEMAS
CIUDAD DE PUBLICACIÓN MÉXICO
EDITORIAL CECSA
SEGUNDA EDICIÓN 2000

Baturrin V.V.
FUNDAMENTOS DE VENTILACIÓN INDUSTRIAL
EDITORIAL LABOR S.A.
TERCERA EDICIÓN, 1972

Aviles, Rafael
LIBRO DE TURBOMAQUINAS
CIUDAD DE PUBLICACIÓN LIMA – PERÚ
EDITORIAL WHEDITORES
PRIMERA EDICIÓN, 1992

Baumeister, Teodoro Avallone, Eugene MANUAL DEL INGENIERO MECÁNICO SEGUNDA EDICIÓN VOLUMEN I

Belt, Link
MATERIALS HANDLING AND PROCESSING EQUIPMENT

Mayunda S.R.
SISTEMAS NEUMÁTICOS: PRINCIPIOS Y MANTENIMIENTO
CIUDAD DE PUBLICACIÓN MÉXICO
EDITORIAL MCGRARW – HILL
PRIMERA EDICIÓN, 1998

J.P. Colman
TRANSFERENCIA DE CALOR
CIUDAD DE PUBLICACIÓN MÉXICO
EDITORIAL ED. CONTINENTAL
PRIMERA EDICIÓN, 1980.

Editorial Miraflores
TÉCNICAS MAQUINAS HERRAMIENTAS
CIUDAD DE PUBLICARON PERÚ
EDITORIAL MIRAFLORES
PRIMERA – EDICIÓN.

# ANEXOS

#### ANEXO Nº 1

#### MEDIDAS DE SEGURIDAD

#### MEDIDAS DE PROTECCIÓN PARA LA PREVENCIÓN DE ACCIDENTES:

- 1. El usuario de una máquina está obligado a respetar las siguientes prescripciones para alcanzar en las máquinas la máxima seguridad posible para el personal de servicio.
- 2. Los cubrefajas y cubrecadenas deben **siempre** estar montados y cerrados. Las cubiertas abiertas o desmontadas son una fuente sumamente peligrosa de accidentes que causan magulladuras y cortes.
- 3. Se mantendrán siempre en perfecto funcionamiento los interruptores finales de seguridad, cilindros de bloqueo y controladores de rotación, así como las válvulas magnéticas o los electroimanes de parada para enclavar las puertas. Nunca se deberán puentear los interruptores finales de seguridad ni ponerlos fuera de servicio.
- 5. Las parrillas de cubierta, barras de rejilla o rejillas de protección vienen normalmente fijas (montadas firmemente) y sólo se pueden sacar utilizando herramientas. Las máquinas con esta clase de equipo deberán siempre trabajar con los dispositivos de seguridad instalados con firmeza.
- 6. Para las revisiones y trabajos de ajuste, control y mantenimiento se deberá siempre poner fuera de servicio el motor de mando desconectando completamente todas las fases (conductores eléctricos). Esto se efectúa por medio de un interruptor con separación de todos los polos y con cerradura, el cual se encuentra junto a la máquina o en el pupitre de mando respectivo en el tablero de mando de una instalación.

No basta sacar los fusibles!

- 7. Si una máquina requiere otras fuentes de energía, como neumática, hidráulica, vapor o agua caliente, es necesario interrumpir o desconectar también los conductos de alimentación correspondientes y eliminar la presión en el sistema interno de tuberías.
- 8. Los órganos de maquinaria calentados respectivos .enfriados deben ser tratados con especial cautela ya que existe el peligro de quemaduras.
- 9. Si una máquina es puesta fuera de servicio por medio de un interruptor de emergencia, ella no deberá volver a marchar reponiendo dicho interruptor. La máquina deberá nuevamente arrancar recién después de conectar otra vez el conmutador principal.
- 10. Cuando en determinadas máquinas se accionan tan sólo **dispositivos de interrupción parcial,** hay que actuar con particular cuidado. Seguir meticulosamente las instrucciones entregadas con la máquina.
- 11. En el caso de emplear personas que no saben leer ni escribir, el propietario de la fábrica les deberá especialmente llamar la atención sobre los peligros eventuales y los deberá instruir adecuadamente.
- 12. La limpieza, engrasado y aceitado de las máquinas o de sus elementos se deberán efectuar **únicamente cuando la máquina está parada.** Si con este motivo precisa subir sobre la máquina o entrar en ella, está prescrito de forma obligatoria y sin excepción de desconectar todos los polos del motor o de los motores de accionamiento y de cerrar con llave el interruptor.

- 13. En el caso de máquinas de las cuales hay que sacar muestras, se cuidará que esto se realice sin riesgos. Frecuentemente es posible extraer las muestras también de un tubo posterior en vez de hacerlo directamente en la máquina.
- 14. Eliminar siempre los depósitos de polvo, suciedad o producto. La limpieza de las máquinas y de los dispositivos aumenta la seguridad del funcionamiento y la higiene de una instalación.
- 15. Si una máquina pierde aceite o grasa, eliminarlo inmediatamente y obturar la fuga. Manchas de aceite o de grasa en el suelo aumentan el peligro de accidentes para el personal de servicio.
- 16. Los dispositivos de seguridad deberán de todos modos ser mantenidos en perfecto funcionamiento y no deberán ser retirados ni hechos ineficaces o ineptos para funcionar.
- 17. Además deberán respetarse las prescripciones especiales para la prevención de accidentes incluidas en las instrucciones de servicio.

#### PROTECCIÓN CONTRA EXPLOSIONES:

Medidas para la prevención de incendios de polvo...

#### Orden general y limpieza

- 1. La limpieza de los locales de trabajo donde se trabaja con polvo combustible es una condición previa importante para la seguridad.
- Se debe evitar todo almacenamiento de materiales ensacados y a granel entre las máquinas.

- 3. Con el fin de reducir la contaminación del medio ambiente con polvo, todos los sistemas de transporte, ciclones y filtros deben mantenerse en buen estado, es decir, hay que evitar fugas en las tuberías y tapas en la mayor extensión posible.
- 4. Con el objetivo de evitar el peligro de explosiones de polvo es imprescindible efectuar una limpieza frecuente y eficaz de polvo en todas partes.
- 5. Los motores deben mantenerse exentos de acumulaciones de polvo.

#### Control y mantenimiento continuos

- 1. Para evitar un recalentamiento de las fajas debido al resbalamiento, es necesario controlar todos los accionamientos con fajas trapezoidales y planas en intervalos fijos, por lo menos una vez por semana.
- 2. El controlador del número de revoluciones y otros equipos similares de seguridad deben ser vigilados en intervalos fijos, por lo menos una vez por semana.
- 3. Todos los separadores magnéticos, deschinadoras y tamices deben controlarse y limpiarse por lo menos una vez al día.
- 4. Con el fin de evitar un recalentamiento de los ejes y cojinetes y garantizar su funcionamiento correcto, se deben controlar en intervalos fijos, por lo menos una vez por semana, y lubricar oportunamente.

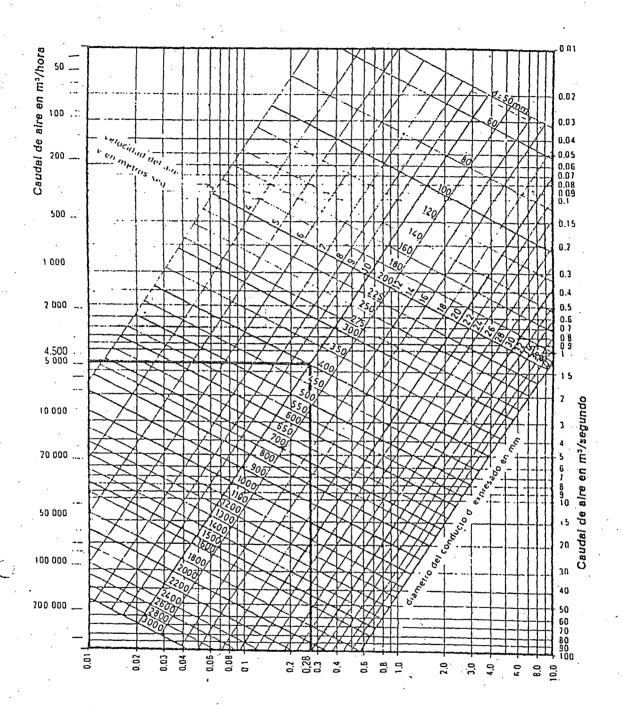
DIBUJA	DO:
	GBERROSP

Nombre:

PROY.:

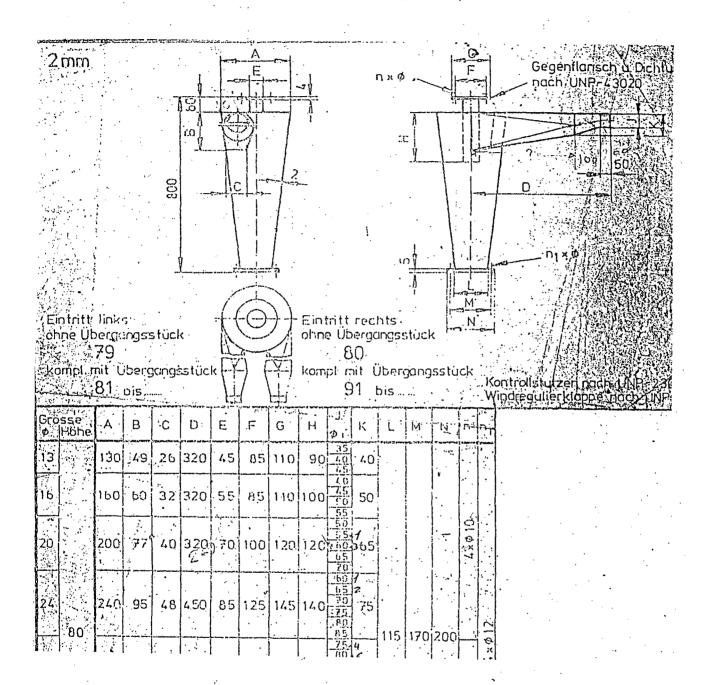
CAD

DIAGRAMA DE VAPOR


**GBERROSPID** 

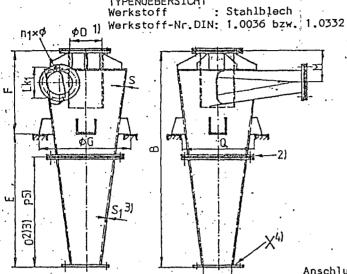
# ANEXO Nº 3





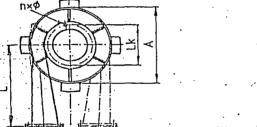

# FIGURA TN2

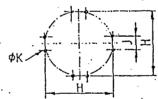



Pérdidas de carga en mm. de c.d.a. por cada metro de longitud de conducto

# TABLA TC1




# TABLA TC2

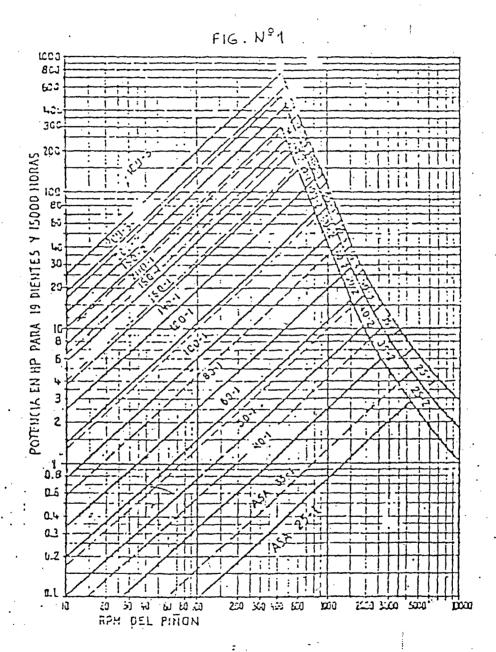

TYPENUEBERSICHT Werkstoff



- Eintritts- und Austrittsöffnung mit-Dichtung, Gegenflansch und Schrauben.
  - $\emptyset A$ , D,  $D_1$ , sind Innenmasse
- 2) Getrennte Ausführung zur Einsparung von Transportvolumen.
- unten verstärkt für eine Abscheidung von Schalenteilen (SF)
- 4) Anschluss an Kontrollstutzen UNP-23021 für Schleusen
- 5) Ausführung Oberteil Mangan verstärkt

Anschlussmasse der angeschweissten Pratzen ab Grösse 80 Flansch-Anschluss an Schauglas





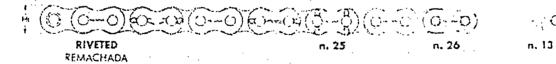



6xØ12

Blechstärken S und S₁ siehe UNP-43130

Grös <del>,</del> se MGXD	A		Đ	LK	nxd	D ₁	LK ₁	n ₁ xd	С	E	F	G ·	Ĥ	J	K	М	N	0 2)3)	P 5)	Q
<b>3.50</b>	₹.500	1630	-210	250	10x12	180	225	8x12	470		J			1.2		194	149			•
<b>60</b> %	₹600	1910	250	√290	10×12	210	250	10x12	540					·	•	227	181	603	1335	
70	<b>5700</b>	2230	300	340	12×12	250	300	10x12	600							269	207	1045	1584	




#### SERIE AMERICANA (ASA)

	Dii	mensione	s Nomina	les		Otras Din	rensiones	. V. 17. 18. 1		C	Part	Partes de Cadena			
Código	Paso	Diam. Rodillo	Ancho Interno	Diam. Max. Perno	Altura Max. de Placa	Centro de Calibre	Ancho Max. Perno Remach.	Largo Total Perno	Superficie de Trabajo	Carga Minima de Rotura	Peso Neto por Metro	Unión	Media Malla		
	P	// Dr	W	DP AV	Hi	⊵Tp %	A1	В		<b>!</b>	1/		,		
ASA 25		//mm //	mm	mm 🤃	mm	mm	· mm	mm	mm* 	kg 420	0,13	<b>n.</b> 26	<b>n.</b> 30		
ASA 35	6,35 9,525	3,3 5,08	3, <u>1</u> 8 4,77	2,3	6,02		8 11,9	13 18,5	27	1000	0,13		13-30		
ASA 40	12,7	7,95	7,95	3,59 3,96	9,05 12,07		16,5	24,3	44	1750	0,6	26 26	13.30		
ASA 50	15,875	10,16	9,53	5,08	15,09		20,4	28,6	70	2650	1,01	25-26	13-30		
ASA 60	19,05	11,91	12,7	5,94	18,08		26	35,2	105	3800	1,43	26	13.		
ASA 80	25,4	15,88	15,88	7,92	24,13		33,1	43,9	180	6600	2,57	. 24	14		
ASA 100	31,75	19,05	19,05	9,53	30,18		39,9	52,1	260	10800	3,87	24	1-1		
ASA 120	38,1	22,23	25,4	11,1	36,2	-	50,3	63,5	390	15400	5,65	24	14		
ASA 140	44,45	25,4	25,4	12,7	42,24	_	53,9	68,7	470	20800	7,44	24	14		
ASA 160	50,8	28,58	31,75	14,27	48,26	-	64,1	79,9	645	26200	9,74	24	14		
ASA 180	57,15	35,72	35,7	17,45	54,36	-	72,5	86,8	875	36200	13,28	24	14		
ASA 200	63,5	39,68	38,1	19,84	60,33	-	78,8	99,2	1090	43000	16	25	13		
ASA 240	76,2	47,63	47,63	23,8	72,39	-	95,5	116,5	1610	59000	-24	25	13		

Gráfico.

# CADENAS DE RODILLO - SIMPLES





# TABLA R2

# MAQUINAS MOTRICES

Clase A: Motores de combustión interna con acoplamientos hidráulico

Clase B : Motores eléctricos y turbinas

Clase C : Motores de combustión interna con acoplamiento mecánico

MAQUINA MOVIDAS	C	LASES	
WINGOINT WIG VIDING	<u>A</u> .	В	C
Agitadores de líquidos y semilíquidos	1.0	1.0	1.2
Alimentadores:			
De mesa giratoria	1.0	1.0	1.2
De mandil, de fajas, de paletas	1.2	1.3	1.4
Reciprocantes	1.4	1.5	1.7
Batidoras	1.2	1.3	1.4
Bombas centrífugas	1.0	1.0	1.2
Bombas reciprocantes de 2 o más cilindros	1.2	1.3	1.4
Compresores centrífugos	1.2	1.3	1.4
Compresores reciprocantes:			
De 3 ó mas cilindros	1.2	1.3	1.4
De 1 ó 2 cilindros	1.4	1.5	1.7
Chancadoras	1.4	1.5	1.7
Elevadores de cangilones:			
Alimentados ó cargados uniformemente	1.0	1.0	1.2
No alimentados o no cargados uniformemente	1.2	1.3	1.4
Generadores	1.0	1.0	1.2
Hornos y secadores rotatorios	1.2	1.3	1.4
Líneas de ejes (contraejes):			
Para servicio liviano y normal	1.0	1.0	1.2
Para servicio pesado	1.2	1.3	1.4
Maquinarias:			

Para aserraderos	1.2	1.3	1.4
De imprenta	1.2	1.3	1.4
De lavanderías	1.2	1.3	1.4
De panaderías	1.2	1.3	1.4
Transportadores:	٠		
Alimentados o cargados uniformemente	1.0	1.0	1.2
No alimentados o no cargados uniformemente	1.2	1.3	1.4

# CLASIFICACIÓN DE MATERIALES PARA TRANSPORTADORES DE TORNILLO SIN FIN

Una importante empresa norteamericana, la (Link Beit), tiene un interesante método para diseñar transportadores de tornillo Sin Fin, y de consiste en asignar a cada clase de material un determinado "Factor de material (F)"; de la siguiente manera:

- Materiales de la clase (a): Materiales no abrasivos, finos y ligeros y que corren libremente y que tienen un peso especifico entre 480 Kg./m³ y 640 Kg./m³, tienen un factor de material (F = 0.4). aplicable a materiales como: cebada, carbón pulverizado, harina de maíz, harina de borujo de algodón, semillas de lino, harina de trigo, cal pulverizada, malta, arroz, trigo.
- Materiales de la clase (b): Materiales no abrasivos, de densidad media, granulares o en pequeños terrones mezclados con finos y de 600 Kg./m³ de peso especifico; factor de material (F = 0.6). Aplicable a materiales tales como el alumbre fino, habas de soya, carbón de hulla (finos y menudos); granos de cacao, granos de café, maíz desgranado, sémola de maíz, gelatina granular, laminillas de grafito, cal hidratada.
- Materiales de clase (c): Materiales no abrasivos o semi abrasivos, granulares o en pequeños terrones mezclados con finos y de 640 Kg./m³ a 1200 Kg./m³ de peso especifico. Factor de material (F = 1.0). Aplicable a materiales como: alumbre en terrones, bórax, carbón vegetal, carbón de hulla clasificado, carbón de lignito, cacao, corcho molido, cenizas volantes limpias, cal sin desmenuzar, leche en polvo pulpa de papel, sal gruesa o fina, lodo de desagües, jabón pulverizado, carbonato sódico anhidro, almidón, azúcar refinada.

Materiales de la clase (d): Materiales semiabrasivos o abrasivos, finos, granulares o en pequeños terrones mezclados con finos y de 800 Kg./m³ a 1600 Kg./m³ de peso especifico. Los factores de materiales són variables tal como se indica:

```
Bauxista(F=1.8)
```

- Greda (F=1.4)
- Espatofluor(F=2)
- Oxidos de plomo(F=1)
- Caliza en polvo(F=1.6)
- Arena seca(F=2)
- Pizarra triturada (F=1.6)
- Azufre(F=1.6)
- Harina de hueso (F=1.8)
- Cemento (F=1)
- Arcilla(F=2)
- Yeso triturado(F=1)
- Cal de guijarros(F=1.3)
- Fosfato ácido de calciocon 7% de humedad(F=1.4)
- Esquisto triturado(F=1.8)
- Azucar en bruto(F=1.8)
- Materiales de clase (e): Materiales abrasivos, en filamentosos, que no deben ponerse en contacto con los cojinetes. En este caso puede que otros tipos de transportadores sean los más adecuados. Los factores de material son variables tal como se indica:
- Cenizas (F=4)
- Cuarzo pulverizado(F=2)
- Arena silicea (F=2)

# ANEXO Nº 4

Table 1. • Typical bulk materials handled by screw conveyors

Moterial	Average weight per cubic foot, pounds	Class	Material	Average weight per cubic foot, pounds	Class #
	·	1		0.5	201
Alfalfa meal	1 <i>7</i> 28-30	B37W C27T	Coffee, ground	25 22·26	826 - C16
Almonds, broken or whole	. 50-60	D26	Coffee, roasted bean.'	23-32	D38TX.
Alum, fine	45-50	826	Coke, loose	35-45	D28X
Alumina	60	828	Coke, petroleum, calcined	1	_
Aluminate jell.	45	827	Coke breeze, 1/4" and under	25-35	C38
Aluminom hydrate	18	C26	Copper sulphate		D26
Ammonium chloride, crystalline	52	B26	Copperas (see ferrous sulphate)	22	027
Ammonium sulphate,		. 020	Copro, lumpy	22	D26 .
Antimony powder	45-58	827	Copra cake, lumpy	25-30	D26
Apple pomace, dry	15	C37W	Copra cake, ground	40-45	B26
Asbestos shred	20-25	H37WZ	Copra meal	40-45	B26
Ashes, coal, dry, 3" and under			Cork, fine ground	12-15	B36WY
Asphalt, crushed, 1/2" and under	35-40	D37	Cork, gramlated	12-15	C36
Bagasse	45	C26	Corn, cracked	45-50	C26 .
Bakefite, fine	7-10	H36WXZ	Carn, seed	45	CIAST
Baking powder	30-40	A36	Corn, shelled	45	C165 .
Bark wood, refuse	41	A26	Corn germs	. 21	826
	10-20	H37X 🛦	Corn grits.	40-45	826
Barley Bauxite, crushed, 3" and under	38	8165	Corn sugar	31	826
Bears, castor, whole	75-85	D28 A	Cornmeal	38-40	826 🕏
Beans, castor, meal	36	C16 .	_ •	1	C26
Beans, navy, dry		826	Cottonseed, dry, de-linted	35	C26
	48	C16	Cottonseed, dry, not de-linted	18-25	D26
Bentonite, 100 mesh and under	50-60	A27Y ▲	Cottonseed cake, lumpy	40.45	10
Bicarbonate of sada	41	A26	Cottonseed flakes	20-25	A.
Blood, dried	35-45	D37	Cattonseed hulls	12	BJ&W
Sones	35.50	<b>.</b> .	Cottonseed meal	35-40	B26
Boneblack, 100 mesh and under	20-25	A27 ▲	Cottonseed meats	40	826
Bonechar, 1/4" and under	27-40	827	Cracklings, crushed, 3" and under	40-50	D34
Bonemeal	55-60	827	Cryolite	110	D27 "
Borate of lime.		A26 A	Cullet	80-120	. D28 <u>↓</u> :
Borax, fine	53	826	Dicalcium phosphale	43	A36 .
Baric acid, fine	55	826	Dolomite, lumpy	90-100	D27 🛦
Broa	18-20	8265W	Ebonite, crushed, 1/2" and under	63-70	CZS
Sread crumbs		826T	Egg powder	16	
Brewer's grain, spent, dry.	25.30	C36 V	Epsom salts	40.50	826
Brewer's grain, spent, wet.	55.60	C36PA	Feldspar, ground, 1/4" and under	65.70	827
Suck-heat	40-42	8165	Ferrous sulphate	1	C27
Coloum carbide	70.80	D27	Fish meal	35.40	836
Carbon black, pelletized	20-25	816TZ	Fish scrap	40-50	нэе
Corbon black powder	4.6	<b>A</b>	flasseed	45	8165
Casem	36	827 ▲		_	D26
Cast iron chips	130-200	C37	Floaseed cake, expeller	48.50 25	826
Cement, portland	65-85	A27Y	Flaxseed meal		739X
Coment clinker	75.80	D28 A	Flour, wheat	35.40	Y18A T
Charle lumpy	85-90 '	D37Z		(	1
Chare 100 mesh and under	70.75	A37YZ .	Fluorspar	82	C37 -
Chartaal	18-25	0371	Fly ash, dry (see flue dust)		1
Content coal	10	D28 A	Fuller's earth, oil filter, burned	40	B28
Oay (see bentonite, Fuller's earth,			fuller's earth, oil filter, raw	32-10	827
kaolin and mart)	•	1	-Fuller's earth, oil filter, spent	60.65	
Gover seed	48	8165	Gelatine, granulated	3.5	CZÓT
Coal, anthrocite	60	· C27P	Glass batch	90-100	D78 A
Coal, bituminous, mined, 50 mesh and under	50	BJSP	Glue, ground, 5% and under	40	527
Cool, bituminous, mined, sized	50	D26PT	Glue, pearl	40	C16
Coa, bituminous, mined, stack, 1/2"		Į i	Gluten meal	40	375
and under	50	C36P	Grains, distillery, spent, dry	30	H26₩
Cocca, powdered	30.35	A36Z	Graphile, Aske	40	C25
Corps beans	30.40	C271 A	Graphite, Bour	28	A16Y
Cocoo nibs	3.5	C27	Grope pomoce	15-20	C37W
Coconut, shredded	20.22	нэь	Cross seed	10-12	8265W
Coffee; green bean					

we tending we let justers tel 195 bites et te ag a

ik Comul tine be i

Organists when with the free chief of the constant of the property of water are constant. The second of the constant of the co

# Selection

Table 1 (continued) . Typical bulk materials handled by screw conveyors

Materal	Arerage weight per cybic foat, pounds	C'ass	Malerial	Average weight per cvac foot, pounds	Çá.
Gypsum, colcined, powdered	60-80	A37	Rice grits	42-45	826
Hops, spent, dry	35	H36	Rubber, hard ground (see ebonite)		-:-
Hops, spent, wel	50-55	H36P	Rye	44 -	5105
		:	· ·	45-50	C3771
ce, crushed	35-45	610	Sall, common dry, coarse Sall, common dry, fine	70.80	-827PL
Imenite ore	140	823	Salt cake, dry, coarse	85	D27
ron sulphate (see ferrous sulphate)	1/2	D27	Salt cake, dry, pulverized	65-85	627
Kaolin clay, 3" and under '	163	027	• • • • • • • • • • • • • • • • • • • •		1
amp black (see carbon black)			Saltpeter	80	8265
ead arsenate	72	BJGR	Sand, bank, dry	90-110 90-100	825 813
ignite, air dried	45.55	D26	Sand, silica, dry	10-13	
ime, ground, 1/2" and under	60	836Z	Sawdust		4
	40	83477	Shale, crushed	85-90	C27 &
Lime, hydrated, Wand under	12-40	876YZ	Shellac, pawdered or granulated	31	826K
lime, hydrated, pulverized	53-56	73975.	Silica gel	45	828
ime, pebble	23-20	B27▲	Slag, furnace, granulated	60-65	C28
imestone, agricultural, ¼" and under	08 -	P4/ A	State, crushed, 1/4" and under	80-90	C27
imestone, crushed	85-90	D27 A	Slate, ground, 1/2° and under	8 2	827
Limestone dust	75	A37Y	Soop beads or granules		8267
Litharge (see lead oxide)			Soap chips	15-25	C26T
Magnesium chloride	33	C36	Saap Rakes	5.15	526T
*			Soap powder.	20-25	826
Maize (see corn)	•		Scapitone tals, fine	40-50	A372
Malt, dry, ground, 1/2" and under	. 22	BZ6SW	Soda ash, heavy	55-65	827
Malt, dry, wholei	27-30	C265	· ·	[	١
Malt, wet or green	60-65	C39 ¥	Soda ash, light	20-35	A27 Y
Malt meal	36-40	826	Sodium nitrate	70-80	<b>^</b>
Manganese sulphate	70	C28	Sodium phosphate (see trisodium		}
Manganese supilare	- 80	D27 A	phosphote)		]. 3
Meat, ground		1	Sodium sulphate (see salt cake)		1
,		1	Saybean cake, over 1/2"	40-43	D26
Mica, ground		827	Saybean flakes, raw or spent	18-26	CZÓW
Mica, pulverized	13-15	A27Y	Soybean meal, cold	40	826
Mica, flakes	17-22	BIZWY	Soybeans, cracked	30-40	C275
Milk, dried flake	<b>5-</b> 6.	826K▲	Soybeans, whole	45-50	C175
Milk, malted	30-35	A36KZ	Starch	25-50.	
Milk, whole, powdered	20	BJOKLZ	Steel chips, crushed	100-150	820
Muriate of patash	77	828	Sugar, granulated	50-55	B26KT
Mustard seed	45	8165	Sugar, raw, cane or beet	55-65	8362.
	}	1	Sugar beet pulp, dry	12-15	
Naphthalene flakes		. A.	Sugar beet pulp, wet	25-45 .	
Oats		Clas	Sulphur, crushed, Yz" and under	50-60	C265
Oats, rolled	19	C265W	Sulphur, lumpy, 3° and under	80-85	D265
Orange peel, dry	t .	H36	Sulphur, powdered	50-60	8265)
Oxalic acid crystals	60	836L	Talcum powder	40-60	A271
Oyster shells, ground, 1/2" and under	53	C27	Tanbark, ground	55	
Oyster shells, whole	I .	D27X	Timothy seed	36	8265
Paper pulp		A	Tobacco, scraps	15-25	D364
•	í	ł	Tabacco, snuff.	30	836T)
Peanuts, in shells	15-20	D26T		l	ì
Peanuts, shelled		C26T	Trisodium phosphate		B27
Peas, dried	45-50	CIGST	Tung nut meats, crushed	25 16	D26
Phosphate rock	75-85	D27 A	Vermiculite, expanded	1	027
Phosphate sand	90-100	828	Vermiculite ore	80	
Plaster of paris (see gypsum, calcined,	1 ,5-100	""	Wheat	45-48	CI6S
powdered)	1	1	Wheat, cracked	40-45	8265
Potassium nitrate	76	CIZP	Wheat germ	28	826
	1	1	Wood chips	10-30	H36W
Pumice, 1/4" and under		838 ▲	Wood flour	16-36	
Rice, hulled or polished	45-48	B16	Zinc oxide, heavy	30-35	A36Z
Rice, rough	36	8265	Zinc oxide, light	10-15	A36W.

Refer to page \$63 for classification descriptions.

A Consult Link-Balt.

A Weight of material loose or slightly agitated. These weights are usually different when materials are settled or packed, as in bins or containers.

Table 2 . Capacities and speeds of horizontal screw conveyors

Material (lass	Screw diameter,	Maximum Jump size, inches	Mas.mum recommended speed.	Capetity of maximum recommended speed	Capacity at	frough peding
-		a	3	Cubic feet	per hour	
	1 6	1,	165	1 375	1 2.27	
	9	1 1/4	150	1200	a.:o	
A16 ·	12	2	140	2700	" 19.3	المسير // ا
315	14	2 1/1	130	4000	30.8	1 11.0 1
Clo	16	3	120	5600	46.5	).
·	18	ן כ	115	7600	46.1	
	20 .	31/3	105	9975	95.0	45 per cent
	6	74	120	180	1.5	
D16, H16	و ا	1 1 1/4	100	560	5.6	•
A26, A36	12 :	2	90	1200	13.3	
826, 836	14	2 1/3	8.5	1790	21.1	
C26, C36	16	3	80	2510	31.4	
D26, D36	18	3	75	3400	45.4	
H26, H36	20	3 1/3	70	4340	62.1	
	6 :	1/4	60	90	1.5	
A17, A27, A37	ğ	1%	50	280	5.6	
317, 827, 837	12	2	50	665	13.3	30 per cent
C17, C27, C37	14	2 1/2	45	950	21.1	30 per cent
D17, D27, D37	16	3 "	45	1410	31.4	
H17, H27, H37	18	1 3	40	1850	45.4	ł
1117, 1127, 1107	20	3 1/1	40	2485	62.1	
	6	<del></del>	60	45	.75	
A18, A28, A38	9	1 1/2	50	140	2.8	
518, 828, 338	12	2"	50	335	6.7	
C18, C28, C38	14	2 1/1	1. 45	470	10.5	(' O )
D18, D28, D38	16	3	45	705	15.7	
H18. H28. H38	18	;	40	910	22.7	1-9.4725
,,	20	3 %	40	1240	31.1	15 per cent

	1	Weight			Ма	sxlmu	m len	gih ol	conv		in lee	! A				Н	rsept	werl	actor	K	
	١, .	of		_			Screv	≠ dion	eter,	inches						Sc	rew di	cmeter	r, inch	es	
Material class	Gomponent group, Table 4	material, povnds per cubic	6 1	•	''		12 Coupli	ng dia			. 16 1	18	: 2	0	6	9	12	14	16	18	20
	1	1001	11/4	1/1	2	2	2 %	, 3	2%	3	3	1 3	1 3	1 3%				!		_ ']	
	1	1 10 10	1100	100	150	150	:200	·250	200	250	250	250	250	1250	181	10	9	8	8	7	7
	1	10 to 20	100	100	150	150	200	250	200	250	250	250	235	250	22	14	13	12	12	11	11
		20 to 30	100	100	150	150	200	250	200	250	250	250	185	235	26	18	17	16	16	_ 15	1 !
A16	A, B, C	30 to 40	100	100	150	150	200	250	200	250	250	210	125	185	30	22	21	20	20	19	15
B16	Fo	40 to 50	100	100	150	150	200	250	200	250	225	175	120	155	34	26	25	21	24	23	2:
Cl6	N	50 to 60	100	100	150	150	200	250	170	250	190	150	105	130	38	30	29	23	28	27	-27
.,.	1	60 to 70						250							42	34	33	32		31	31
		70 to 80	100	100	150	150	200	250	130	225	150	110	80	100	46	38	37	36	35	35	3:
	1 .	80 to 90	100	100	150,	150	185	250	120	205	135	100	70	90	50	42	41	20	40	39	3
	_	90 to 100	100	100	150	140	170	250	110	185	125	95	65	80	51	46	45	24	44	43	43
		1 to 10	100	100	150	1150	200	250	200	250	250	250	250	250	28	15	13	12:	12	111	10
		10 to 20	100	100	150	150	200	250	200	250	250	250	250	250	34	21	1 19	18	18	17	16
	1	20 to 30												250		27	25	24	2 4	23	27
A26	A, B, C	30 10 40												190	4.5	33	. 31	30.	30	29	2 ?
826	Fn	40 to 50												155	52.	39	37	35:	36	35	34
C26	И	50 to 60	100	100	150	150	200	250	165	1250	190	140	105	135	58	45	43	. 42	13	41	40
	1	50 to 70	100	100	150	150	200	.250	145	.245	165,	120	90	115	64	51	. 49	. 43	48	. 47	44
	Į.	70 to 80	100	100	150	150	200	250	.130	220	1.15	1110	1 80	105	70	57	55	. 54	54	53	5
	1	80 to 90	100	100	150	150	180	250	1115	195	1130	100	: 70	90	76	63	61	. 60	60	59	. 58
	<u> </u>	90 10 100	1100	100	150	135	165	.250	105	180	120	90	! 65	185	82	69	. 67	65	66	65	6

A Consult Link-Belt for lengths in excess of those listed.

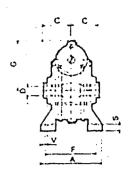
O for mildly corrosive materials, Class P.

and speeds.

B. Unsized material consisting of coorse and fines where 25% of volume does not exceed maximum lump size and average size of balance does.

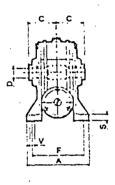
not exceed one-half of the maximum lumpitize. When with exceed 25° of volume or material contains hard, undirectable 1/mps, consult Link-Beb.

Special higher than those recommended will result in accelerated, wear on hanger bearings and couplings.

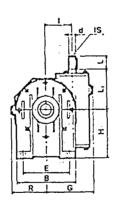

# ANEXO Nº 5

### REDUCTORES TORNILLO SIN FIN

REDUC	RPM -	RPM	Potencia				Ti	po			./.
CION	Entr	Salida	Torque	140	150 [	160	170	180	190	I 110	l 130
7,5/1		226,6	CV	1,04	1,97	3.79	5:54	6.50	8.52	14.70	23.9
			KGM	2.80	5.30	10,40	15,30	17,87	23,15	40.42	66,47
10/1		170	CV	0.82	1,66	2,64	4,60	4,44	6,00	12.50	20.52
			KGM	2,90	5.80	9.50	16,50	15,71	21,23	45,28	74.34
15/1		113	CV	0,64	1,30	-2,41	3,42	4,44	6,12	. 10,40	15,60
	: 1	l	KGM	3,20	6,60	12,40	18,00	23,07	32,19	57,71	83,05
20/1		85	CV	0,59	0.89	1,60	2,32	3,12	4,44	6,60	10.80
	<u>.</u>		KGM	08,8	5,80	10,90	15,50	20,77	30,30	43,93	74,61
25/1		68	CV	0,46	0.82	1,50	1,92	2,52	3,48	5,70	8,64
· ·			KGM	3,60	5,70	12,20	16,10	20,43	29,68	48,02	71,89
30/1	1700	56,6	CV	0,47	0,82	1,54	1,97	2,88	3,72	6,60	9,60
			KGM-	4,10	7,30	13,90	19,20	26,60	35,00	65,14	92,32
40/1		42,5	cv	0,37	0,63	1,08	1,45	2,16	2,76	4,80	7,08
			KGM	4,00	6,40	12,80	17,50	24,38	3,00	60,66	85,90
50/1		34	cv	0,31	0,50	0,82	1,27	1,56	2,16	3,85	6,00
			KGM	4,00	6,20	11,50	18,00	22,00	32,00	57,58	80,00
60/1		28	CV	0,25	0,42	0,67	1,03	1,32	1,80	3,00	4,56
	<u>]</u>		квм	3,80	5,80	10,60	16,50	20,00	30,84	53,71	79,31
80/1		21	cv	0,18	0,32	0,54	0,79	1,02	1,32	2,16	3,48
			KGM	3,00	5,60	10,30	12,80	12,08	25,21	45,67	68,83
100/1		17	CV	0,14	0,27	0,42	0,65	0,83	1,02	1,68	2,76
	<u> </u>		KGM	2,80	5,20	9,10	12,30	17,20	24,00	40,00	62,00
	Peso		Kg	3,0	4,0	9,0	11	17	22	29	45 .


I...A

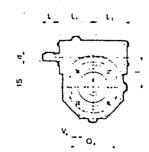
-1<u>)</u>-1

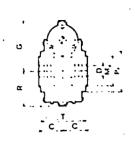



I...B

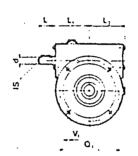


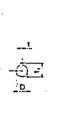


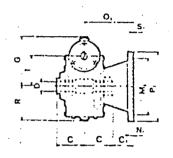

I...V



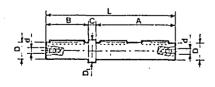

- <del> </del>		
٠	V F	

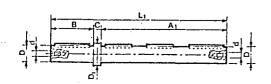

Tipo	А	В	E	F	S	٧	d .j6	G	Н	H ₁	H ₂	1 1	ls	L	L ₁	L ₂	R	С	D m7	t	tı
140	100	96	70	84	8	7	11	66	71	111	31	40	M4	23	63,2	57	48	41	19	6	21,8
150	114	112	85	96	10	9	14	80	85	135	35	50	M5	30	73	67	56	49	24	, 8	27,3
160	137	140	95	111	12	11	19	94	100	. 160	40	60	М8	40	86	80	75	60	25	8	28,3
170	141	156	120	115	12	11	19	106	115	185	45	70	мв	40	86,8	86	81	60,5	28 .	8	31,3
180	151	180	140	147	13	11	24	127	142	222	62	80	мв	50	110	105	95	70	35	10	38,3
190	198	210	160	164	15	13	24	139	150	240	60	90	М8	50	126	124	111	75	38	10	41,3
1110	190	250	200	160	18	13	28	170	172	282	62	110	М8	60	148	144	141	77,5	42	12	45,3
1 130	225	280	240	190	18	13	38	194	200	330	70	130	M10	80	167	160	155	95	48	14	51.8


I...FP

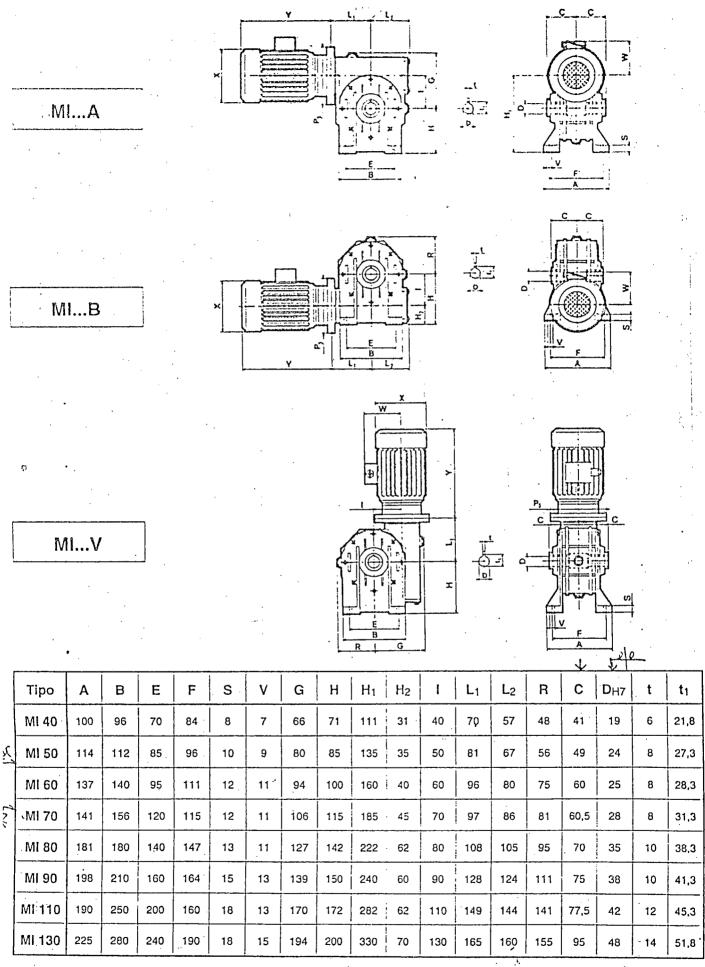






I...F



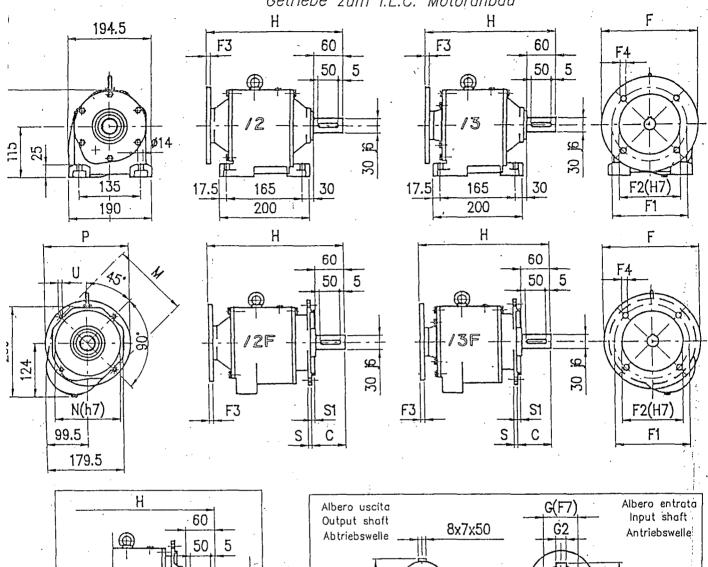


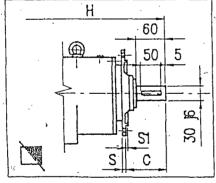



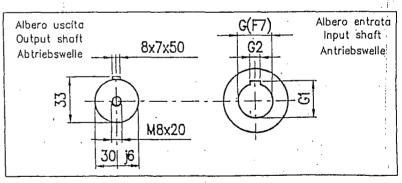

Tipo	C ₁	M1 H7	N ₁	01	P ₁	Q ₁	S ₁	V ₁	Q4	V ₄ .	P ₄	M4 T
140	41	95	11	82	140	115	4	9	65	М6	96	50 77
150	43	110	11	92	160	130	4	10	75	M6	88	60 93
160	42	130	12	102	200	165	4	11	85	М8	105	70 115
170	51	130	12	111,5	200	165	5	11	100	M8	115	80 114
1.80	50	130	13	120	200	165	5	11,5	130	M10	145	110 133
190	52	180	14	127	250	215	5	14	130	M10	160	110 143
1110	72,5	180	18	150	250	215	5	15	165	M12	200	130 148
I 130	.55	230	18	150	300	265	5	٠ 15	215	M12	240	180 - 172






Tipo	А	В	D h7	D ₁	d .	L	L1
140	80	40	19	22	М8	130	182
150	97	50	24	28	М8	157	218
160	118	60	25	28	M8	183	250
170	120	60	28	34	M8	190	261
180	138	60	35	38	M8	<b>2</b> 03	270
190	149	80	38	44	M10	245	342
1110	154	110	42	48	M10	280	407
1130	188	110	48	53	M10	314	:442





P₅, X e Y: conforme tabla de motores

MHL 30 PAM .

Motoriduttore P.A.M. – P.A.M. arranged geared motors Getriebe zum I.E.C. Motoranbau







30/2-30/3	G	G1	G2	F	F1	F2	F3	F4	н
/271 B5 /2F71 B5	14	16.3	5	160	130	110	10	9	315
/280 B5 /2F80 B5	19	21.8	6	200	165	130	11	11	309
/290 B5 /2F90 B5	24	27.3	8	200	165	. 130	11	11	309.
/2100-112 B5 /2F100-112 B5	28	31.3	. 8	250	215	180	12	13	312
/356 B5 /3F56 B5	9	10.4	3	120	100	80	8	7	303
/363 B5 /3F63 B5	11	12.8	4	140	115	95	12	9	302
/371 B5 /3F71 B5	14	16.3	5	160	130	110	10.5	9	301
/380 B5 /3F80 B5	19	21.8	6	200	165	130	10.5	11	301

	P=160											
N	С	М	Р	S	S1	U						
110	65	130	160	10	3.5	9						
,		: F	=200	)								
N	С	М	Р	S	S1	U						
130	65	165	200	10	3.5	11.5						
	P=250											
NI.	>	W	p	ď	SI	l u J						

215

180

ř					`		,	
kW	HP	, n1	n2	M2 .	i	sf	TIPO-TYPE-TYP	MOTORE-MOTOR
,		(1/min)	(1/min)	(N.m)		•		
0,75	1	900	27,8	249,7	32,35	1,45	HL-30/2	90Sa/6
0,75	1 .	900	32,8	211,7	27,43	1,71		
0,75	1	900	38,0	182,6	23,66	1,99		
0,75	1	900	43,5	159,7	20,69	2,27		
0,75	1	900	49,2	141,2	18,29	2,57		
0,75	1	990	58,3	, 119,1	15,43	3,05		
0,75	1	900	68,1	102,0	13,21	3,56		,
0,75	. 1	900	78,7	88,2	11,43	4,11		•
0,75	1	900	19,0	365,9	47,40	1,80	HL-40/2	90Sa/6
0,75	1	900	21,3	325,8	42,21	2,03		
0,75	1	900	23,7	293,0	37,96	2,25		'
0,75	1	900	27,5	253,0	32,78	2,61		
0,75	1	900	31,0	224,3	29,05	2,94		•
0,75	.1	900	38,4	181,0	23,45	3,65	•	
0,75	1	900	42,3	164,4	21,30	3,75		

kW	HP	· n1	n2	M2	i	sf	TIPO-TYPE-TYP	MOTORE-MOTOR
		(1/min)	(1/min)	(N.m)				
1,1	1,5	910	8,6	1163,3	105,52	.57	HL-40/3	90Lb/6
1,1	1,5	910	10,2	982,4	89,11	,67		
1,1	1,5	910	7,2	1388.3	125,93	,95	HL-50/3	90Lb/6
1,1	1,5	910	8,4	1201,3	108,97	1,10	112 00/0	SOLDIO
1,1	1,5	910	9,6	1048,4	95,10	1,26	••	
1,1	1,5	910	10,9	921,1	83,55	1,43		
1,1	1,5	910 ·	12,8	780,9	70,83	1,69		
1,1	1,5	910 -	15,1	666.2	60,43	1,98	•	
1,1	1,5	910	3,7	2732,7	247,88	,93	HL-60/3	90Lb/6
1,1	1,5	910	4,1	2421,6	219,66	1,04	1111-00/0	
1,1	1,5	910	5,1	1955,0	177,33	1,29		
1,1	1,5	910	5,7	1775,5	161,05	1,42		
1,1	1,5	910	6,7	1488,3	135,00	1,70		
1 1,1	1,5	910	7 ₇ 9	1268,7	115,08	1,99		
1,1	1,5	910	9,2	1095,3	99,35	2,31		
1,1	1,5	910	10,5	954,9	86,62	2,65	•	•
i,i	1,5	910	12,0	839,0	76,10	3,02		
1,1	1,5	910	14,4	698,5	63,36	3,62	6.5	
1,1	1,5	910	17,1	587,2	53,26 '	3,02 4,31		
1,1.	1,5 1,5	910	2,5	4087,1	370,73	1,08	111 70/0	201 5-70
1,1	1,5	910	2,3 2,8	3568,1	323,65	1,23	HL-70/3	90Lb/6
1,1	1,5	910	2,0 3,2	3173,5	287,86			
1,1	1,5				•	1,39		
	1,5	910	3,9	2581,6	234,17	1,70	1.	
1,1	1,5	910	4,3	2353,9	213,52	1,87		
1,1	1,5	910	5,0	1989,7	180,48	2,21		
1,1	1,5	910	5,9	1711,2	155,22	2,57		
1,1	1,5	910	6,7	1491,3	135,27	2,95		· ·
1;1	1,5	910	7,6	1313,3	119,13	3,35		•
1,1	1,5	910	8,6	1166,3	105,79	3,77	•	· · · · · · · · · · · · · · · · · · ·
1,1	1,5	910	55,8	182,7	16,32	,87	HL-25/2	90Lb/6
1,1	1,5	910	63,6	160,2	14,31	1,,00		
1,1	1,5	910	76,3	133,5	11,92	1,19		•
1,1	1,5	910	90,4	112,8	10,07	1,41		,
1,1	1,5	910	106,1	96,1	8,58	1,66		
1,1	1,5	910	123,5	82,5	7,37	1,87		
1,1	1,5	910-	143,1	71,2	6,36	2,01		
1,1	1,5	910	173,3	58,8	5,25	2,25	•	
1,1	1,5	910	209,7	48,6	4,34	2,49		

#### TORES METALCORTE/EBERLE PARA AMBIENTES RESSIVOS IPW55

#### RACTERÍSTICAS GERAIS:

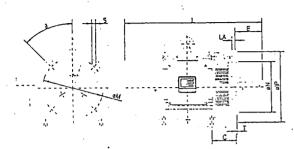
lotor trifásico, assincrono de indução com rotor de gaiola

arcaça: 71 a 355 ABNT

otalmente fechado com ventilação externa (TFVE)

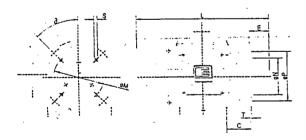
otência: 1/12 a 500CV

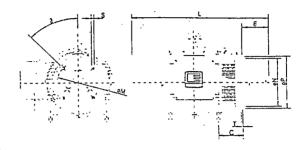
reqüência: 60Hz


ensões: 220/380;380/660;220/440V;440;440/760 ou

:20/380/440/760V

- Polaridades: 2, 4, 6 ou 8 polos 3
- Classe de Isolação: B (130°C), F (155°) ou H (180°C)
- Grau de Proteção: IPW55 (NBR6146)
- Dimensões conforme NBR 5432


Estes motores são indicados para aplicação em ambientes agressivos que requeiram confiabilidade para suportar tais circunstâncias, como por exemplo: siderúrgicas, fábricas de papel de celulose, mineradoras, fábricas de cimento, fundições, tratamento de afluentes, indústria química e petroquímica.


#### **ADOS MECÂNICOS**



#### NFORME NORMA NBR 5432

			DIM	ENSÕES	DA FLAN	GE TIPO	) "FF"	, "BS"		
RCAÇA ABNT)	FLANCE (ABNT)	С	LA	ØМ	ØN	ØP	øs.	т	а	OT, DE FUROS
56	FF 100	36	8	100	80j6	120	7	3,0	45	. 4
63	FF 11S	40	10	115	95j6	140	· 10	3.0	45	.4
71	FF 130	45	10	130.	110j6	160	10	3,5	45"	4
80	FF 165	50	12	165	130j6	200	12	3.5	45*	4
90 \$	FF 165	56	12	165	130j6	200	12	3,5	45"	4
90 L	FF 165	56	12	165	130j6	200	12	3,5	45°	. 4
100 L	FF 215	63	14	-215	180j6	250	15	4,0	45"	4
112 M	FF 215	70	14	215	180j6	250	15	4,0	45"	. 4
132 S	FF 265	89	14	265	230j6	300	15	4.0	45'	4
132 M	FF 265	89	. 14	265	230j6	300	15	4.0	45"	4
160 M	FF 300	108	15	300	250j6	350	19	5.0	45°	. 4
160 L	FF 300	108	15	300	250j6	350	19	5.0	45.	4
180 M	FF 300	121	15	300	250j6	350	19	5.0	45"	4
180 L	FF 300	121	15	300	250j6	320	19	5,0	45	4 .
200 M	FF 350	133	15	350	300]6	400	19	5.0	45°	4
200 L	FF 350 -	133	15	350	300j6	400	19	5.0	45°	4
:25 S/M	FF 400	149	16	400	350)6	450	19	5.0	22,30,	8
:50 S/M	FF 500	168	18	500	450j6	550	19	5.0	22,30,	8
:80 S/M	FF 500	190	18	500	450j6	550	19	5.0	22.30,	8
115 S/M	FF 600	216	22	600	\$50]6	660	24	6,0	55.30,	8
122 W/F.	,FF 740	254	22	740	680j6	800	24	6,0	25.30,	8





#### CONFORME NORMA NEMA MG1 11.34 E MG1 11.35

			DIME	isões da F	LANGE	TIPO "C" - "NE	MA"		
CARCAÇA (ABNT)	FLANGE (ABNT)	c	ØМ	ØN	ØP	ØS	T	9	QT, DE FUROS
63	FC 95	40	95,2	76,2 h8	135	1/4" 20 UNC	4	45"	4
71	FC 95	45	95.2	76,2 h8	143	1/4" 20 UNC	4	. 45*	4
80 .	"FC 95	50	95.2	76,2 h8	120	1/4" 20 UNC	4	45"	4
90 S	FC 149	56	149.2	114,3 h&	165	3/8" 16 UNC	4	45.	4
90 L	FC 149	56	149,2	114.3 ha	165	3/8° 16 UNC	.4	45.	4
100 L	FC 149	63	149.2	114,3 h8	168	3/8" 16 UNC	4	45"	4
112 M	FC 184	70	184,2	215,9 h8	220	1/2" 13 UNC	7	45"	4
132 5	FC 184	89	184.2	215,9 h8	220	1/2" 13 UNC	7	45"	4
132 M	FC 184	89	184,2	215,9 h8	220	1/2" 13 UNC	7	45'	4
160 M	FC 184	108	184.2	215,9 h8	255	1/2" 13 UNC	7	45.	4
160 L	FC 184	108	184,2	215.9 h8	255	1/2" 13 UNC	7	45"	4
180 M	FC 228	121	228,6	266,7 h8	281	1/2" 13 UNC	7	45	4
180 L	FC 228	121	228,6	266,7 h8	281	1/2" 13 UNC	7	45"	4
200 M	FC 228	133	228,6	266.7 h8	330	1/2" 13 UNC	7	45.	4
1-200 L	FC 228	133	228.6	266,7 h8	330	1/2" 13 UNC	7	45°	4
225 5/M	FC 279	149	279.4	317,5 h8	349	5/8" 11 UNC	7	. 22"30"	8
250'S/M	i FC 279	168	279.4	317,5 h8	392	5/8" ! 1 UNC	7 -	. 22'30'	8
280 S/M	FC 355	190	355,6	406,4 h8	450	5/8" 11 UNC	7	55.30.	8
315 S/M	FC 368	216	368,3	419,1 h8	455	5/8" 11 UNC	7	22,30,	. 8

#### CONFORME NORMA DIN 42677 E DIN 42948

		DIM	ENSÕE	S DA FLA	NGE .	ום "כי	N - "B	14"	
CARCAÇA (ABNT)	FLANGE	c	ØМ	ØN	ØP	øs	Т	9	OT, OE FUROS
56	C 80	36	65	50 j6	80 .	MS	2.5	450	4
63	C 90	40	75	60 [6]	90	MS	2,5	45°	4
71	: C 105	45	85	70 j6.	105	м6	2,5	45°	4
80	C 120	50	100	80 j5	120	М6	3,0	450	4
90 \$	. C 140	. 56	115	95 j6	140	м8	3.0	450	4
90 L	C 140	56	115	95 j6	140	М8	<b>~ 3.0</b>	450	4
100 L	C 160	63	130	110 j6	160	М8	3.5	454	4
112 M	C 160	70	130	110 j6	160	М8	3,5	45°	4
132 S	C 200	89	165	130 j6	200	м10	3.5	450	4
132 M	€ 200	89	165	130 j6	200	MIO	3,5	450	4

### ARGAS AXIAIS E RADIAIS ADMISSÍVEIS PARA MOTORES COM FREQUÊNCIA DE 60 HZ (KGF)

POLOS POSICÃO		<b>,2</b> 1	OLO	os			4	PÓL	.os		•	. 6	PÓL	os			8	PÓLO	05	
CARCAÇA	1	u .	u	IV.	R	1	n	III	IV	R	1	11	łu	١٧	R	* ;	11 2	1111	ıv :	R :
56	14	16	15	15	21	20	22	21	21	26	25	27	26	26	30	29	30	29	29	33
63	19	21	20	20	28	28	31	29	. 29	35	34	36	35	35	40	38	41	39	39	45
71	26	29	27	27	36	37	41	38	38	46	46	20	47	47	53	52	56	54	54	59
.80	32	39	34	34	46	48	55	50	50	.58	59	66	62	62	67	68	75	71	71	73
90	31,	42	35	35	51	48	59	52	52	62	61	72	65	65	71	71	82	75	75	78
100	41	54	46	46	71	64	80	70	· 70	90	-81	99	88	88	103	96	113	102	102	114
112	60	90	66	81	103	91	135	98	122	130	115	167	123	153	149	135	191	143	177	164
132	79	120	93.	93	144	131	169	145	145	181	169	207	182	182	209	198	236	212	212	229
1-60	87	167	114	114	185	156	236	.183	183	234	204	284	231	231	268	243	323	270	270	295
180	125	200	150	150	225	216	299	243	243	284	271	378	306	306	325	320	435	358	358	359
200	121	237	170	164	304	216	357	267	267	383	278	444	338	338	438	332	511	.397	. 397:	485
225	125	272	178	178	302	226	414	294	294	429	299	509	376	376	490	357	588	441	441:	542
250		315									.308				570				484	
280	89	345	183	183	481	200	576	337	.337	607	:286	715	443	443	695	: 370 1	811	530	i 530 l	767 l

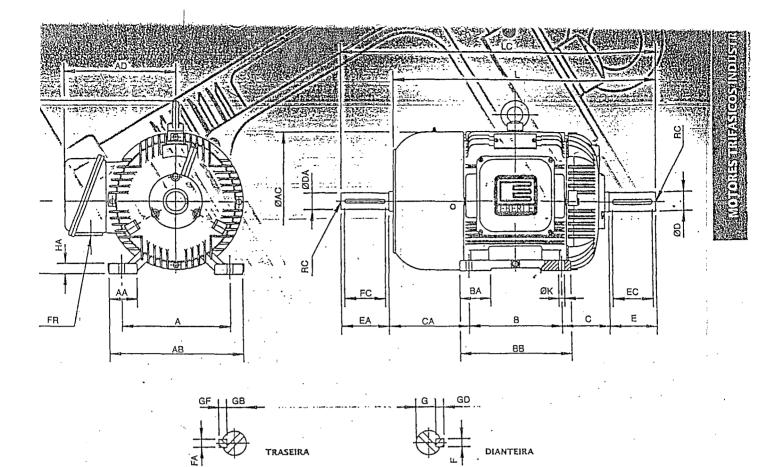
POSIÇÃO I - MOTOR NA VERTICAL COM PONTA DE EIXO PARA CIMA E FORÇA ATUANDO PARA BAIXO.

POSIÇÃO II - MOTOR NA VERTICAL COM PONTA DE EIXO PARA CIMA E FORÇA ATUANDO PARA CIMA.

POSIÇÃO III - MOTOR NA HORIZONTAL COM CARCA ATUANDO PARA DENTRO.

POSIÇÃO IV - MOTOR NA HORIZONTAL COM CARCA ATUANDO PARA FORA.

POSIÇÃO R - CARGAS RADIAIS SOBRE O EIXO.


NOTAS:

1 - OS VALORES DAS TABELAS DE CARCAS SÃO
CONSIDERADOS PARA UMA VIDA ÚTIL EM TORNO DE 20.000
HORAS (MOTOR OPERANDO EM 60Hz E COM ACOPLAMENTO

HORAS (MOTOR OPERANDO LIN GOTA E COMMENTAL DE DIRETO)

2 - PARA MOTORES QUE OPERAM EM 50Hz A VIDA ÚTIL
ESTIMADA É DE 24.000 HORAS,

3 - AS CARCAS AXIAL E RADIAL NÃO PODEM SER
ASSOCIADAS EM UM MESMO MOTOR CARCAS MAIORES SOR



No.   1	•	• •	••••		******							-			DI)	HEHSÖE	S EU N	ILIMETRO	ş				-			-				_,,			ROLAMENTO	s
No.   1	•				0												ONTA D	E BXO	-							•								UNCHONING.
10	٨	۸	٨	A 8	АC	A D	•	8.4	, 1	С	CA -	80	Ε	F	G	GB	EC	Ø D A	. E.A.	FA	GB	GF	FC	н	HA	HO	øx	ı				u.	LOA	1-1-1
115	90	١	8	106	100	35	71	18	37	16	54	918	. 20	3	7,2	3	10	9)6	20	3	7,2	)	10	36	2	·	5,8	178	201	1 x 3/6 👡	. YS	6200zz	520022	•
115	100	2	3	120	118	94	60	23	100	10	78 .	11]5"	23	4	8,5	4	12	9]6	20	3	7,2	3	10	63	1		9 ·	203	241	1 = 3/8"	Α2	6201zz	6201zz	•
140   35   74   188   152   106   32   123   58   100   246   50   81   20   7   22   166   40   5   13   5   16   90   11   - 10   10   100   100   172   74   145   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125   125	112		7	136	142	120	90	30	110	45	88	14j6	30 :	5	11	5	16	1136	23	4	8,5	4	12	71	9	<u>                                     </u>	7	241	276	l x 1/2°	A Z	6203zz	6203zz	
140   35   174   148   152   125   38   153   154   149   150   154   149   150   154   149   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   150   154   154   150   154   154   150   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154   154	125	3	12	155	164	131	100	.35	125	50	93	19]6	40 !	6	15,5	6	25	14]6	30	5	11	5	16	80	11	Ŀ	10	274	. 313	1 x 1/2°	A 3.15	620422	6204zz	•
160 35 192 205 181 40 43 170 65 111 2115 60 8 214 7 40 2216 30 6 114 2 215 60 8 24 7 40 2216 30 8 214 7 40 2216 30 8 24 7 30 222 179 40 0 20 222 179 40 0 50 177 70 125 2115 60 8 14 7 40 2406 50 8 24 7 40 220 12 117 11 11 11 11 11 11 11 11 11 11 11 11	140		15	174	188	152	. 100	38	128	. 56	104	24/6	50	8	20	7	32	16]6	40	3	13	5	16	90	111	<u>  :</u>	10	. 301	350	1 x 3/4"	A 3,15	6205zz	620Szz	•
10   40   20   22   17   46   50   17   70   12   28   50   60   8   74   7   40   24   50   18   24   7   40   24   50   18   25   24   25   18   25   18   25   18   25   18   25   22   8   15   38   50   10   13   18   55   28   6   8   24   7   24   18   25   28   18   25   28   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   8   18   25   22   23   18   25   23   23   23   23   23   23   23	140	3	IS .	174	188	152	125	38	153	56	104	24j6	50 •	8	20	7	32	16,6	- 40	. 5	13	5	16	90	11	i .	10	326	375	1 x 3/4°	A 3,15	6205zz	6205zz	•
216	160	3	15	192	205	161	140	43	170	63	118	28j6	. 60	8	24	7	40	22]6	50	6	18,5	6	25	100	14		: 12	. 366	431	1 x 3/4°	A 3,15	620622	6206zz	•
216 64 248 231 155 172 55 222 85 150 3846 83 10 124 248 110 12 27 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37 4 8 00 4346 110 12 37	190	. :	10	220	???	179	140	50	177	. 70	128	28j6	· 60 .		j 24	7	40	24]6	20	1	20	7	32	112	16	259	12	. 388	448	1 x 12	A S	6307zz	630622	.*
254 60 304 298 237 210 65 228 108 174 4236 110 12 37 8 8 90 4236 110 12 37 8 8 90 4236 110 12 37 8 8 90 4236 110 12 37 8 8 90 4236 110 12 37 8 8 90 4236 110 12 37 8 8 90 4236 110 12 37 8 8 90 4236 110 12 37 8 8 90 4236 110 14 42,5 9 100 486 110 14 42,5 9 100 486 110 14 42,5 9 100 486 110 14 42,5 9 100 486 110 14 42,5 9 100 130 122 408 15 631 75 24 1172 M15 6311C1 6311C1 MUSING 1111 11 11 11 11 11 11 11 11 11 11 11	. 216	:	<u></u> :	246	253	. 195	. 140	_ 55	184	19	150	38k6	. 80	10	33	1 8	56	28 6	60	.8	24 .	.7	40	. 132	1. 18	295	; 12	, 453	. 519	. 1x!*	. AS	. 63082Z .	6306zz .	•
224 60 100 295 237 214 65 102 105 174 4216 110 12 27 8 80 4218 110 12 37 8 10 16 12 37 8 10 16 12 27 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 12 37 8 10 16 16 17 8 10 16 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 10 16 17 8 1	216	_ •	14	248	253	195	178	55	222	89	150	38k6	<b>80</b>	10	33	8	56	28/6	60	8	24	1	40	132	118	295	1 13	. 491	557	1 x 1*	. A 5	630822	630822	
279 67 337 342 285 241 75 287 121 200 4845 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 110 14 42.5 9 100 4846 11	- 254		0	304	298	237	210	65	258	108	174	4216	1 110 !		<del></del>	1	30	<del></del>	110	12	37-	8	80	160	22	359	1 15	1 289		. 2x11/2	A S	630911C3	6309zzC3	
279 67 31, 342 26 279 75 325 121 20 4846 110 14 425 9 100 4846 110 14 425 9 100 180 22 408 15 581 820 2x11/7 M16 5311C3 MU313C2 131 131 13 122 55m6 110 15 49 10 100 4846 110 14 425 9 100 200 25 450 19 69 542 2x2' M20 6312C3 6312C3 MU313C2 131 131 132 132 135m6 110 15 49 10 100 55m6 110 16 49 10 100 225 28 501 19 69 542 2x2' M20 6312C3 6312C3 MU313C2 131 131 132 131 132 135 187 149 245 55m6 140 18 33 11 130 60m6 140 18 53 11 130 225 28 503 19 807 960 2x2' M20 6313C3 6313C3 MU313C2 131 131 132 131 132 131 132 133 131 133 131 133 131 133 131 133 131 133 131 133 131 133 134 135 187 149 245 55m6 140 18 33 11 130 60m6 140 18 33 11 130 60m6 140 18 33 11 130 60m6 140 18 53 11 130 225 28 503 19 807 960 2x2' M20 6313C3 6313C3 MU313C2 1313C3 MU313C3 M	254	. 1	50	304	298	237	254	65	302	108	174	1215	110	12	: 37	1	. 80	. 42k6	.110	12	37 .	1.8	30.	. 160	22.	359	: 15	633	756	2 x 1 1/2*	A 5	630311C3	e20311C3	
318 75 382 383 307 305 80 317 313 222 55m6 110 15 49 10 100 4816 110 14 42,5 9 100 200 25 450 19 699 542 2.22 M20 6312C3 6012C3 MU312C3 1316 25 36 55m6 140 18 53 11 130 65m6 140 18 53 11 130 220 327 436 419 128 489 190 297 55m6 140 18 58 11 130 65m6 140 18 58 11 130 220 575 110 586 635 466 465 140 541 216 313 313 65m6 140 18 58 11 130 65m6 140 18 58 11 130 220 575 110 586 635 110 586 635 110 58 65m6 140 18 58 11 130 65m6 140 18 58 11 130 220 327 327 328 1135 126 2.22 M20 6314C3 6314C3 MU314C5 65m6 140 18 58 11 130 65m6 140 18 58 11 130 220 320 320 325 24 1833 1055 2.22 M20 6314C3 6314C3 MU314C5 65m6 140 18 58 11 130 65m6 140 18 58 11 130 220 320 320 325 24 1833 1055 2.22 M20 6314C3 6314C3 MU314C5 65m6 140 18 58 11 130 65m6 140 18 58 11 130 220 320 320 325 24 1833 1055 2.22 M20 6314C3 6314C3 MU314C5 65m6 140 18 58 11 130 65m6 140 18 58 11 130 220 320 320 325 24 1833 1055 2.22 M20 6314C3 6314C3 MU314C5 65m6 140 18 58 11 130 65m6 140 18 58 11 130 220 320 325 24 1833 1055 2.22 M20 6314C3 6314C3 MU314C5 65m6 140 18 58 11 130 65m6 140 18 58 11 130 220 320 320 325 24 1833 1055 2.22 M20 6314C3 6314C3 MU314C5 65m6 140 18 58 11 130 65m6 140 18 58 11 130 220 320 320 325 24 1233 1055 2.22 M20 6314C3 6314C3 MU314C5 65m6 140 18 58 11 130 65m6 140 18 58 11 130 220 320 320 320 320 320 320 320 320 3	279		57	337	342	285	241	. 75	287	121	200	48k6	110	14	! 42.5	! 9	100	48k6	,110	14	142,5	.9	100	180	22	108	3 15	643	782	2 x 1 1/2*	M 15	6311C3	6311C3	NU311C3
118 75 382 383 307 305 80 355 133 222 55m6 110 16 49 10 100 4846 110 14 42,5 3 100 20 25 450 19 777 800 2x2' M20 6312C3 6312C3 NU312C    336 80 426 428 353 311 85 367 149 245	279						279	75	.325	121	200	48k6	. 110			. 9	100	48k6	110	14	42.5	13	100	180	22	408	15	· 681	820	2 x 1 1/2*	M 16	631103	631103	NU311C3
316 80 426 428 353 368 85 367 149 245 311 10 16 49 10 100 55m6 110 16 49 10 100 225 28 503 19 777 900 2x2* M20 6313C3 6313C3  316 80 426 428 353 256 85 367 149 245 220 60m6 140 18 53 11 130 60m6 140 18 53 11 130 250 30 555 24 593 1055 2x2* M20 6313C3 6313C3  406 90 450 452 381 311 105 409 168 296 60m6 140 18 53 11 130 60m6 140 18 53 11 130 55m6 140 18 53 11 130 55m6 140 18 58 11 130 250 30 555 24 593 1055 2x2* M20 6314C3 6314C3 MU314C4	318						267	80	317	133	222	\$5m6	110				100	48k6	110	14	42,5	9	100	500	25	: 450	19	699	342	2 x 2"	M 20*	£315C3	6312C3	N0315C3
316 80 426 428 353 311 85 367 149 220 55m6 10 16 49 10 100 55m6 110 16 49 10 100 225 28 503 19 777 900 2x2' M20 6313C3 6313C3 MU313C  316 80 426 428 353 311 85 367 149 220 60m6 140 18 33 11 130 66m6 140 18 53 11 130 250 30 355 24 893 1055 2x2' M20 6313C3 6313C3 MU313C  406 90 450 482 381 311 105 409 168 756 60m6 140 18 53 11 130 66m6 140 18 33 11 130 250 30 355 24 893 1055 2x2' M20 6314C3 6314C3 MU314C  406 90 480 482 381 311 105 409 168 756 65m6 140 18 53 11 130 65m6 140 18 53 11 130 250 30 355 24 893 1055 2x2' M20 6314C3 6314C3 MU314C  457 100 537 572 436 368 128 489 190 349 277 65m6 140 18 58 11 130 65m6 140 18 58 11 130 280 36 623 24 1042 1185 2x2' M20 6314C3 6314C3 MU314C  457 100 537 572 436 368 128 489 190 349 277 75m6 140 20 675 12 130 65m6 140 18 58 11 130 280 36 623 24 1042 1185 2x2' M20 6314C3 6314C3  458 110 598 635 466 457 140 541 216 333 85m6 140 18 58 11 130 65m6 140 18 58 11 130 280 36 623 24 1042 1185 2x2' M20 6314C3 6314C3  508 110 598 635 466 457 140 541 216 333 85m6 140 18 58 11 130 65m6 140 18 58 11 130 315 38 725 28 1135 1256 2x3' M20 6314C3 6314C3  508 110 598 635 466 467 140 541 216 333 80m6 170 22 71 14 160 65m6 140 18 58 11 130 315 38 725 28 1135 1256 2x3' M20 6314C3 6314C3  508 110 598 635 466 467 140 541 216 333 80m6 170 22 71 14 160 65m6 140 18 58 11 130 315 38 725 28 1135 1256 2x3' M20 6314C3 6314C3  508 110 598 635 466 467 140 541 216 333 80m6 170 22 71 14 160 65m6 140 18 58 11 130 315 38 725 28 1135 1256 2x3' M20 6314C3 6314C3  508 110 750 750 606 500 200 760 254 445 53 175 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 50 844 28 1334 1539 2x3' M20 6314C3 6314C3  508 100 750 750 606 500 200 760 254 445 175 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 50 844 28 1334 1539 2x3' M20 6314C3 6314C3  508 100 750 750 606 500 200 760 254 445 175 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 50 844 28 1334 1539 2x3' M20 6314C3 6314C3	318	3	75	382	383	307	305	80	355	133	222	55m6		16	: 49	10	100	48k6	110	14	42,5	9	100	200	25	450	19	737	180	. 2 x 2*	M 50.	6312C3	6312C3	M0315C3
316 30 426 428 353 311 85 367 149 220 60m6 140 18 53 11 130 60m6 140 18 53 11 130 225 28 503 19 807 960 2 x 2 M20 6313C3 6313C3 NU313C  406 90 450 452 381 311 105 409 168 256 65m6 140 18 53 11 130 65m6 140 18 53 11 130 250 30 555 24 893 1055 2 x 2 M20 6314C3 6314C3  406 90 450 452 381 311 105 409 168 256 65m6 140 18 53 11 130 65m6 140 18 53 11 130 250 30 555 24 893 1055 2 x 2 M20 6314C3 6314C3  407 457 100 537 572 436 419 128 489 190 297 75m6 140 20 675, 12 130 65m6 140 18 58 11 130 260 36 623 24 1042 1186 2 x 2 M20 6314C3 6314C3  457 100 537 572 436 419 128 489 190 297 75m6 140 20 675, 12 130 65m6 140 18 58 11 130 260 36 623 24 1042 1186 2 x 2 M20 6314C3 6314C3  458 110 596 635 466 406 140 541 216 384 65m6 140 18 58 11 130 65m6 140 18 58 11 130 260 36 623 24 1042 1186 2 x 2 M20 6314C3 6314C3  508 110 596 635 466 406 140 541 216 384 65m6 140 18 58 11 130 65m6 140 18 58 11 130 216 36 623 24 1042 1186 2 x 2 M20 6314C3 6314C3  508 110 596 635 466 406 140 541 216 384 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 38 725 28 1135 1256 2 x 3 M20 6314C3 6314C3  508 110 596 635 466 406 140 541 216 384 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 38 725 28 1135 1256 2 x 3 M20 6314C3 6314C3  508 110 596 635 466 406 140 541 216 384 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 38 725 28 1135 1256 2 x 3 M20 6314C3 6314C3  508 110 596 635 466 406 140 541 216 384 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 38 725 28 1135 1256 2 x 3 M20 6314C3 6314C3  508 110 596 635 466 406 140 541 216 384 65m6 170 22 77 14 160 65m6 140 18 58 11 130 315 50 844 28 1334 1539 2 x 3 M20 6314C3 6314C3  508 110 750 750 606 530 00 760 254 445 535 55m6 140 18 58 11 130 65m6 140 18 58 11 130 315 50 844 28 1334 1539 2 x 3 M20 6314C3 6314C3  508 110 750 750 606 530 00 760 254 445 535 55m6 140 18 58 11 130 65m6 140 18 58 11 130 315 50 844 28 1334 1539 2 x 3 M20 6314C3 6314C3  508 110 750 750 606 530 00 760 254 445 535 55m6 140 18 58 11 130 65m6 140 18 58 11 130 315 50 844 28 1334 1539 2 x 3 M20 6314C3 6314C3	356		<b>3</b> 0	-426	428	. 353	311	85	367	149		55m6	110	16	, 49	; 10	100	55m6	110	16	49	10	100	225	28	: 503	. 19	777	900	2 x 2*	M 20	6313C3	6313C3	
406 90 480 482 381 349 105 409 168 238 60m6 140 18 53 11 130 65m6 140 18 53 11 130 250 30 355 24 893 1055 2x2" M20 6314C3 6314C3 MU314C  406 90 480 482 381 349 105 409 168 235 65m6 140 18 53 11 130 65m6 140 18 53 11 130 250 30 355 24 893 1055 2x2" M20 6314C3 6314C3 MU314C  457 100 537 572 436 419 128 489 190 297 65m6 140 18 58 11 130 65m6 140 18 58 11 130 250 30 355 24 893 1055 2x2" M20 6314C3 6314C3  457 100 537 572 436 419 128 489 190 297 75m6 140 20 675 12 130 65m6 140 18 58 11 130 250 30 355 24 893 1055 2x2" M20 6314C3 6314C3  458 100 537 572 436 419 128 489 190 297 75m6 140 20 675 12 130 65m6 140 18 58 11 130 250 30 355 24 893 1055 2x2" M20 6314C3 6314C3  508 110 598 635 466 466 140 541 216 334 65m6 140 18 58 11 130 65m6 140 18 58 11 130 210 315 38 725 28 1135 1256 2x3" M20 6314C3 6314C3  508 110 598 635 466 466 140 541 216 334 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 38 725 28 1135 1256 2x3" M20 6314C3 6314C3  508 110 598 635 466 466 140 541 216 334 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 38 725 28 1135 1256 2x3" M20 6314C3 6314C3  508 110 598 635 466 466 140 541 216 334 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 38 725 28 1135 1256 2x3" M20 6314C3 6314C3  508 110 598 635 466 465 140 541 216 334 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 38 725 28 1135 1256 2x3" M20 6316C3 6316C3 6314C3  508 110 598 635 466 465 140 541 216 334 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 38 725 28 1135 1356 2x3" M20 6316C3 6	356	i .	80	426	428	353	286 311	- 85	367	149		- 60m6	140				130	60m6	140	18	53	11	130	225	28	503	. 19	. 807	960	2 x 2*	W 50	6313C3	6313C3	NU313C3
457 100 537 572 436 168 128 489 190 297 55m6 140 13 58 11 130 55m6 140 15 58 11 130 280 36 623 24 1042 1186 2 x 2' M20 6314C3 6314C3  457 100 537 572 436 168 128 489 190 349 75m6 140 20 67.5 12 130 65m6 140 18 58 11 130 280 36 623 24 1042 1186 2 x 2' M20 6314C3 6314C3  508 110 598 635 466 406 140 541 216 333 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 38 725 28 1135 1286 2 x 3' M20 6314C3 6314C3  508 110 598 635 466 406 140 541 216 334 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 38 725 28 1135 1286 2 x 3' M20 6314C3 6314C3  508 110 598 635 466 406 140 541 216 384 100 170 22 71 14 160 65m6 140 18 58 11 130 315 34 725 28 1165 1316 2 x 3' M20 6314C3 6314C3  610 140 750 750 606 530 200 760 254 445 55m6 140 18 58 11 130 65m6 140 18 58 11 130 315 50 844 28 1354 1539 2 x 3' M20 6314C3 6314C3	406	i	90	480	482	381		- 105	409	168		60m6	140	18	53	11	130	60m6	140	18	53	11	130	250	30	555	: 24	; 893	- 1055	2 x 2"	M 20	6314C3	6314C3	
457 100 537 572 436 148 128 489 190 297 5566 140 18 58 11 130 65m6 140 18 58 11 130 65m6 140 18 58 11 130 240 16 623 24 1042 1186 2 x 2' M20 6314C3 6314C3  457 100 537 572 436 163 128 489 190 297 75m6 140 20 67.5 12 130 65m6 140 18 58 11 130 240 16 623 24 1042 1186 2 x 2' M20 6314C3 6314C3  508 110 598 635 466 405 140 541 216 333 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 38 725 28 1135 1256 2 x 3' M20 6314C3 6314C3  508 110 598 635 466 405 140 541 216 333 80m6 170 22 71 14 160 65m6 140 18 58 11 130 315 34 725 28 1165 1316 2 x 3' M20 6314C3 6314C3  510 140 750 750 606 530 200 760 254 445 556 140 18 58 11 130 65m6 140 18 58 11 130 315 50 44 28 1354 1539 2 x 3' M20 6314C3 6314C3  610 140 750 750 606 500 200 760 254 445 556 140 18 58 11 130 65m6 140 18 58 11 130 315 50 44 28 1354 1539 2 x 3' M20 6314C3 6314C3	406	5	90	480	482	381	311	- 105	409	168	296	- 65m6	140	. 18	58	11	130	60m6			53	-11	130	250	30	555	24	893	: - 1055	2,x 2*	: M 20	6314C3	6314C3	NU314C3
457 100 537 572 436 449 190 297 75m6 140 20 57.5 12 130 65m6 140 18 58 11 130 280 16 623 24 1042 1156 2 x 2  M20 6316C3 6316C3 MU316C 508 110 598 635 466 406 140 541 216 333 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 38 725 28 1135 1256 2 x 3  M20 6316C3 6316C3 MU316C 508 110 598 635 466 406 140 541 216 333 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 38 725 28 1135 1256 2 x 3  M20 6316C3 6316C3 MU316C 508 110 598 635 466 406 140 541 216 333 65m6 170 22 71 14 160 65m6 140 18 58 11 130 315 38 725 28 1165 1316 2 x 3  M20 6316C3 MU319C 508 110 598 635 466 65 140 541 216 333 65m6 170 22 71 14 160 65m6 140 18 58 11 130 315 50 844 28 1354 1539 2 x 3  M20 6316C3 6316C3 MU319C 508 110 598 635 650 500 760 254 445 50 508 140 18 58 11 130 65m6 140 18 58 11 130 315 50 844 28 1354 1539 2 x 3  M20 6316C3 6316C3 MU319C 508 140 140 750 750 606 530 200 760 254 445 50 508 140 18 58 11 130 65m6 140 18 58 11 130 315 50 844 28 1354 1539 2 x 3  M20 6316C3 6316C3 MU319C 508 140 140 750 750 606 530 200 760 254 445 50 508 140 18 58 11 130 65m6 140 18 58 11 130 315 50 844 28 1354 1539 2 x 3  M20 6316C3 6316C3 MU319C 508 140 140 750 750 606 530 200 760 254 445 50 508 140 18 58 11 130 315 50 844 28 1354 1539 2 x 3  M20 6314C3 6314C3 508 140 140 140 750 750 750 606 530 200 760 254 445 50 508 140 18 58 11 130 255 750 844 28 1354 1539 2 x 3  M20 6314C3 6314C3 508 140 140 140 750 750 750 750 750 750 750 750 750 75	457		— 100	537	572	436	168				349		140	18	58	! 	130	-	140	18	58	11	130	260	36	623	24	1042	1186	1x2°	 u 20	6314C3	63f4C3	
508 110 598 635 466 457 140 541 216 333 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 38 725 28 1135 1286 2 x 3' M20 6314C3 6314C3  508 110 598 635 466 467 140 541 216 334 10m6 170 22 71 14 160 65m6 140 18 58 11 130 315 38 725 28 1135 1286 2 x 3' M20 6314C3 6314C3  610 140 750 750 606 530 200 760 254 445 577 65m6 140 18 58 11 130 65m6 140 18 58 11 130 315 50 844 28 1384 1539 2 x 3' M20 6314C3 6314C3	457	,	100	537	572	436		128	489	190	349	75m6.	140	20	67,5	. 12	130	65m6	140	18	58	11	130	210	: ! 36	623		1042	1186	 Z x 2*	 M 20	6316C3	631601	NU316C3
508 110 598 635 466 467 140 541 216 384 30m6 170 22 71 14 160 65m6 140 18 58 11 130 315 38 725 28 1165 1316 2x3' M20 6319C3 6316C3 MU319C 610 140 750 750 606 630 200 760 254 445 375 65m6 140 18 58 11 130 65m6 140 18 58 11 130 355 50 844 28 1354 1539 2x3' M20 6314C3 6314C3	508	<b>.</b>	110	598	635	166	406	140	541	216	384	65m6	140	18	. 58	· 11	1 130	65m6	140	18	58	11	i : 130	: 115	; ; 38	725	28		1756	2 . 3'	M 20			
810 140 750 750 606 530 200 760 254 445 630 140 18 58 11 130 65m6 140 18 58 11 130 355 50 844 28 1354 1539 2 x 3' M 20 6314C3 6314C3 .	508		 I 10	598	635	 166	457				333 384	7			<del></del>	i	<u>.</u> _	-	⊢		<del> </del>	-	╁╴	<u>!</u>	·		;					•••••		NIITISCI
70 70 560 445 445 45 45 45 45 45 45 45 45 45 45 4	610	)	40	750	750	606	560	- 200	760	254	445				!	<u> </u>		<del> </del>	$\vdash$	-	-	┝	-	<del> </del> -	+	<del>-</del>	<u>: </u>	1			<u> </u>			
100 140 750 750 806 630 200 760 254 375 100m6 210 28 90 16 150 30m6 170 722 771 14 160 355 50 844 28 1454 1639 2×35, M24 632223 631923 NU322C	, 610	<u> </u>	40	750	750	606	560	200			445	100m6	<u></u>		<del> </del>	16	├-		57	-77	<u></u>	-	┼	<del> </del>	╁	┼╌	÷	i	<del></del>	<del> </del>	Ţ	i	-	MI133963

#### EMPENHO ELETRICO

ncia	Carcaça	Rotação rpm	Corre		Corre 380	1	<del></del> ,	onjuga:		; Rei	ndimento	Fator Potência	FS	GD² DO ROTOR	MASSA
		1 15111							Cm/Cn				_	<u></u>	
<u>:_KW_</u> [	ABNT	<u> </u>	In (A)	Ip (A)	In (A) [	lp (A)	(Kgm)	(%)	i (%)	50%	75%   100%	50% 75% 100	<u>% [</u>	(Kgm²)	(Kg)
ว์เคร	- STA	NDAI	מא						-		•				
0,12	56a	3370	0,75	2,9	0,43	1,7	0,036	310	240	44,0 :	53,0 : 58,0	0,57 : 0,67 0,7	1 1,15	0,0007	3,3
0.18	56b_	3345	1,06	4,5	0,61	2,6	0,053	280	280	45,0		0,59 0,69 0,7		0,0007	3,4
0,25	63a	3360	1,14	5,3	0,66	3,1	0,07	270	245	62,0		0,57 0,71 0,8	1,15	0,0014	4,9
.0,37	.63b	3370	1,62	7,7	0,93	4,4	0,106	295	260	68,0 .	72,5 : 73,0	0,63 : 0,75 0,8		0,0014	4,9
0,55	71a	3410	2,31	12,2	1,33	7,0	0,16	270	250.	64.0	73,0 75,0	0,62 0,75 0,84		0,0022	9,0
0,75 l,1	71b 80a	3410 3430	2,96 4,33	18,3	1,71 2,50	10,6	0,21 <u>.</u> 0,31	280 280	270 270	68.0 <u> </u>	76,0 77,0 78,0 78,5	0,66 0,79 0,89 0,67 0,79 0,89		0,0025	10,0
1,5	80b	3425	5,43	36,0	3,14	20,8	0,42	300	280	78,0	80,5 81,0	0,73 0,84 0,8		0,0056	.15,0
2,2	905	3480	8,29	62.4	4,79	36,0	0,62	310	300	75,0	79,5 81,5	0,68 0,80 0,8		0,0100	20.0
3	90L	3470	10,8	88.3	6,23	51,0	0,83	335	310	78,0	81,5 82,5	0,71 0,82 0,8	. :-	0.0120	23,5
3.7	100L	3470	13,0	104	7,52	60,0	1:03	300	300	81.5	84,0 84,5	0,75 0,84 0,8	i i	0.0170	29,0
4,5	112Ma	3500	15,3	133	8,82 11,7-	76,5 82,2	1,23 1,53	300 310	310 320	83,0 84,0	85,0 85,5 86,5 86,5	0,75 0,85 0,8		0,0320	40,0
5.5 7,5	112M 132S	3500 3520	19,4	187	14,7	108	دد,، ۲,۱۰	310	300	83,0	86,5 87,5	0,78 0,85 0,8		0,0522	54,0
9,2	132Ma	3500	31,0	243	17,3	140	2,6	300	270	83.0	87.0 88.0	0.80 0.87 0.8		0,0750	67,0
11	132M	3515	36,5	310	21,1	179	3	340	300	85,0	89,0 89,5	0,80 0.87 0,8	1	0,0836	71,0
15	160Ma	3550	48,9	400	28,2	231	4,1	.320	300	85,5	88,0 89,0	0.84 0.88 0.8	; .	0.1750	93.0
18,5 22	160M 160L	3540	58.3	516   587	34,0 39,7	298 339	5 6,1	300	280 300	86,0 87,0	88,5 89,5 89,0 89,5	0,98 0,91 0,9 0,90 0,91 0,9	1	0,2360	107
30	200M	3550	95,7	658	55,2	380	8,1	330	310	88,0	90,0 90,2		i .	0,6500	208
37	200L	3550	117,6	856	67,9	494	10,1	340	315	89.0	90,8 91,5	0.86 0.89 0.9		0.7200	247
45	225S/M	3545	136,6	1140	78,8	658	12,1	280	240	87,0	91,2 92,5	0,84 0,87 0,8	1	1,060	270
55	2255/M		173,9	1438	100,4	830	15,2	320	305	88.0	91,8 92,8	1 '		1,300	314
75 90	250S/M 280S/M	•	232,8	1625 2026	134,4 167,6	938 1170	20 25	205 220	270 270	90,4	92,5 93,5 93,0 93,7	0,86 0,88 0,8		1,950	540
110	2805/M	3550			200,5	1400	30	200	230	90.7	93,3 94,0	1	· 1	3,400	576
132	3155/M	1	405.1		233,9	1750	35	210	240	91,7	93,5 94,0		i	5,100	703
150	3155/M	3570	456,9	3327		1921	40	205	230	92,0	93,5 94,2		i ,	6,100	800
185	315S/M	i	576.9	4027	333,1	2325	50	210	230	92,4	93,7 94,3			7,100	900
220 225	355M/L   355M/L		800,4	5194 6386	462,2	2999 3687	60   70	205 200	220 210	91,0	93,3 94,0 93,5 94,1		i	7,500	1270
1 295	355M/L		912,9	7739	527,1	4468	80	210	220	91,5	93,5 94,3	•   ' '		10,000	
) 330	355M/L	i	•		590	5016	90	220	230	92.0	94.0 94.5	2,0 02,0 08,0	0 1 0	11,000	1500
												÷			
MALO	S - STA	NDA	חמ												
8 0,09		1710		2,77	0,53	1,60	0.05	300	330	36,0	44,5 50,0	0,42 0,48 0,5	3   1,15	0,0007	į 3,3
6 0,12	•	1680		3,12	0,62	1,80	0,07	285	235	39,0	47,0 52,0				3,3
4 0,18	63a	1695		4,50		2,60	0,1	245	260	53.0	60,0 64,0			-1	4,8
3 0,25	63b		: 1,44	6,24	7	3,60	0,15	300	285	53,0	61.0 65.0 68.5 71.0			"   ·	4,8
2 0,37 4 0,55	71a 71b		1,92	9,53 13,9	1,11	5,50 8,00	0,21	225 265	· 245 265	62,0	68,5 <u>71,0</u> 71,5 72,0				9,6
0.75	•		2,96	19,1	1,71	11,0	0,42	210	270	74,0	77,5 78,0	·			14,0
5 1,1	80b		4,33	30.1	2,50	17,4	0,63	210	240	75,0	78,5 79,0				
1.5	90\$	1730	5.94	40,0	3,43	23,1	0,83	220	260	79,0	·				i
2,2 3	90L		10,8	65,0 75,3	4,87 6,23	37,5 43,5		290 240	310 260	81,0	82,5 83,0 83,0 83,5				
3,7	100L		13,7	106	7,93	61,1	2,1	290	330	83,5	85,0 85,0				
4,5			16,7	117	9,63	67,4	i	260	320	85,0	85,5 86,0		1.	;	:
5 5.5 0 7,5			20,6	159 191	11,9	92,0 110	3,1	265 215	335 275	84,5	86,5 87,0			1	
.5 9,2			31,2	267	18,0	154	5,1	210	265	86.0 86,5	87,5 87,5 87,5 87,5			i	
5 11	132M	i	37,3	319	21,5	184	6.1	245	355	87.0	88,0 88,				
0 15	160M	1745		416	28,4	240	8,2	225	, 300	87,0	88,7 89,		• • •	1	i
5 · 18,5 0 22	160L 180M	1750	0   60,1 0   72,6	521 648	34,7	301 374	10,2	220 200	330 - 320	87,5	90,0 90,				
0 30	200M		96,0	727	55,4	420	16,2	250	270	89.7	91,2 91,	**		·· } —	
0 37	200L		1,011	837	68,8		20	230	255	89,7	92.0 92,				
0 45			140,4		81,1	510	24	230	270	91,3	92,7 93,0				i
5 · 55 00 75			: 177,5 : 238,1		102,5		30	220 250	255 260	91,5	92,8 93,0 93,0 93,5	***			:
25 90	280S/N	1   1775	[293,3	1992	169,3	1150	50	240	250	92,0	93,0 93,3			1 '	
50 110	280S/N	1   1770	346,9	2169	200,3	1252	60	220	230	92,5	93,6 94,	0,85 0,88 0.	39   1,0	2	615
75 132 30 150	: .		409,3					210	220	93,0	93.8 94,				1
50 185			465,8 575,7					200 210	200 200	93,4	94,3 <u>94,</u> 1 94,4 94,1			- 1	i
00 220	355M/I	1780	698,7	4877	403,4	2816	120	210	200		94,5 94,5				
50 255		1780	804,3	5775	464,4	3334	140	220	210	93,8	94,7 94,	0,85   0,88   0,8	39 1,0	19,000	1370
20 330 362 30		-   1/80	916,3	7477	1588 E	4789	160	210	200	94,0	95,0 95,0	0.85 0.88 0.0			
															•

#### 1 1 EMPENHO ELETRICO Corrente Còrrente Conjugado ncia Carcaca Rotacão Rendimento Fator Potência FS. MASSA 220 V 380 V ROTOR rpm Cp/Cn Cm/Cn Сn 50% 75% 100% · KW ARNT In (A) | Ip (A) | In (A) | Ip (A) (Kgm) 50% | 75% | 100% (Kg) (Kgm²) (%) (%) ÓLOS - STANDARD . 0,09 63a 1090 0,73 2,08 0,42 1,2 0,08 200 195 39,0:46,5:50,0 0,50 0,59 0,66 1,15 0,0014 4,8 2,77 1,6 0,11 205 195 48,5 52,0 0,50 0,58 0,64 1,15 0,0014 0,12 63b 1085 0,97 0,56 40.0 4.8 0,18 71a 1100 1.45 4.16 0.84 2.4 0,16 210 220 43.0 50.5 53.0 0,46 0.55 0.63 1.15 0.0035 9.0 5,54 3.2 205 46,0 52,5 55,0 0.42 0,58 9.6 0,25 71b 1110 2,02 1,17 0.22 220 0,51 1,15 0.0041 1150 2,13 11,1 1,23 6,4 0,31 275 340 60,0 66,5 69,0 0,45 0,57 0,66 1,15 0,0091 13,0 0.37 80a 80b 1135 13,0 1,64 7,5 0,47 185 205 64,0 69,0 71,0 0,50 0,62 0,72 1,15 0,0095 13,5 0,55 2,84 20,3 0,75 1160 3,90 2.25 11,7 0.61 220 275 67.0 71,0 73,0 0,49 0,59 0,68 1.15 0.0220 19,5 90Sa 13,9 74,0 905 1,135 5,46 24,1 3,15 0,94 170 240 63,0 75,0 0,53 0,64 0,71 1,15 0,0220 19,5 1,1 4,15 100La 1150 7.19 38,1 22.0 1,2 190 240 71.0 75,0 77,0 0.49 0.62 0,70 1.15 0.0380 29.0 1.5 2,2 100L 1150 10,0 65,8 5,78 38,0 1,9 275 320 74,0 77.5 78,5 0,53 0,65 0,74 1,15 0,0490 31,0 13,0 76,2 2,5 195 83,0 0,72 36,0 112M 1150 7.49 44.0 285 78.0 82.0 0.52 0.64 1.15 0.0580 3 170 3,7 -132Sa 1150 14.1 79,7 8,12 46,0 3.1 250 82,0 84,5 85.0 0,67 0.76 0,81 1.15 0,1150 50,0 83,0 85.0 85.5 1150 58.0 0.60 0.70 0,76 1,15 52.0 4,5 1325 17.9 100.51 10.3 3.7 180 265 0,1150 87,0 86,0 0,80 5,5 132Ma 1160 21,1 150,7 12.2 4.7 185 220 83.0 85.5 0,62 0.74 1,15 0.1650 63.0 6.2 87.0 0,79 66,0 7,5 132M 1150 28,2 188,8 16,3 .109.0200 260 84.5 86,5 0.61 0,73 1.15 0.1900 9,2 160Ma 87,5 1175 36,0 270,2 20,8 156,0 7,6 200 250 84.0 86.5 0.57 0,68 0,75 1,15 0,4100 98.0 _11 89,0 100 160M 1175 44,1 325,6 25,5 188,0 9.5 180 255 85,5 88.0 0,55 0,67 0,74 1,15 0,4100 1170 160L 1,15 15 32.5 252,0 180 270 87.0 89,0 89,5 0,60 0,72 0,77 0,5800 126 56,2 .436,5 12.2 372,4 37,8 18,5 180L 1170 65.5 215,0! 15.3 225 230 89,0 90,0 90,2 0,66 0,77 0,82 1.15 0,9200 170 300,0 18,3 91,0 225 22 200L 1180 80.8 519,6 46,7 235 290 90.0 90.8 0,67 0.76 0,79 1.15 1,4000 30 200L 1175 108,3 614,9 62,5 355,0! 24 185 265 90,8 91.5 91.7 0.64 0,75 0,78 1.15 1.7000 37 225S/M 1185 140,4 850,4 81,0 491,0 30 225 265 90.5 91.8 92,0 0.64 0.71 0.75 1,0 2,8000 305 3,3000 149,6 940,5 86,4 543,0 215 260 91,0 92,3 92,5 0,69 0,79 0,84 1,0 475 45 250S/M 1175 36 55 250S/M 1175 182,0 1015 105,1 586,0 46 190 230 91,4 92,5 92,8 0,73 0,82 0,86 1,0 4,0000 480 0,83 1.0 92,8 75 280S/M 1180 250,9 1325 144,9 765,0 61 200 210 92.0 93.0 0.72 0.80 7,5000 625 90 280S/M 1180 312.0 1680 180,1 970.0! 190 210 92.5 93.5 93.0 0.72 0.80 0.83 1,0 8.8000 110 315S/M 1185 359.0 2051 207.3 1184 90 200 230 93.0 93.7 94.1 0.75 0.84 0,86 1,0 16,000 980 132 3155/M 1185 418,8 2515 241,8 1452 106 200 220 93,0 94,0 94,1 0,74 0,83 0,86 1,0 18,000 1080 150 1185 478.2 2737:276,1 1580 121 210 230 93,0 94,0 94,2 0,75 0,83 0,86 1,0 20,000 1150 315S/M 3066 371,0 1770 93,5 94,2 0,70 184 355M/L 1190 642,5 150 220 210 94.2 0.77 0.80 1,0 22,000 1380 220 355M/L 1185 770.2 3118:444.7 1800 -210 200 93.5 94.0 94.3 0.70 0.78 0,80 1.0 26,000 200 94,0 0.70 0.78 0,80 30,000 255 355M/L 1190 896,7 5577 517,7 3220 210 190 94.3 94.5 1,0 1630 1190 1021,5 6374 589,8 3680 240 235 210 94,0 94,5 94,8 0.71 0,78 0,80 1,0 33,000 1730 295 355M/L 330 | 355M/L | 1190 | 1146.8 | 6538 | 662.1 | 3775 | 270 230 210 94,0 95,0 95,0 0,71 0,78 0,80 1,0 37,000 1820 **OLOS - STANDARD** 63b 2 0,06 810 0,55 | 1,15 0.0014 0.98 1,56 0.56 0.9 0.07 245 225 21,0 26,5 30.0 i 0.42 0.49 4.4 1,15 820 0.10 195 225 31,0 37,0 40,0 0,44 0,53 0,60 0,0041 0,09 71a 1.01 0.58 1.4 9.6 : 0.76 . 0,12 71b 810 1.31 2,77 1,6 0,14 185 200 34,0 41,0 44,0 0,41 0,49 0,56 1,15 0,0041 9,6 0.0091 80a 860 4.85 0.94 0.20 45,0 54.0 0.37 0.47 0,55 1,15 0,18 1.63 2.8 240 275 51.0 13 0,21 80b 860 2,02 6,93 : 1,17 4,0 0,27 215 260 45,0 52,0 56,0 0,40 0,49 0.57 1,15 0,0091 13 0,57 1,15 0.37 90Sa 870 2.79 11.6 1.51 6.7 0.41 210 270 49.0 57,0 61.0 0.41 0.50 0.0220 9.9 0.55 90La 870 4.04 17.1 2.33 0.62 0.39 0.49 0,58 | 1,15 0.0260 220 230 50.0 58.0 62.0 20.5 0,75 90L .865 4,91 20.1 2.84 11.6 0,82 220 270 59,0 65,0 68,0 0,38 0,49 0,58 1,15 0,0260 20.5 100La 850 5,92 26.0 3.42 15.0 1.2 200 235 69.0 73,5 74,5 0,45 0,57 0,66 1,15 0.0390 1,1 27,5 77,0 112Ma 870 7,74 41.6 4.47 24 180 0.0680 1.5 1.6 265 69,0 75,0 0.45 0.56 0,65 1,15 30 2,2 132Sa 870 10.5 57,2 6.06 33 2,5 170 235 72,5 76.5 78.0 0,52 0,63 0.71 1.15 0,1150 55.5 0.44 3 132Ma 865 15.8 74.5 : 9.13 43 77,0 79.0 0.1150 3.3 185 300 7.4.0 0.55 0.62 | 1.15 63 3.7 132M 870 19.2 95.3 11.1 55 4.1 205 275 75,0 79,0 0,08 0,44 0,55 0,63 1,15 0,1640 64,5 160Ma 880 102 5.5 26.7 177 15.4 6.1 165 250 76,0 82,0 84,0 0,40 0,50 0,59 1,15 0,3300 89 0,4100 160L 875 7,5 36.2 208 20.9 120 8.2 140 240 84.0 85,0 0.45 0.55 72.0 0,63 1.15 121 _180L -11 870 46,1 234 26.6 135 12,3 130 200 88,0 90,0 90,0 0,52 0,63 0,70 0.8500 1,15 160 346 180L 870 62,4 36,0 200 15 16.5 165 205 88,0 90,0 90.0 0,50 0,61 0,69 1,15 1.0000 165 18,5 200L 870 71,9 440 41,5 254 20.0 91.0 91.0 2,1000 155 280 0.58 0.74 90.0 0.68 1.15 237 225S/M 22 880 88.7 475 51,2 274 24.0 190 240 89.0 91.0 91.0 0.58 0,68 0.72 1.0 2.7500 270 30 225S/M 880 117.6 589 67,9 340 33,0 190 240 91,0 91,5 91,5 0,59 4,0000 .0.68 0.72 1.0 305 37 250S/M 880 141,9 928 81.9 536 41.0 170 230 91.0 91,0 0,61 5,5000 90,0 0.70 0.75 1.0 430 45. 250S/M 375 162,8 956 94,0 49,0 552 175 90.0 91,5 91.5 230 0.63 0.74 0,78 1.0 6,4000 440 55 280S/M 885 1-207.8 i 486 1120,0 858 61,0 180 240 90,0 91,5 92,0 0,60 0,71 0,76 1.0 8,8000 560 10 75 280S/M 880 271,9 1692 | 157.0 977 81,0 190 255 91,0 92,5 92,5 0,65 . 0,73 0,77 10.300 1.0 640 90 315S/M 890 345,2 2026 199,3 1170 200 101 220 93.5 93.5 0.66 1,0 92.0 0.73 0.75 18,700 860 110 3155/M 890 407.5 2470 1235.3 1426 121 200 215 92,0 93,8 93,8 0,64 | 0,73 0,76 1.0 21,000 960

1700

1860

2540

145

160

200

240

280

210

205

220

200

220

205

200

210

195

210

92.0.

93.0

93,0

93,0

94,0

93,5

94.0

94,0

94.5

95,0

94.0

94.0

94,5

94,8

0,64

0.65

0,67

0,63

95.0 0,67

0,74

0.74

0,76

0,73

0,75

0,77

0.77

0,78

0,76

0,77

1.0

1,0

1,0

1,0

1,0

26.000

30,000

34,000

38,000

42,000

1200

1350

1480

1600

1700

132

185

220

255

0 150

١Ō

355M/L

355M/L

355M/L

355M/L

355M/L

890

890

890

890

890 926,7

481,7

535,2 3222

2944

278,1

309,0

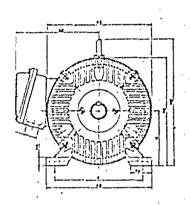
656,9 3918 379,3 2262

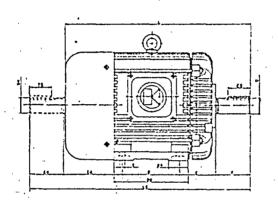
806,5 4209 465,6 2430

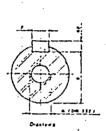
4399 535 1

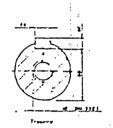
### RIFÁSICOS BLINDADOS ROTEÇÃO IP 54

po totalmente fechado com ventilador externo


oteção: IP-54 (NBR-6146)


plamento: Classe B (130°C) NBR 7094


mensão: NBR-5432


nsão: 220/380 - 380/660 Volt 220/380/440/760 Volt

eqüência: 60 ou 50 Hz.









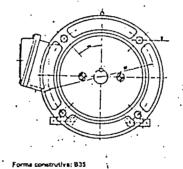
Dimensões em Milímetros - (Norma ABNT NBR 5432)

.				AB	cAC	LD.		84	85	ء ا	a	POI	CTA DE	EUXO	DIAY	TEIRA		PO	ITA DI	Elxo	) TŖJ	LSEIRA		н	н	HC	HD		.	LZ	51	n 2	ı	HENTO
.1	PÓLOS	^		79	cAL.	7.0	•	84		١	٦	<b>6</b> 0	E	ES	F	G	အ	cOA	EA	TS	Fλ	GB	GF	"	, Ta	, AC	מא			10	я		1.	TRA:
	2-4-6-8	112	33	135	143	132	90	30	112	45	75	14]6	30	12	5	11	5	11   6	21	1	4	E,5	•	71	•	142,5	-	7 x 13	237	263	PG 13.5	1	(233	6202
	2-4-6-8	125	12	158	158	135	100	30	124	50	83	19]5	40	20		15,5	6	14]4	30	12	5	11	5	80	10	159	-	10 = 18	270.	303		125	6294	6503
	7-4-8-8						100		129					128							_			Ī.,					798	342		· ·	Ī.	
	2-4-6-0	140.	. 40	178	178	145	125	40	154	. 56	96	24]6	50	28	•	20	1	16]1	40	20	5	13	5	90	12	179	_	10 × 18	324	367	Pg 1€		E225	6204
	2-4-5-8	160	45	196	198	152	140	45	174	63	108	25 ] 6	60	36		24	7	22   6	50	28	6	18,5	•	100	15	198	-	12 × 22	358	421		41.3	6534	6205
	2-4-6-8	190	52	228	220	174	140	45	174	70	112	28   6	60	36	•	24	7	24 6	50	28	ě	20	7	112	17	222	267	12 x 22	385	438			1306	6206
	2-4-6-8						140		180				\	56				<u></u>											413	515	Pg 21			
	2-4-6-8	215	,,,	258	258	193	178	4	218	89	145	38 k 6	,10	56	10	33	'	28   6	60	J6	•	24	"	132	20	261	306	12 x 22	457	553			E308	£237
	2-4-6-1	254	Ī.,				210	65	272			42 k S		Ī.,	_			32 k 6											634	690			<u> </u>	
	2-4-6-8	254	• • • • • • • • • • • • • • • • • • • •	310	330	248	254	] "	310	108	102	4211	110	**	12	"	•	32 % 8		56	10	]"	•	160	25	325	370	15	614	734			1338	£308
	2-4-5-8	279	,,		370		241	70	300											-						200			670	756	2 x Pg 29	113		
	2-4-6-8	2//9	/4	349	3/0	268	279	] "	335	121	. 204	48 1: 6	110	20	14	42,5	'	32 k 6	10	58	10	27	•	183	27	165	419	15	695	794	Pg 29		C310	EC:05
	2-4-6-8	318	75	390	420	304	305	75	365	133	214	55 m 6	110	60	15	43	10	42 k 6	110	80	12	37		200	30	410	475	19	754	872		}	1312	5315
	. 2						286 311				275 250	55 m &		***	,,		10	55 m6	110	•	,,	49	10						810	930				
٠,	4-6-8	356	63	425	449	221			371	149	H	50 m 6		110	-			50 m6	140	$\dashv$				225	29	450	513	19		_		}	(31)	6273
	470.0						311				250	60 m s	140	110	18	23	11	60 me	140	110	15	33	"				 		140	990				
	,						311				301 263	60 m 6	140	110				48 6 6	110		14	42.5							\$10	- 1030	•			
1	4-6-8	406	90	490	495	363		90	415	168		65 m 6			-		-						-	250	35	498	570	24			2 x Pg 42	₩ 23.	6314	E312
_						_	349				263			110				46 1.6	110		'	-44.3						<u> </u>	\$10	1030			<u>L.                                    </u>	
		457	115	580	550	405	368 419	130	512		295 244	65 m 6	140	110	18	58	11	481.6	110	80	14	42,5		250	35	553	627	24	143	1103			4317	6314
1	4-8-8			- 1		1	168 419				295 244	75 m 6	140	110	20	67,5	12	äįte.	110	10	14	42,5	٠,					}.	нэ	1103				

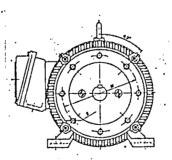
								REX	CONT NI	04	1 LTCA L	X 101 X	010		<i>घटचा(५७</i> ०		
c	ARCAÇA	ECT PAL	MORNHET SOUTH	COM ROTOR	TEMENON	COM NOTON	STATE OF THE STATE	e D4	ik for	LAWER	4 DAP	OT. N	Sent I	SERVICE OCCUPANT	REACH	SALL SALL	MAGONALOON WAS A STAN
CY	TBKI		¥ [R 130 A	(44) eroonerdo	(mxg1)	(CPCV)	(CALI.CA)	340	n	100	10	75	100	(7.1)	(Kgm²)	SI COULLOS	(16)
			Ĺ	1	3600 R	DAA G	I Ha	<u> </u>	<u>.                                    </u>	ــــــــــــــــــــــــــــــــــــــ	L			L	·	L	1
	71	3479	1,0	1 13	3000 1	171 - C	73	Tis	Tir	Ulla	0 44	8.70	6,73	1 25	0 0004	1	· •
1 9.7%	71	3479	2.5	6.1	0.11	73	1 1 1	14	ы	70	. 0 17	6.78	0 41	1.25	0 0001	7,5	,
	71	3470	3.7	9.0	070	7.9	37	1 44	6.9	11	9 49	0.77	0 81	. 1.21	0 0004		10
11,21	80	3470	3.6	73	0.217	3 5	1.7	1 14	1 79	71	0 73	0 82	0.88	1 13	0 0007	6.0	
1.3	10	3410	6.0		0.33	1 1.0	•	70	1 10	13	0.76	0 80	0.84	1 13	0.0001	7 0	13.
1730	60	3474	7.0	7,3	0.540	7.1	·	1 75	1 77	71	0 73	0 82	0.83	1.15	0,0010	6.0	15
11	10 3	3450	0.5	7,9	0,47	3,0	2.8	7.8	71	80 •	0:0	0.80	0.84	1,15	0.0021	6.0	20
1	90 L	3480	11	1.2	0.82	3.6	1.2	71	ħ	10	6.70	0.79	0.85	1.15	0,0027	6.0	52.
1.5	40 L	3499	11	8.9	1,50	2.1	3.1	72	14	81	0 77	4.40	0.84	1.15	0,6071	£.0	24.
1.4	100 L	3500	14	4.5	1,03	2.5	3.0	78	81	82	0.76	0.80 U.23	0.87	1,13	0.0054	8.0	29
7.3	112 M	3490	70	7.3	1,54	2.4	2.8	1 70	81	13	0.79	0.15	0.90	1,13	0.0100	6.0	45
<del></del>	112 14	3516	27	7,6	1,20	7.4	7.8	77	840	82	04.0	0.86	0.90	1,15	0.0012	8.0	
10	132 \$	3530	24	7,5	2.50	2.5	1,6	75	80	21	6.82	0,58	0.90	1,15	0.0143	8.0	54
12.5	135 M	3535	37	7,1	2.53	7.6	3,1	76	81	82	0.80	0,11	0.141	1,15	0.0213	6.0	
15	133 M :	3535	25	7.6	3,00	2.6	3.0	1 00	81	52	0.43	0 48	0.29	1,15	0.0744	6.0	-44
70	132 M	3531	45 52	6.0	4.05	2,3	1.5	74	81 28	81	0.15	0.87	0.11	1,15	0.0027	4.0	120
75	160 1	2535	63	7,5	\$,00	2.5	2.4	73	8.2	83	01.0	9,80	0.13	1,15	0.0748	6.0	145
>0	160 L	3560	73	0.0	6,00	7,6	1.5	80	63	8.5	0.81	0,91	0.13	1,15	1250.0	6.0	163
60	180 L	3570	100	8.0	8,00	2,8	1,1	75	79	8.2	023	0.14	0.92	1,13	0,1316	8.5	705
10	200 L	3570	122	7.8	10.0	2.6	3.0	8.0	85	66	0.15	0.88	0.92	1,13	0.2344	10	1 270
75	725 S.M	3545	142	8.0	12.0	7.5	2.9	85	25	87	0.38	0.19	0.91	1.0	0,3543	11	1 355
100	173 S.G	3540	170	0.0	20	2.5	3.4	84	84	\$Q \$Q	0.87	0.92	0.93	1.0	0,7114	112	473
	780 S/M	3575	292	8.0	25	2.9	2.7	- 84	8.0	60	84.0	0.90	0.92	1.0	0,8779	16	1 604
150	260 8.W	3575	346	7,8	30	7.6	2.6	36	84	\$1	14.0	0.90	0.92	1.9	1,0507	14	L 650
,					1800 F	PM - F	10 Hz -	Ca	tea	oria	M		_				
1		,	,	,		,						<del></del>				·	•
0.1	71	1720	3,0	9.0	0.20	3,3	3.3-	11	65	6)	8,53	0.60	0.54	1,25	0.0011	7.6	1 8
0.73	71	1755	3,7	5.0	0,35	2.7	2.1	649	65	70	0.51	0.62	0.71	1,15	0,0014	7.0	1 10
1	04	1720	3.5	\$.0	0.40	2.0	1 2.0	83	4	70	0.55	8,54	0.72	1,15	0.0019	8.0	1 12
11.25	80	1742	4.3	5.5	0.51	2_1	1.3	65	64	77	0,57	2,44	0.73	1,15	0,6022	6,0	1 13
1.5	80	1725	5,3	6.0	0,42	2.2	2.3	70	72	71	0.58	0,45	0.75	1,15	0.0074	8.0	1 . 14
1 1	80 \$	1713	6,3	6.8	0.84	1.3	2.0	74	78	80	0.81	0,73	0,77	1,15	0,0045	6.0	1 18
3	90 S	1744	9,0	7.0	1,02	2.8	2.7	74	71 75	81	0.63	0.65	0.77	1,15	0,0047	8.0	1 23
1.	80 L	1739	11.3	7.0	1,50	2.7	2.6	74	71	82	0,73	0.77	0.41	1,15	0.0061	6.0	25
	100 L	1720	12	7.0	1.66	2.6	1.4	74	79	±2	0.70	0.40	0.83	1,15	0.000\$	5.0	28
1	100 L	1730	15	6.7	7,00	2.6	7,8	76	71	80	0.72	0.79	0.62	1,15	0,0104	6.0	31
1:3	100 L	1742	17	7,2	2.5	2.8	2.7	73	78	180	0,73	0.80	0,85	1,15	0.0103	6.5	35
7.5	112 M	1740	21	7,8	3,10	2.5	2.5	75	78	83	0.75	18.0	0.86	1,15	0.017	6,5	1 50
10	132 \$	1730	29	0,5	4.10	2.5	3,1	80	\$3	84	0.24	0,76	0,82	1,15	0.0345	6,0	65
12.5	132 M	1755	. 33	8.5	5,10	2.6	3,1	82	E.S	87	0.70	0.20	0.84	1,15	0.0420	7.0	71
15	132 M	1760	40	1.2	6,10	2,5	1.0	81	84	# 6	84.0	0.78	0,83	1,15	0.0469	6.0	76
	160 M	1765	53	7,5	8.10	1.0	2.9	82	85	8.7	0.73	0.80	0,83	1,15	0.1175	6,0	100
30	160 L	1770	77	7.0	10,00	3.0	2,7	84	86	87	0.73	0,15	0,86	1,15	0,1452	6,0	157
	200 L	1775	103	6.0	16,15	2.1	2,2	92	35	86	0.82	0.85	0,85	1,15	0,2229	9,0	185
50	200 L •	1775	125	7,0	20,19	2.7	3,1	84	87	8.6	0.81	0,85	0.88	1,0	0,4949	10	284
	225 S/H	1780	- 145	6.7	24,10	2.2	2,4	8.8	843	91	0.78	0,84	0.85	1,0	0,5889	12	350
	225 5.74	1780	175	8.0	30.24	2.4	2.5	8.8	90	92	0,11	0.16	0.88	1,0	0,5678	9	362
	250 S/M 280 S/M	1775	300	7.0	40,38 50,34	2,5	3.0	85	89	- 81	0.84	6,86	88,0	1,0	0,9700	10	473
	280 S/M	1780	360	7.0	60.40	2,5	3,0	84	84	90	0,84	88.0	0,89	1,0	1,6126	10	608 650
					1200 F		<del></del>					•				· · · · · · · · · · · · · · · · · · ·	
0.25	71	1100	1,5	2.5	0,15	2,1	2,1	43	4.5	53	0,45	0,50	0,56	1,35	0,0011	17,0	8
0.33	71	1110	1.9	2.5	0,21	2.0	2.0	44	48	54	0,47	0,55	0,62	1,35	0,0014	20,0	10
0.5	80	1150	2,7	3,6	0,00	2.6	2,7	49	5-6	60	0,44	0.54	0,60	1,25	0,00226	8,5	10 -
0.75	80 90 S	1150	4,0	4,5	0.46	2.8	2.4	54	62	67	0.42	0.52	0.60	1,15	0,0025	8,5	12
1,25	90 S	1165	4.1	4.7	0,67	2.6	2,4	60	69	70	0,46	0.57	0.68	1,15	0,0045	8,5 7,5	17
. 1.5	90 S	1125	5,5	4,7	0,94	2.6	2,4	69	71	73	0,55	0,54	0,71	1,15	0,0043	7.0	19
.5	90 L	1149	6,7	4.9	1,10	2,0	2,5	63	Ed	73	0,53	0,63	0,71	1,15	0.0059	7,5	30
126	100 L	1150	7.5	5,2	1,2	2,1	2,7	65	70	74	0.52	0,60	0,70	1,15	0,00904	7,5	32
	100 L	1154	9,0	5,0 4,2	1,50	2.6	2,5	68	70	73	0,57	0,65	0.75	1,15	0,0100	7,7	51
	112 M	1125	14	3,6	2,5	2.0	2,1	69	71	72	0,60	0.70	0.78	1,15	0,01046	8.0	50
-5	112 M	1162	14,5	4,5	3,0	2,0	2,4	70	73	75	0.58	0.74	0,79	1,15	0.0181	9,0	54
	132 S	1160	15,5	5,5	3,10	1.7	2.6	71	75	78	0.62	0,71	0,76	1,15	0,0395	11	65
	132 M	1170	22	6,5	4,60	2.0	3,0	77	11	83	0.58,	0,68	0,73	1,15	0,0559	8,0	76
	132 M	1169	26	7,0	5,5	2.4	2.7	74	78	80	0.69	0,77	0,81	1,15	0,0750	7,5	76
	160 M	1165	29 ·	6,8	7,5	2,1	3,0	78	81	82	0,60	0,71	0,76	1,15	0,0625	7,0	85
15	160 M	1160	42	6,3	9.0	2,1	2,9	78	11	83	0,65	0,78	0,80	1,15	0,1333	6,0	133
	160 L	1170	54	-6,0	12	2,4	2,9	80	85	87	0.70	0,78	0,82	1,15	0,1490	6,0	145 158
	180 L	1170	64	7,0	15	2,2	2,3	84	25	88	0.52	0,64	0,86	1,15	0.3360	8,0	252
	200 L	1170	78	7.0	18	2,5	2,7	84	87	89	0,71	0,76	0.83	1,15	0.4715	10	259
	200 L 225 S/M	1180	100	6,8	30	2.0	2.6	85	86	89	0.74	0,82	0,86	1,0	0.5976	10	279
1	250 S/M	1180	145	6,7	36	2,4	2,4	87	89	<u> </u>	0,69	0,77	0,81	1.0	0,9526	10 .	415
	50 S/M	1150	185	6.4	45	2,4	2,5	87	89	90	0.62	0,86 D,56	0,88	1,0	1,4650	15 15	467
		-1					<del>,</del>	<del></del>							<del></del>		510

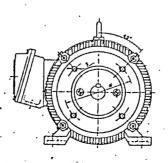
ıtı	+CIA			COMMENTE	COMMENTE	CONCRECADO	CONTRATO		RO.	OWLK	10%	PATOR	DE POT	. cos .		POSITION	TERFORIZ	
7		LOADGA TYBA	RPU	MORKIT	ROTOR WOOD	Cu Cu	COM ROTOR EL DOULADO	CONDUNCO BLITTED (CDAIL(CA)	e DA	<del>fot k</del>	MIHAL	4 DAP	01. N	MINAL	FATOR DE SERVIÇO (Fa)	DE DEFICIA J	CAOTOA BLOOURADO	PCIO APVIOIMADO (bij)
1	CY			^	(152n)	(mitgl)	(CA-Cn)		10	75	100	140	73	100		(Kgm ^r )	ъ	
						900 RI	PM - 6	0 Hz -	Cal	ego	oria	N						
7	e 16	71	825	1.2	7,1	0.14	10	2.3	44	48	1.7	1034	81.0	0.54	131	1 0 0021	30	10
-	6 23	80	6+2	1.8	1.5	0.21	1.8	1.5	40	44	*3	6.34	0 46	0.14	1,35	0 0034	71	12
5	1 33		640	7.4	2.4	0.21	11	7.5	44	3.3	14	0.37	0 47	0.54	125	0 0029	71	14
7	1 14	90 %	840	7.4	33	0.43	1.4	3.4	1 11	10	41	6 11	0 12	0.58	1,15	3 0044	1 23	14
1	0 75	10L	8 347	3.7	1 - 34	0.14	1 23	2,1	1 57	1 12	43	0 43	0 34	0 60	1.13	0.0031	1 15	23
3		10 L	8 30	3.2	1.4	0 14	20	21	54	33	6.0	0 40	0 51	0 40	. 135	0 0041	1 16	74
71	*1 25	PO L	254		3 8	1.03	1 20	1 31	5.7	67	41	0 43	0 33	0.54	1.13	4.0070	1. 16	21
1	1 5	100 L	140	1 73	40	1.25	2.1	1 77	60	1 17	71	0 45	0.52	0,34	1.13	0 0104	1 17	31
3 1	٠,	100 L	145	4.3	3 9	1,40	20	2.1	64	61	71	0 43	0 55	0 63	1 15	0 0103	i 17	13
5	7	11714	860	9.0	3.6	1,47	1.9	2,1	45	4	70	0.65	0.54	0.61	1,13	0.0164	17	
3	*2.5	112 M	170	100	4.0	2.04	2.15	2.4	6.8	74	77	0.43	0.54	0.41	1,15	0.0170	16	30
- 7	-,	122.5	175	11.5	4.6	2.45	1,6	7.2	69	73	75	0.48	0.59	0.64	1.15	0.0315	10	70
	4	132 M	860	15	4.4	3.30	2.0	72	71	74	71	9.50	0.59	0.49	1,15	0.0461	16 .	14
7	1	132 W	865	18 \$	4.8	4,13	1,7	1.3	63	71	75	0.50	0.62	0.44	1,15	0.0550	15	15
5	••	132 M	875	31	3.0	4.1	2.0	2.4	43	54	2.5	0 47	0.58	0.47	1,15	0.0442	15	\$4
-	-	160 W	860	20	7.8	4.9	2.0	2.3	84	14	67	0.47	0,19	0.41	1,15	0,1204	11	170
5	7.5	1129	880	24	7.9	6,1	7.0	2.5	84	8.7	14	0.48	0.41	0.70	1.15	0,1344	8	133
3	.11	160 14	216	21	8.0	7,1	2.1	3.7	84	17	1.4	0.44	0.61	0.70	1,15	0.1376	7.3	134
3	10	160 L	110	31	1.2	0.1	2,2	2.7	8.5	87	11	0.49	0.62	0,71	1,15	0,1638	7	157
2	12.5	180 M	880	34	6.3	10.2	7,1	2.6	8.7	11	21	0.43	0,74	0.80	1,15	1 0,2979	7	145
Π,	15	180 L	840	40	8.0	17.2	7.0	2,6	87	81	17	0 66	0.76	0.81	1,15	0,3127	1	218
	-340	180 L	410	\$3	0.0	16.3	7.0	2.5	6.6	83	89	0.61	0.76	0.82	1,15	0.3574	)	252
.5	25	200 L	850	71	5,4	20,1	2,1	2.3	83	84	27	0.42	0.72	0.72	1,15	0,6097	1 15	214
	30	225 LM	810	82	6.0	24.4	1,5	1,1	17	11	13	0.61	0.74	0,71	1,0	0.5107	17	313
	40	225 S.W	885	115	5.7	32.2	2,1	1,9	85	81	8.9	0.57	0.72	0,75	1.0	0.9526	11	345
	10	253 \$.14	880	126	6.3	40,7	1,4	1,9	84	87	41	0.74	0.82	0.84	1.0	1,7347	15	1 415
5	60	250 8.14	810	147	6.1	44,1	1,6	1.4	8.1	\$40	91	0.71	0.83	0.66	1,0	1.8604	13	447
1	75	210 5.74	490	197	5.0	60.3	1,6	1,7	81	10	90	0.73	0.81	0,84	1.0	2,4519	24	1 608
3	*100	280 S.W	810	265	\$.5	60.4	1.4	1.6	0.7	940	91	0.61	0.75	0,20	1.0	2.8152	21	450

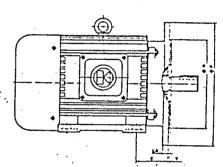
Namento classes Findo inclusios na Padronascido NBR 8441.

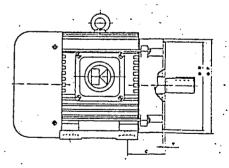

1 obter a corrente em: 330 multiplicar por 0,377

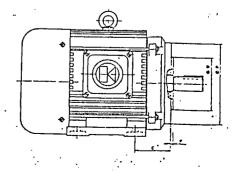
1440 multiplicar por 0,3
Hes médios obtidos em encalos sujerios a amerição sem prema anso.

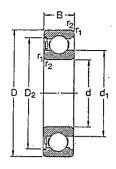

URCAÇA	Driv	ENSO	S ES	FLU	CE 11	PO "F	" (NB)	C 54 3	3)	QUANT.
ABHT	FLANGE	С	LA	. M	44	#P	۲	8	9	FUROS
1	FF-130	45		130	116	160		10		
0		50					]			
0 S	FF-165	54	8	165	130	200	3,5	12		
COL		63	1				1		ĺ	
12 M	FF-215	70	11	215	180	250		15		
32 S	FF-263				230	300	] •	''	450	4
32 M	11.703	87	13	265	2.50	300			1 1	-
80 M										
80 L	FF-300	108	1	300	250	350	1		1	
100 M	11.300		1.	300	250	350	Ì	į į	l	
IBOL .	1	121	١	1	Ī	l		۱	1	
100 L	FF-150	133	15	350	300	400	5	19	<b>}</b>	<b>,</b>
125 S.M	FF-400	149		400	350	450	1	l		<del></del>
150 S.W		168	1		Ī	1	1	١.	22.30.	
180 S.TM	FF-500	190	1	500	450	550	1	1	l	1


ARCAÇA	DIM	ENSÓ	ES DO F	LANGE	TIPO "	C" NEMA MG-1		QUANT.
ABNT	FLANGE	C	Mo	6N	ъP	5	T	FUROS
71	FC-95	45	04.0			4441 201110	1	
30	10.42	50	95.2	76.2	143	1/4" - 20 UNC	ŀ	1
10 S		58		I			4	ŀ
90 L	FC-149	20	149,2	114,3	165	3/8" - 16 UNC	l	
100 L	<u></u>	63	1		1		1	
112 M		70						1 .
132 S	] `	89	1	ì			ł	4
132 M	FC-184	٠,	164,2	215.9	225		1	
160 M			1	1	Į.			•
160 L .	L	108		1		1/2" - 13 UHĆ	Ι.	
180 M			1				6,3	
180 L	FC-228	121	228,6	268.7	280			İ
100 L	1	133	]	ŀ				
125 S/M	FC-279	149	279,4	317.5	356		1	
150 S/M	FC-355	168	255.5			5/8" - 11 UNC		8
180 S/M	1 .0.355	190	355,6	406.4	455		1 1	


TARCAÇA	DIMEN	SÓES	DO FLA	NGE TIP	oc t	DIN-4267	7	QUANT.
ABNT	FLANGE	С	οМ	¢N.	фP	S	T	FUROS
71	C-105	45	85	70	105	<b> </b>	2.5	
. 80	C-120	50	100	80	120	M6		
90 S	C-140	1			1	1	<b>1</b> 3 .	
90 L	C-140	58	115	95	140	l		
100 L		63				MB		4
112 M	C-160	70	130	110	160	ľ	1	
132 5				1		<del> </del>	3,5	
132 M	C-200	89	165	130	200	MIO	ĺl	



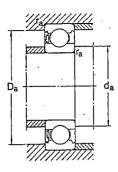







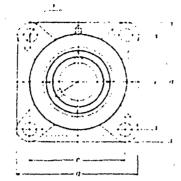






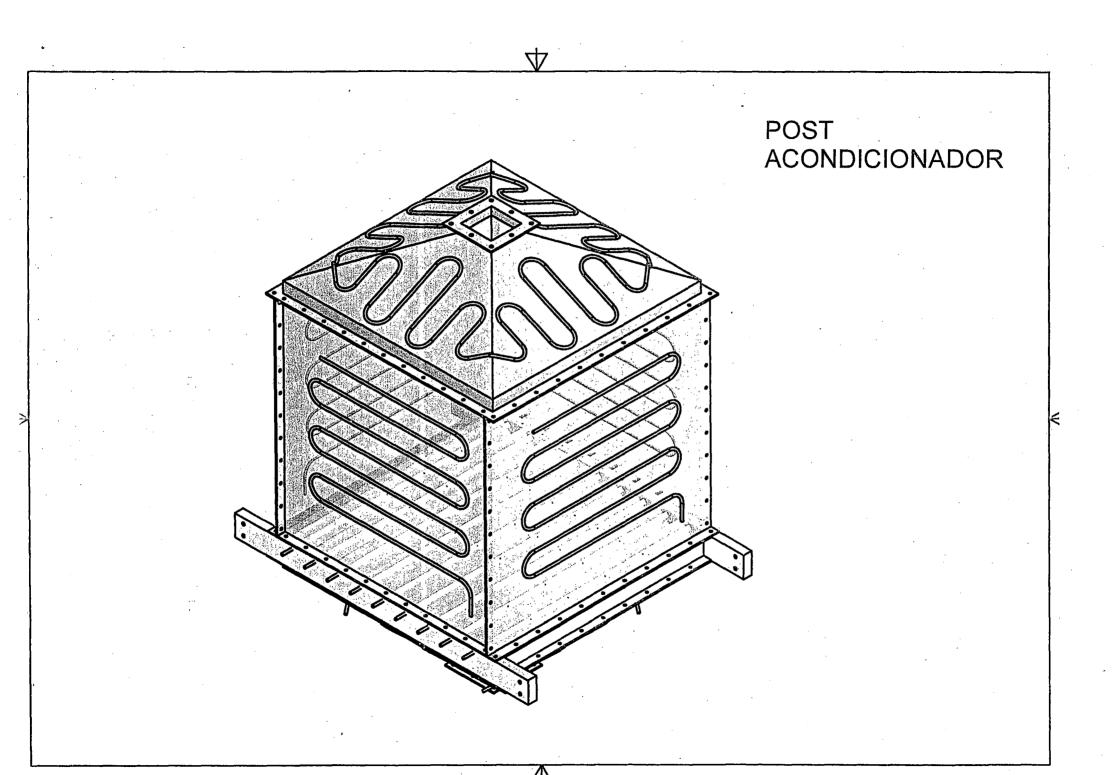

Con una placa de protección Z

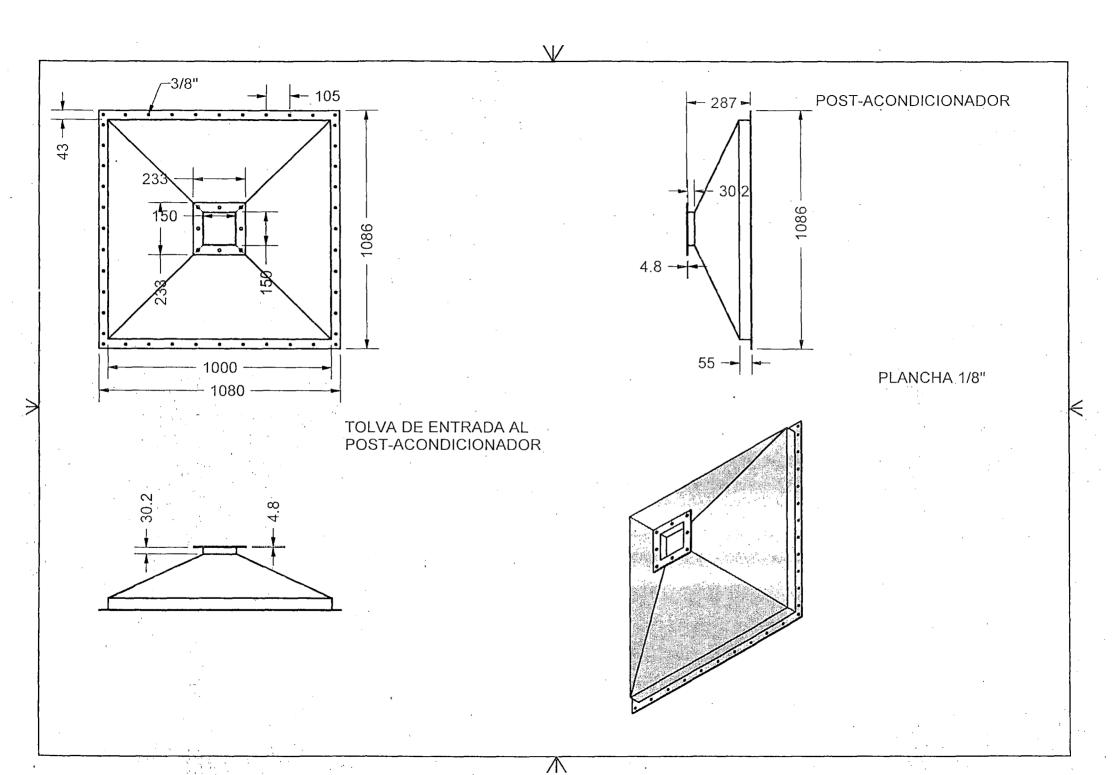

Con dos placas de protección Z

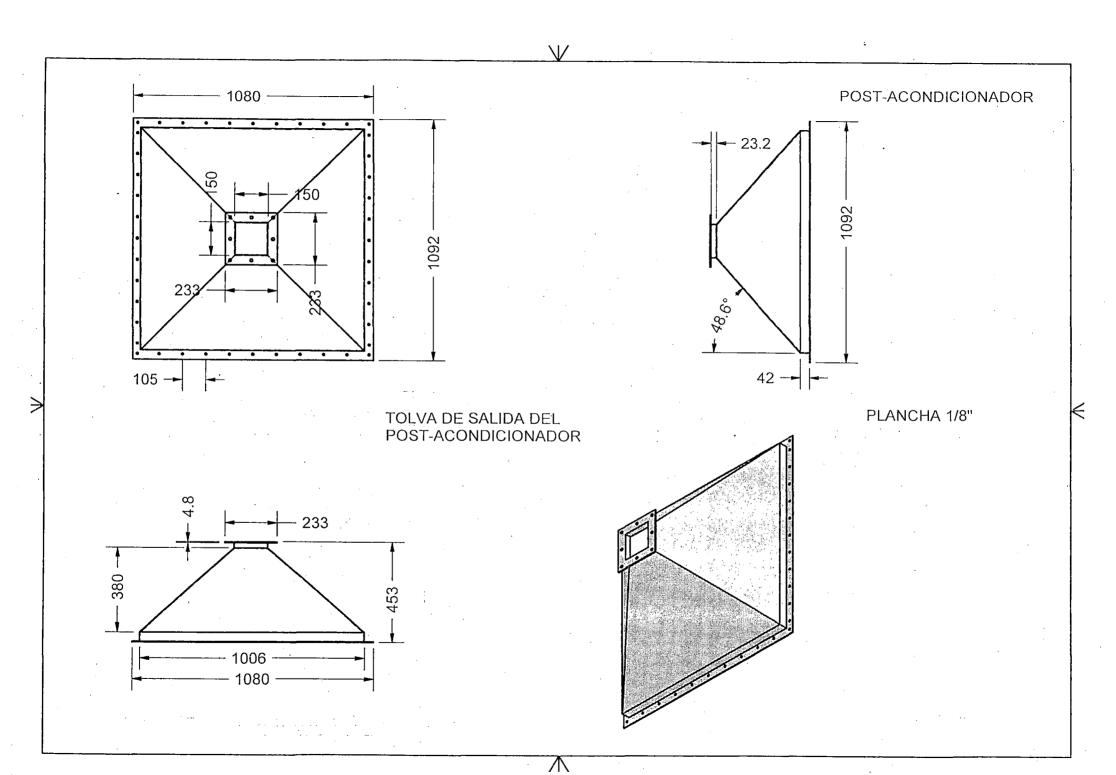
nension ncipales		Capacid dinám.	ad de carga estát.	Carga limite	Lubricaci		Masa .	Designacio Rodamiento	os con
D	В	С	C ₀	de fatiga P _u	grasa	aceite		una placa protección	dos placas protección
n		N		N	r/min		kg		
10	4.	488	146	6	60 000	70 000	0,0015	623-Z	623-2Z
13	5	975	305	14	48 000	56 000	0,0031	624-Z	624-2Z
16	5	1 110	380	16	43 000	50 000	0,0054	634-Z	634-2Z
16	5	1 110	380	16	43 000	50 000	0,0050	625-Z	625-2Z
19	6	1 720	620	26	36 000	43 000	0,0090	635-Z	635-2Z
19	6	1 720	620	26	36 000	43 000	0,0084	626-Z	626-2Z
19	6	1 720	620	26	38 000	45 000	0,0075	607-Z	607-2Z
22	7	3 250	1 370	57	32 000	38 000	0,013	627-Z	627-2Z
22	7	3 250	1 370	57	36 000	43 000.	0,012	608-Z	608-2Z
24	7	3 710	1 660	71	32 000	38 000	0,014	609-Z	609-2Z
26	8	4 620	1 960	83	28 000	34 000	0,020	629-Z	629-2Z
26	8	4 620	1 960	83	30 000	36 000	0,019	6000-Z	6000-2Z
30	9	5 070	2 360	100	24 000	30 000	0,032	6200-Z	6200-2Z
35	11	8 060	3 400	143	20 000	26 000	0,053	6300-Z	6300-2Z
28	8	5 070	2 360	100	26 000	32 000	0,022	6001-Z	6001-2Z
32	10	6 890	3 100	132	22 000	28 000	0,037	6201-Z	6201-2Z
37	12	9 750	4 150	176	19 000	24 000	0,060	6301-Z	6301-2Z
32	8	5 590	2 850	120	22 000	28 000	0,025	16002-Z	16002-2Z
32	9	5 590	2 850	120	22 000	28 000	0,030	6002-Z	6002-2Z
35	11	7 800	3 750	160	19 000	24 000	0,045	6202-Z	6202-2Z
42	13	11 400	5 400	228	17 000	20 000	0,082	6302-Z	6302-2Z
35	8	6 050	3 250	137	19 000	24 000	0,032	-	16003-2Z
35	10	6 050	3 250	137	19 000	24 000	0,039	6003-Z	6003-2Z
40	12	9 560	4 750	200	17 000	20 000	0,065	6203-Z	6203-2Z
47	14	13 500	6 550	275	16 000	19 000	0,12	6303-Z	6303-2Z
42	12	9 360	5 000	212	17 000	20 000	0,069	6004-Z	6004-2Z
47	14	12 700	6 550	280	15 000	18 000	0,11	6204-Z	6204-2Z
52	15	15 900	7 800	335	13 000	16 000	0,14	6304-Z	6304-2Z

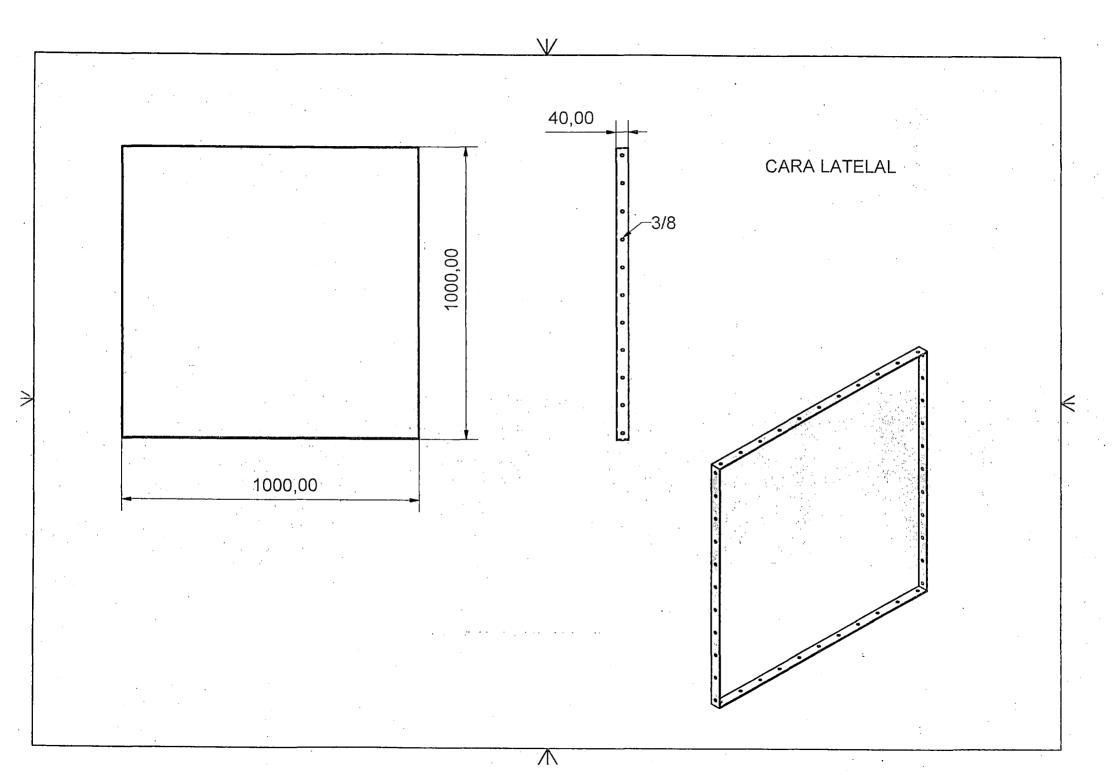


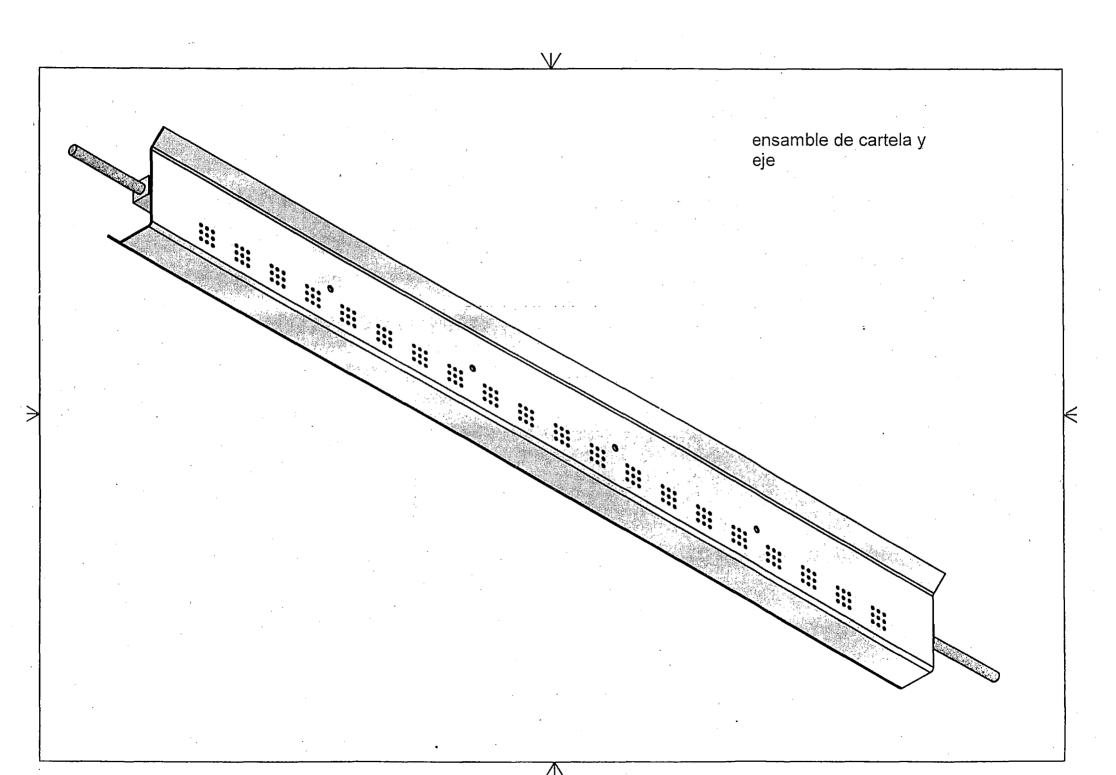
Otra	s dimer	nsiones	;	Dime	Dimensiones de resaltes								
ď.	d₁ ≈	D₂ ≈	r _{1.2} min	d _ą min	D _a max	r _a máx				_			
mm				mm						,			
3	5,2	8,2	0,15	4,2	8,8	0,1		•				,	
4	6,7 8,4	11,2 13,3	0,2 0,3	5,6 6	11,4 14	0,2 0,3							
5	8,4 10,7	13,3 16,5	0,3 0,3	7 7	14 17	0,3 0,3						•	,
6	10,7	16,5	0,3	8	17	0,3	*		•				
7	10,7 N 11,8	16,5 19	0,3 0,3	9 9	17 .20	0,3 0,3		•					
8	11,8	.19	0,3	10	20	0,3				-			
9	14,2 14,4	21,2 22,6	0,3 0,3	11 11	22 24	0,3 0,3	,						
10	14,4 16,7 17,5	22,6 24,8 28,7	0,3 0,6 0,6	12 14 14	24 26 31	0,3 0,6 0,6							
12	16,7 18,2 19,5	24,8 27,4 31,5	0,3 0,6 1	14 16 17	26 28 32	0,3 0,6 1							
15	20,2 20,2 21,5 23,7	28,2 28,2 30,4 36,3	0,3 0,3 0,6 1	17 17 19 20	30 30 31 37	0,3 0,3 0,6 1							٠
17	22,7 22,7 24,2 26,5	31,2 31,2 35 39,6	0,3 0,3 0,6 1	19 19 21 22 .	33 33 36 42	0,3 0,3 0,6 1							
20	27,2 28,5 30,3	37,2 40,6 44,8	0,6 1 1,1	24 25 26,5	38 42 45,5	0,6 1 1							

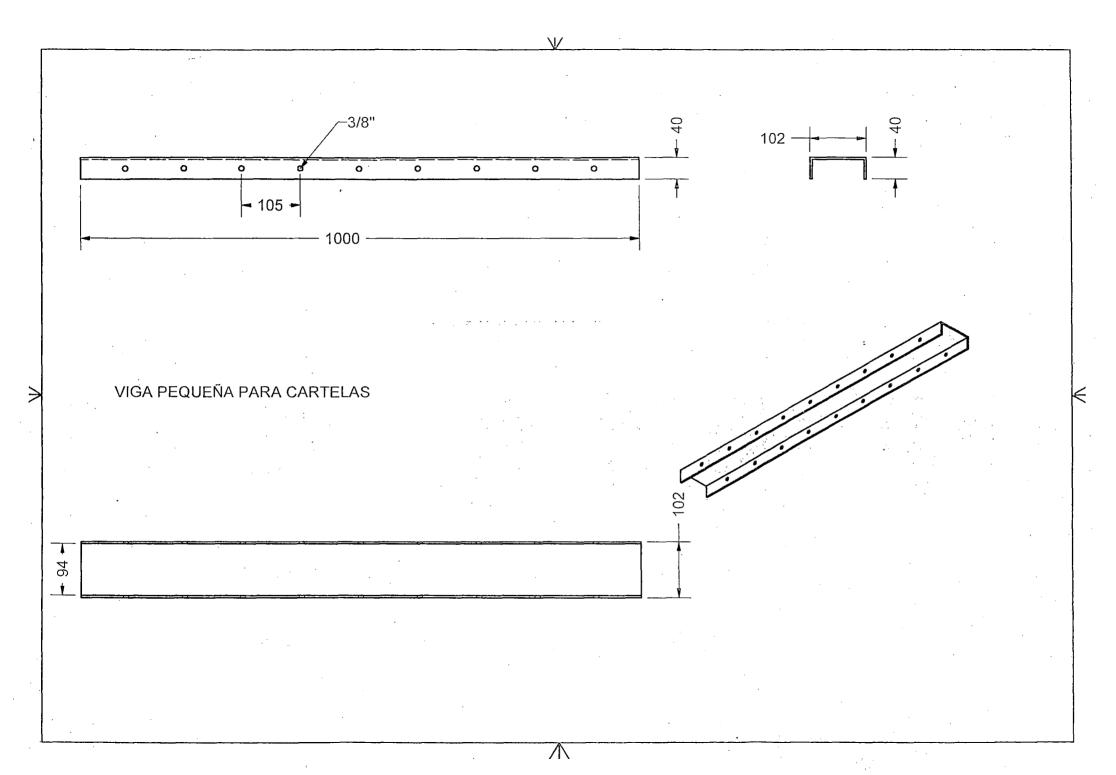

SERIES UCF2 SET SCREW TYPE INCHES

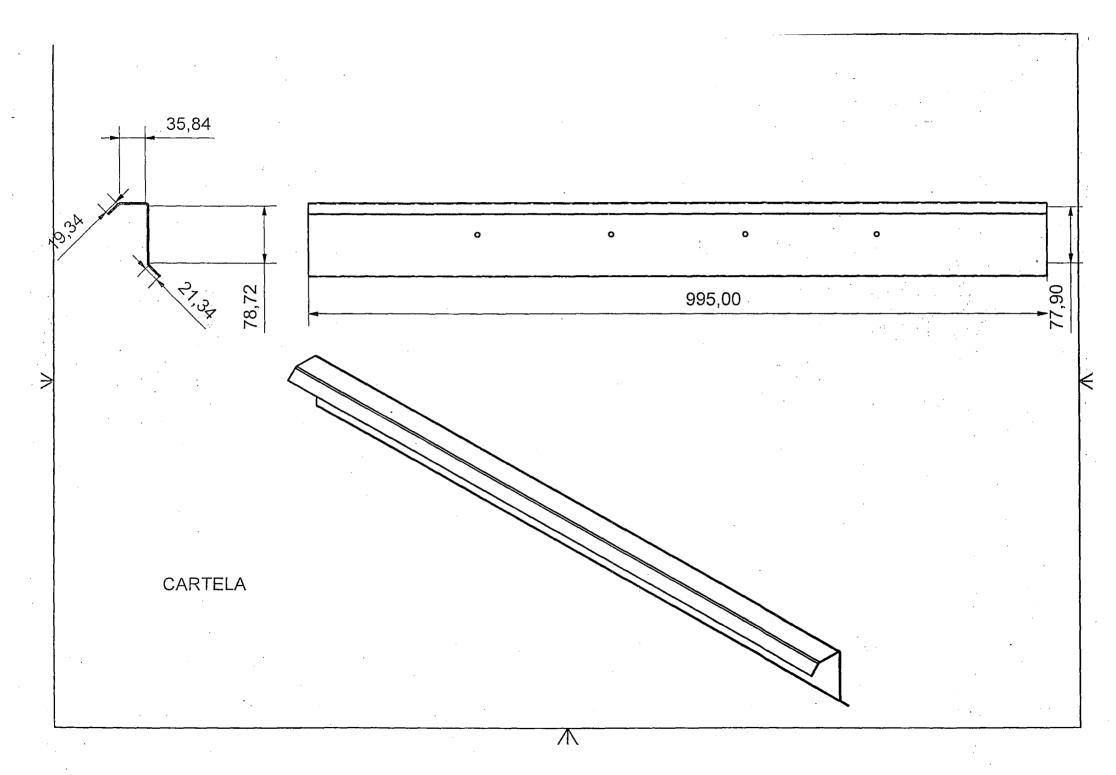


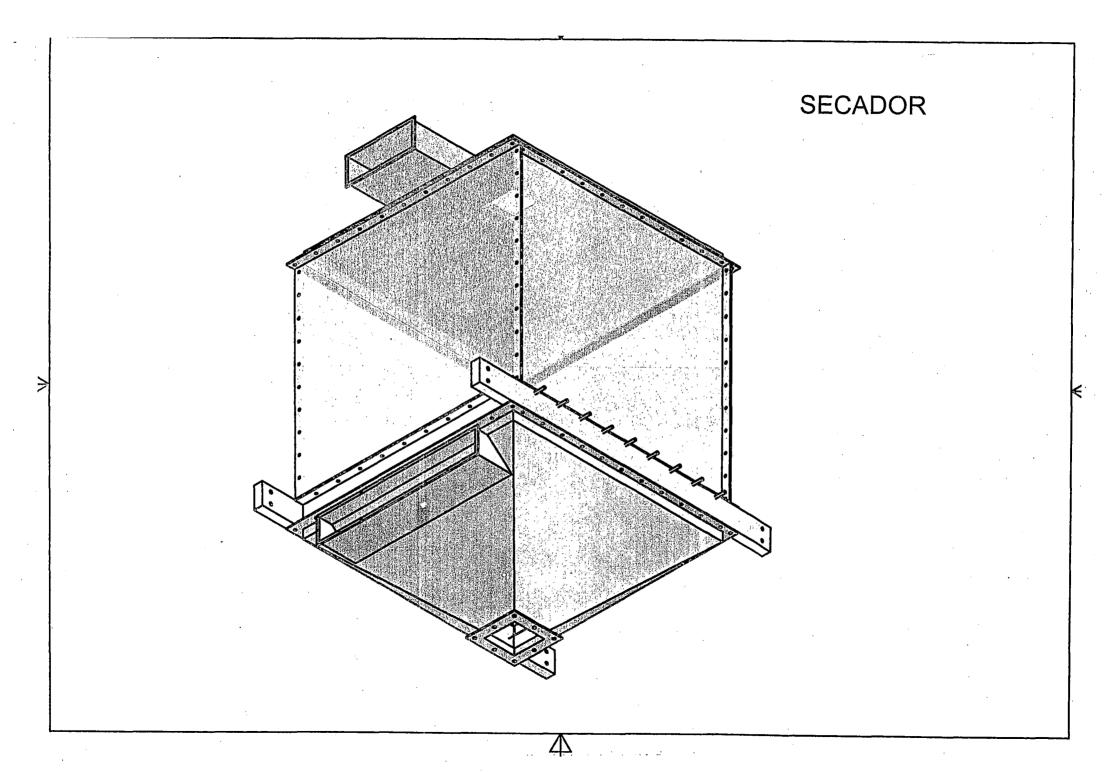



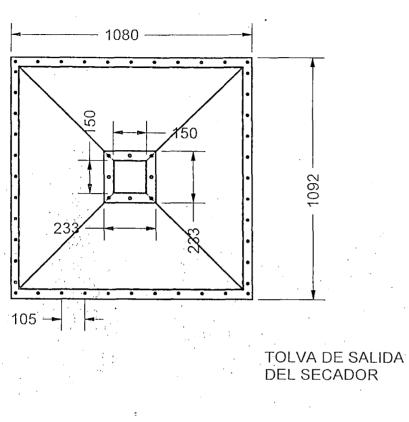


	FL	ANG	30/0	THE	FPR	<b>388</b>	<b>30(0)</b>	<i>(</i> 91)	Holl	आख	FOUR	30LTI)		
Shaff .	Complete Flanged Unit	Nominal Dimensions									Housing	Bearing Number	Easic Load Ratings:	
*************	Number	3	,	R	1	\$		Ei	Я	Seze	Number	Number	Shinania (*	Sister C
19	UCF201-008T	34	2 1/31	744	1	11/12	1 44	1.220	.500	≒a	F204T	UC201-006D1	2,890	1,500
*1¢	UCF202-009T UCF202-010T	3 %	2 1737	716	! : 1	رزدا	1 44	1.220	.500	<b>)</b> 4	F204T F204T	UC202-009D1 UC202-010D1	2.890	1.500
1116	UCF203-011T	34	2 1752	746	1	1552	1 44	1.220	.500	4	F204T	UC203-011D1	2,890	1,500
'n	UCF204-012T	3 4	2 1752	314	1	1522	1 %1	1.220	.500	30	F204T	UC204-012D1	2,890	1,500
1516 1516	UCF205-013T UCF205-014T UCF205-015T UCF205-100T	3 1/4	234	<b>13</b>	1 146	1357	ינ ^{נו} 1	1.339	.563	34	F205T F205T F205T F205T	UC205-013D1 UC205-014D1 UC205-015D1 UC205-100D1	3,150	1,770
1 %s 1 %s 1 %s 1 %s	UCF206-101T UCF206-102T UCF206-103T 'UCF206-104T	414	3 %32	12	1 332	1952 1952	1 114	1.500	.626	7,	F206T F206T F206T F206T	UC206-101D1 UC206-102D1 UC206-103D1 UC206-104D1	4,400	2,540
:. 1 ¼ 1 % 1 ½ 1 ½	UCF207-104T UCF207-105T UCF207-106T UCF207-107T	4 1932	3 %	19,32	1 1/22	3564	13i	1.689	.689	12	F2071 F2071 F2071 F2071 F2071	UC207-104D1 UC207-105D1 UC207-106D1 UC207-107D1	5,750	3,440
1 1/2 1 916	UCF208-108T UCF208-109T	5 1/4	4 1/32	19,52	1 1332	5/4	2 164	1,937	.748	12	F208T F208T	UC208-108D1 UC208-109D1	6,550	4,000
1 % 1 % 1 16 1 %	UCF209-110T UCF209-111T UCF209-112T	5 13/32	4 14	54	34 1 1/2	74 74	2 Me	1.937	.748	12	F209T F209T F209T F209T	UC209-110D1 UC209-111D1 UC209-112D1	7,350	4,590
1 13/16 1 7/5 1 15/16 2	UCF210-113T UCF210-114T UCF210-115T UCF210-200T	5 %	4 34	5,8	1 %16	 5g	2 55,2	2.031	.748	12	F210T F210T F210T F210T F210T	UC210-113D1 UC210-114D1 UC210-115D1 UC210-200D1	7,900	5,220
! Ins ! Is ! Is	UCF211-200T UCF211-201T UCF211-202T UCF211-203T	6 %	5 lá	2352	1 ¹¹ /10	92. 34	2 194	2.189	.874	74	F111T F211T F211T F211T F211T	UC211-200D1 UC211-201D1 UC211-202D1 UC211-203D1	9,750	6,570


## **PLANOS**



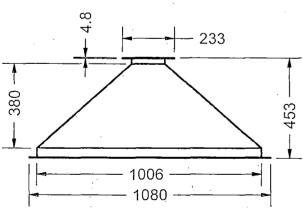



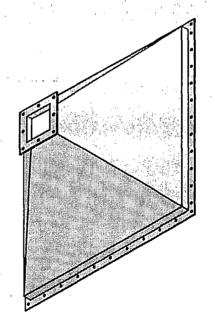



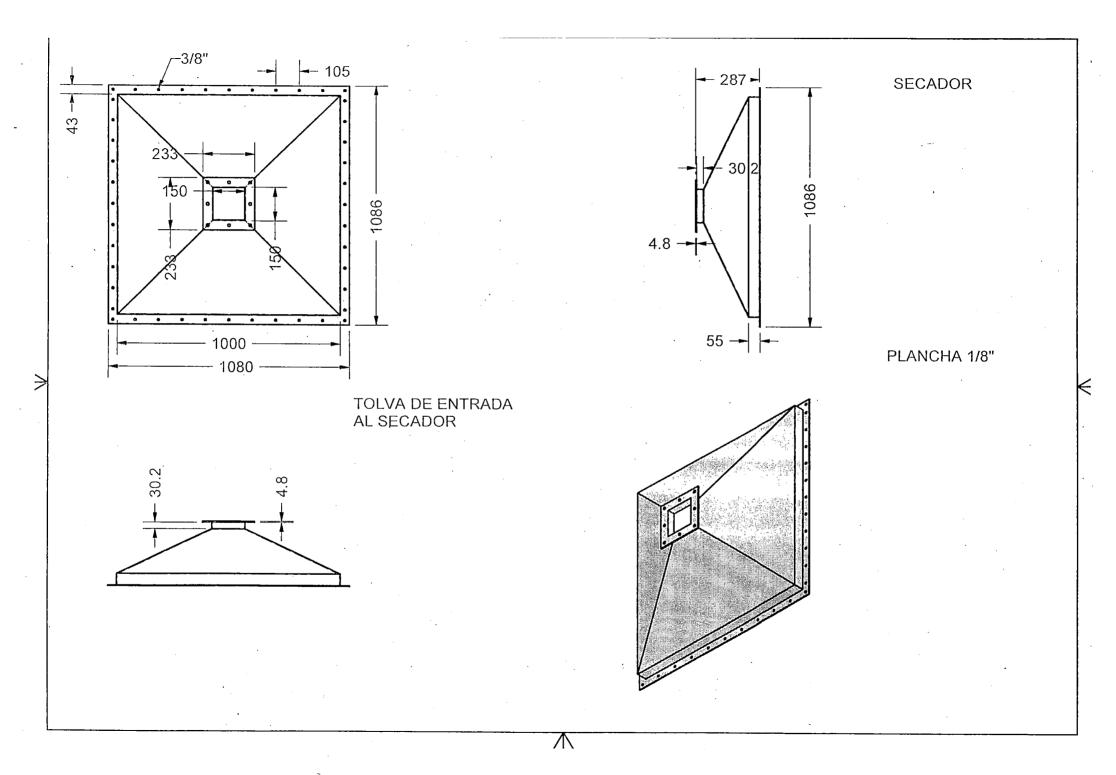


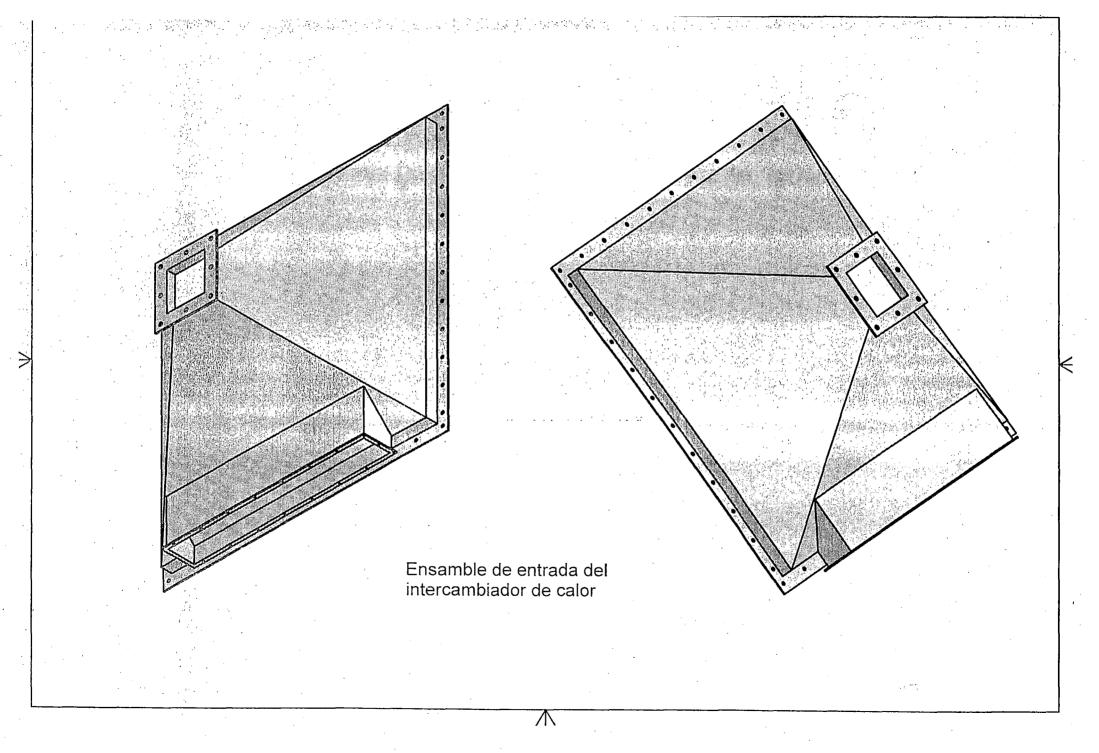


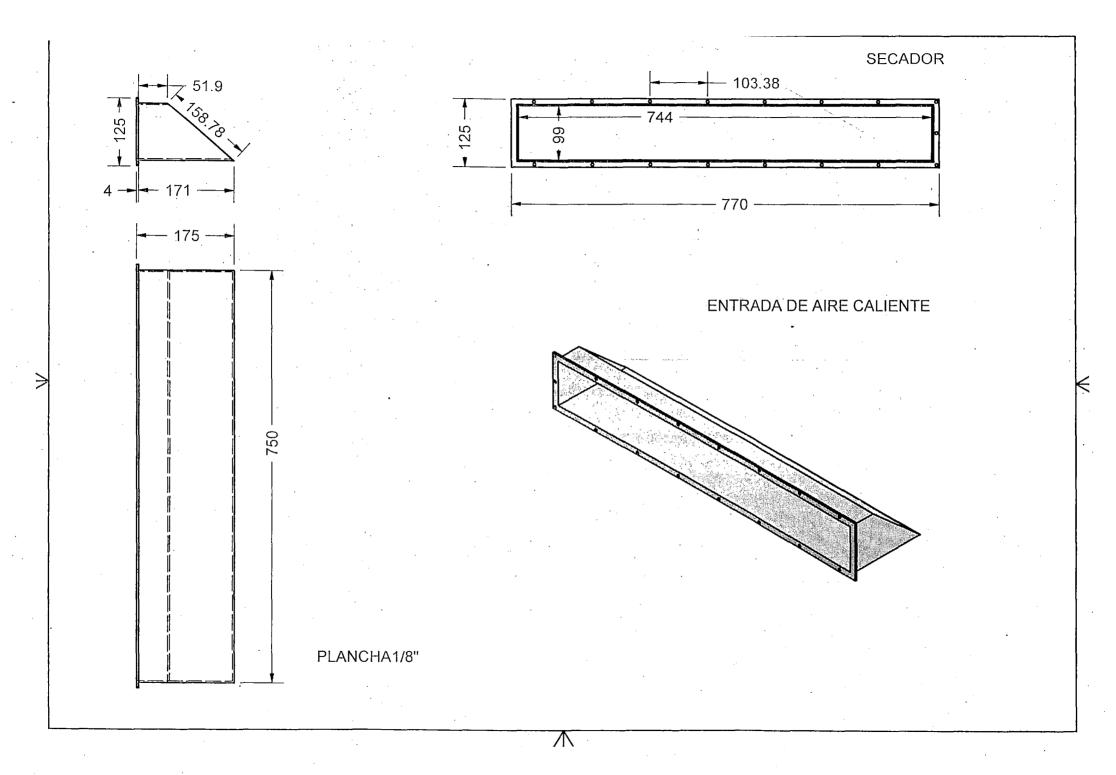


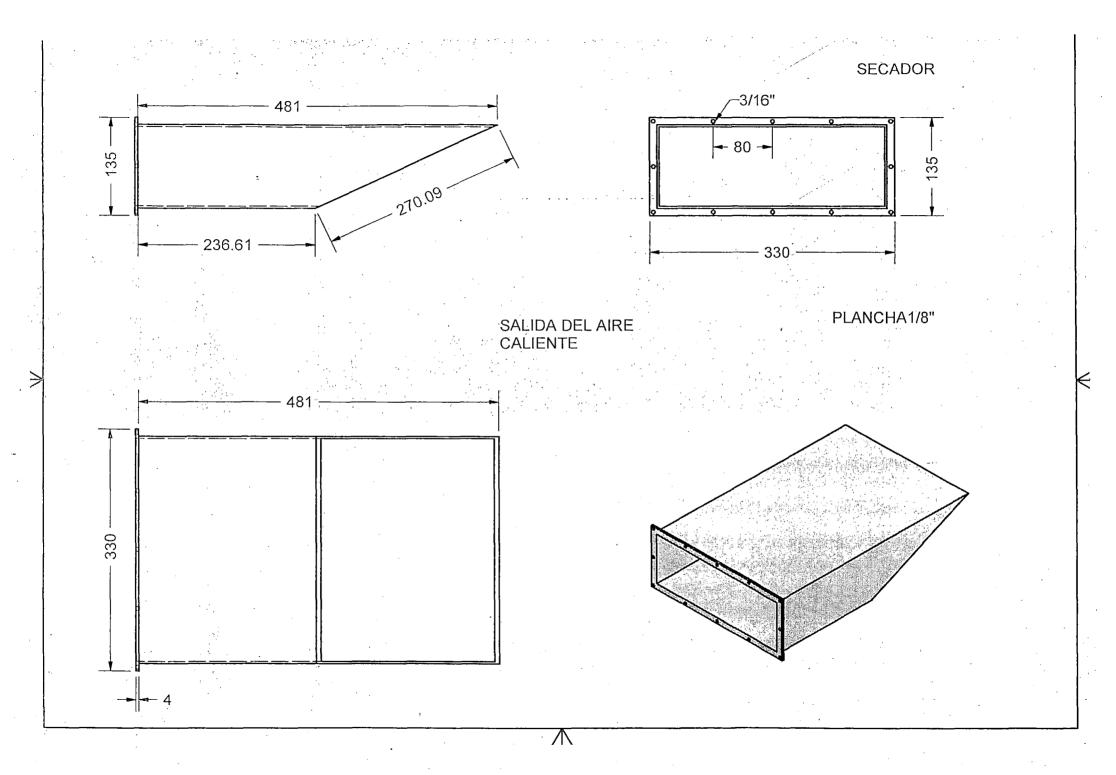



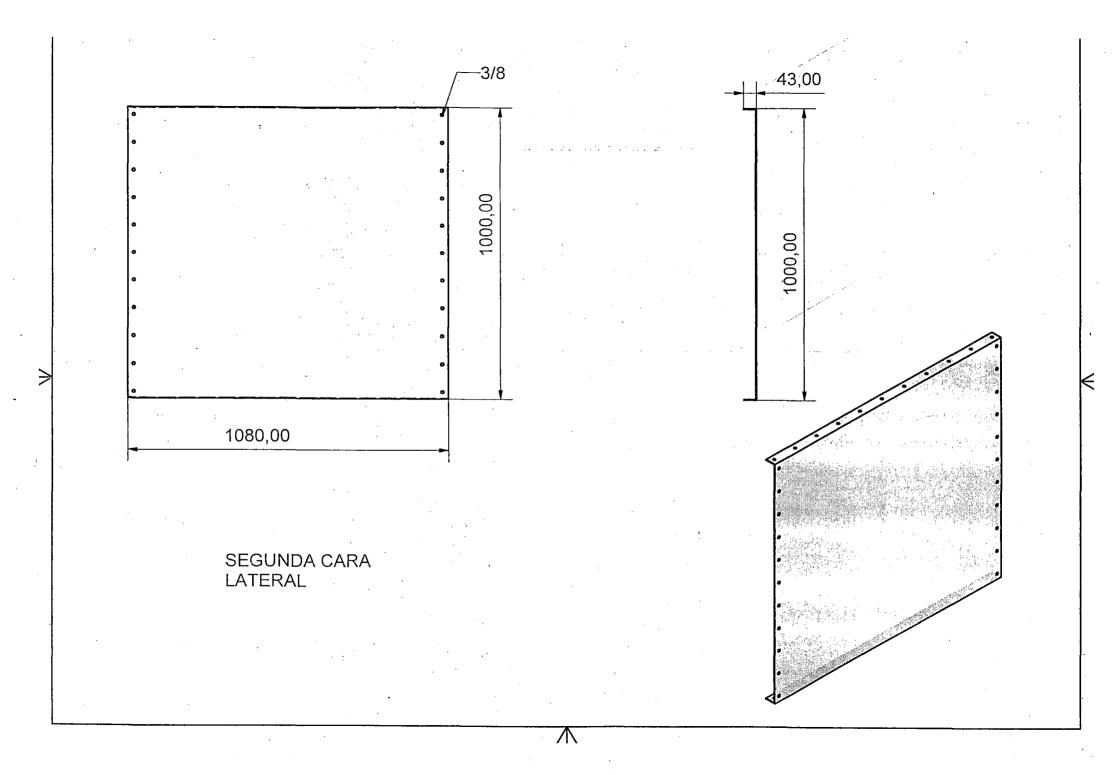



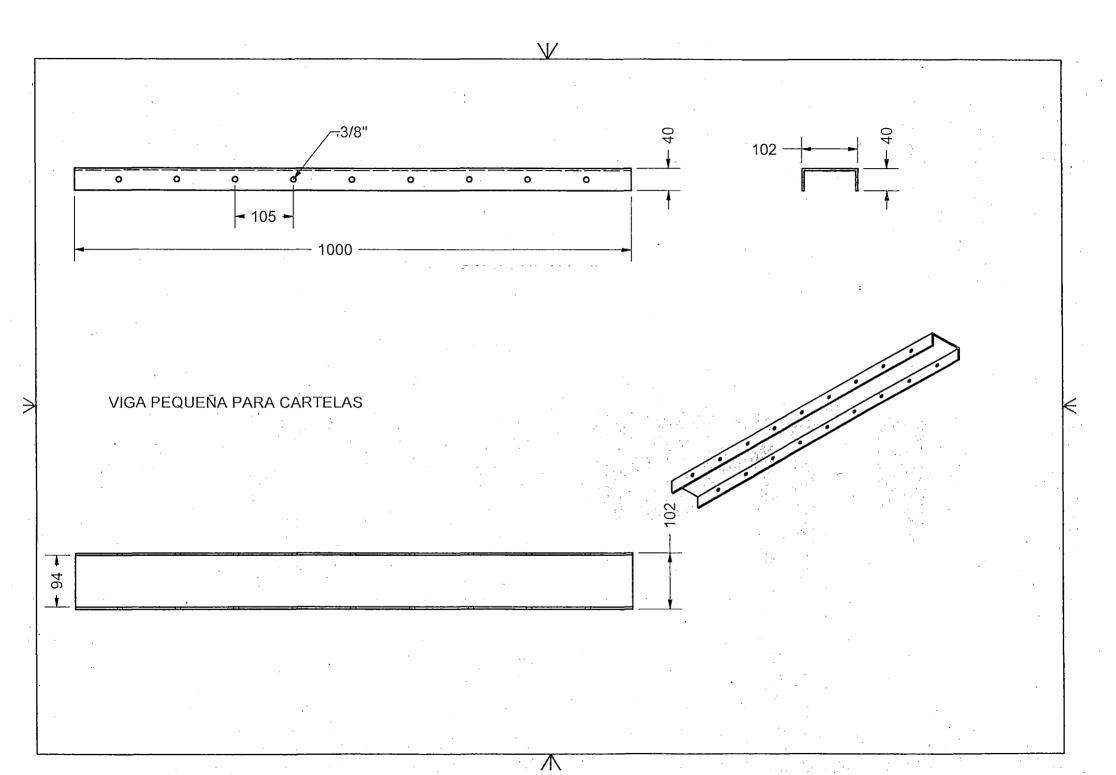


23.2

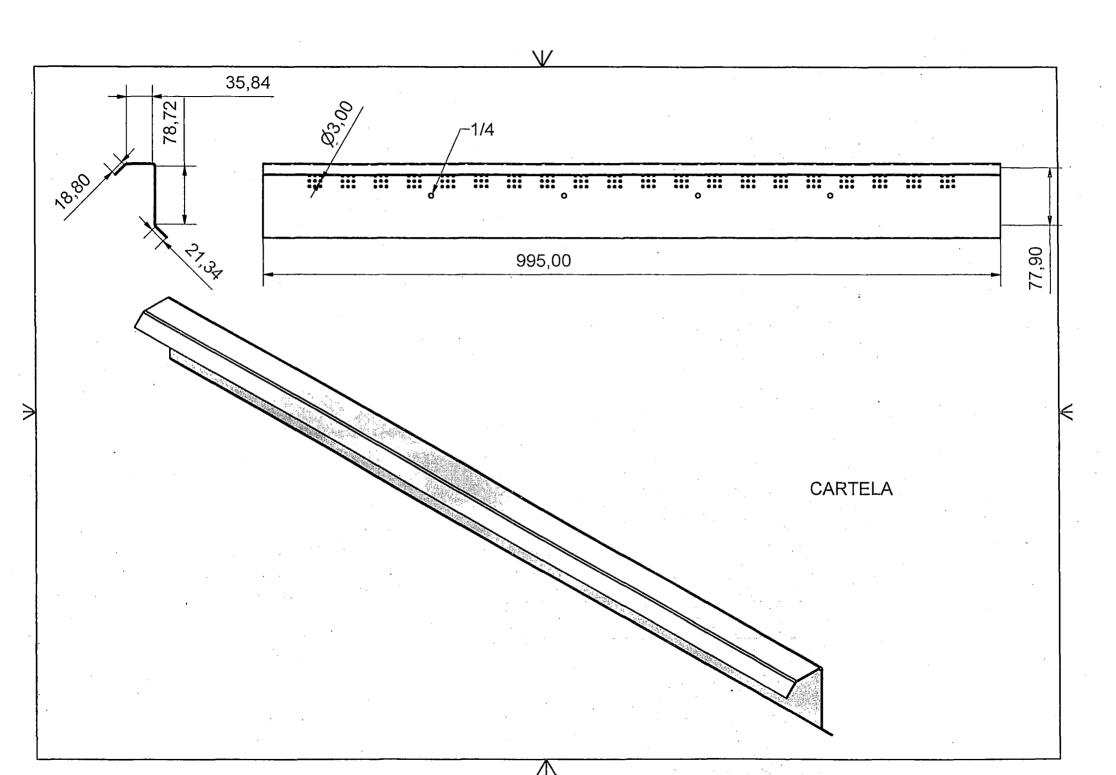

PLANCHA 1/8"

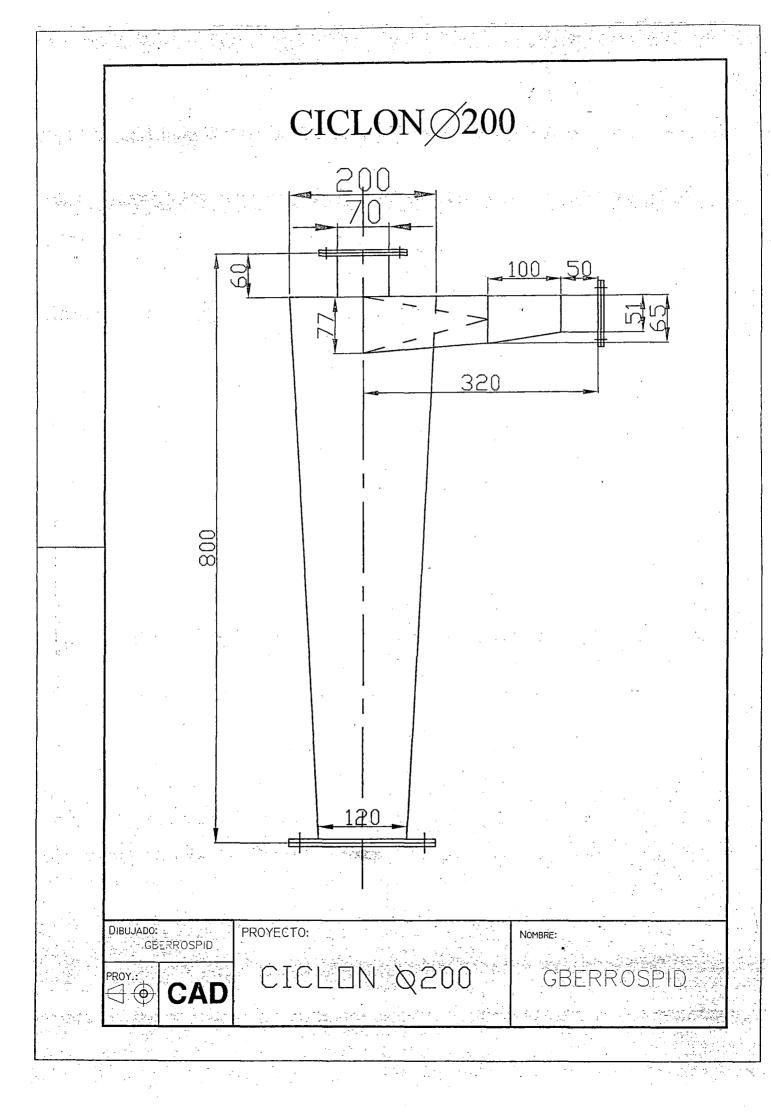

SECADOR



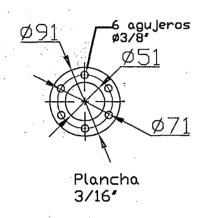



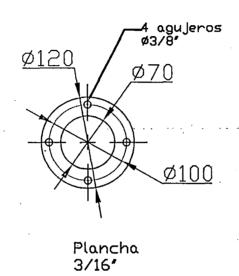



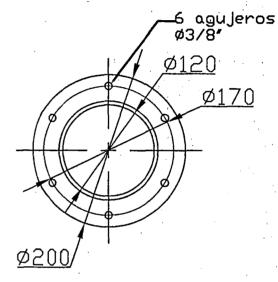








### BRIDA BRAZO-CICLON BRIDA-TUBO SUPERIOR





BRIDAS
CICLON-MGXD 200

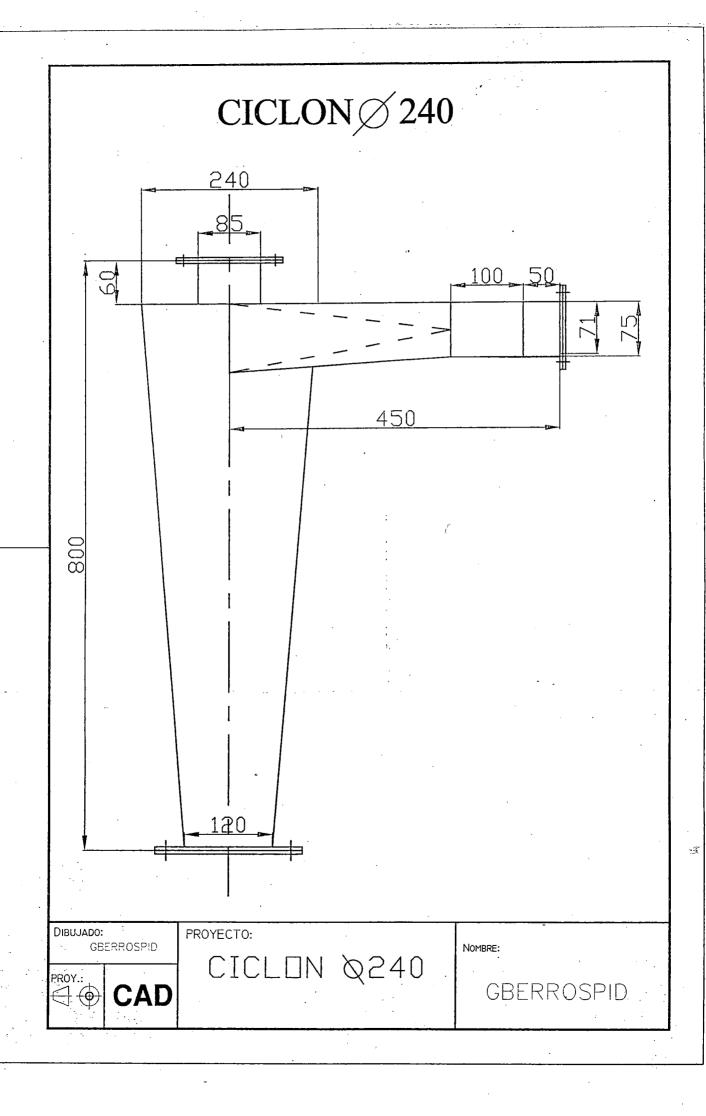


BRIDA-VISOR-ESCLUSA

Plancha 3/16"

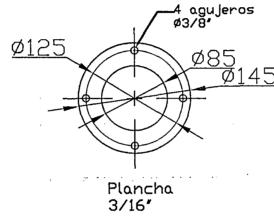
DIBUJADO:

CBERROSPID

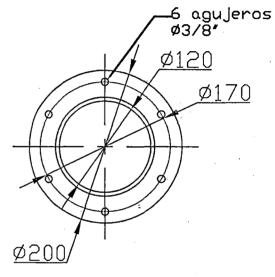

PROYECTO:

PROY.:

CAD


BRIDAS CICLON \200 Nombre:

**GBERROSPID** 




### BRIDA-TUBO SUPERIOR BRIDA BRAZO-CICLON

# -6 agujeros ø3/8° Ø96 Ø76 Ø116 Plancha 3/16"



### BRIDA-VISOR-ESCLUSA



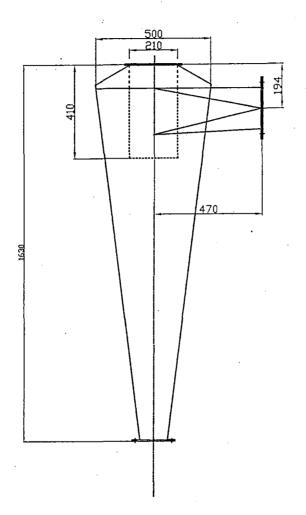
Plancha 3/16"

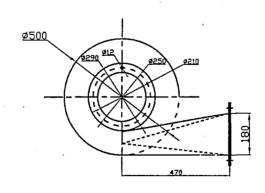
BRIDAS CICLON-MGXD 240

DIBUJADO:

. ĠBERROSPID

PROY.:


CAD


PROYECTO:

**\240** 

CBERROSPID

# CICLON Ø 500





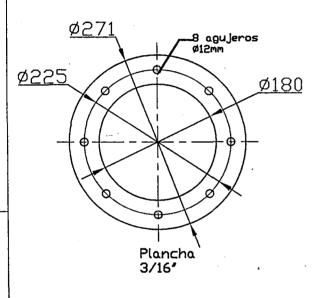
DIBUJADO:

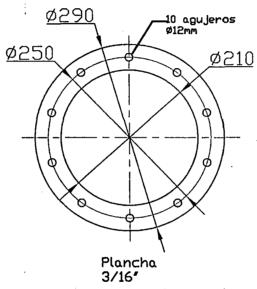
GEERROSPID

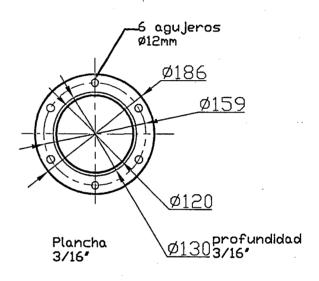
PROYECTO:

CAD

CICLON \$500


Nombre


GBERROSPID


### BRIDA BRAZO-CICLON

### BRIDA-TUBO SUPERIOR

### BRIDA LOCA-VISOR-ESCLUSA





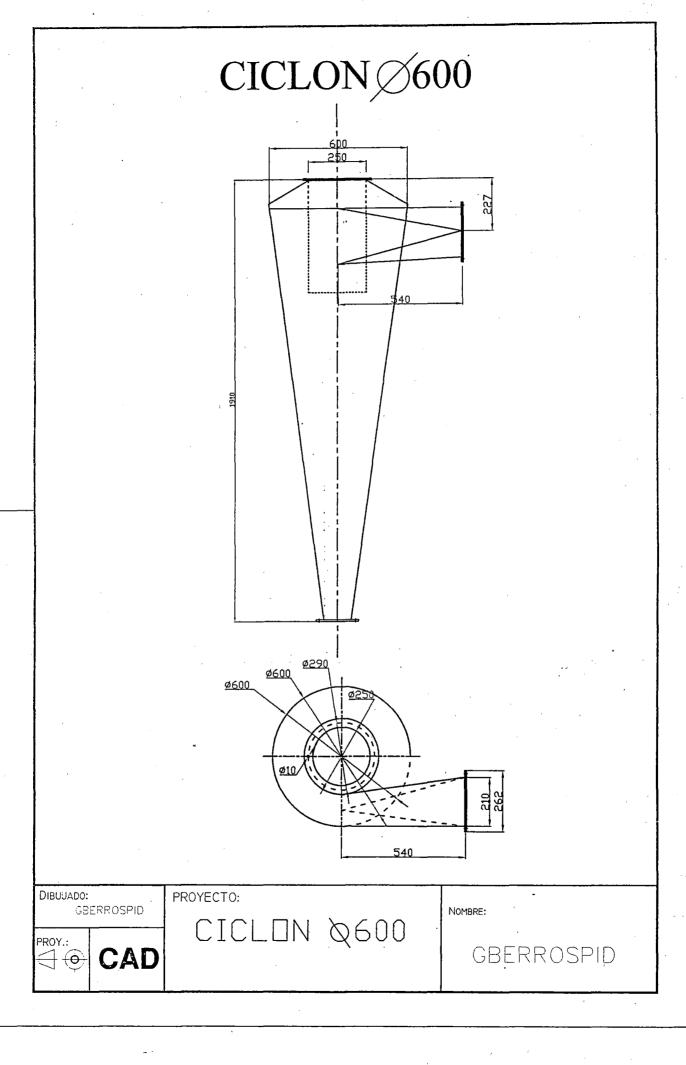


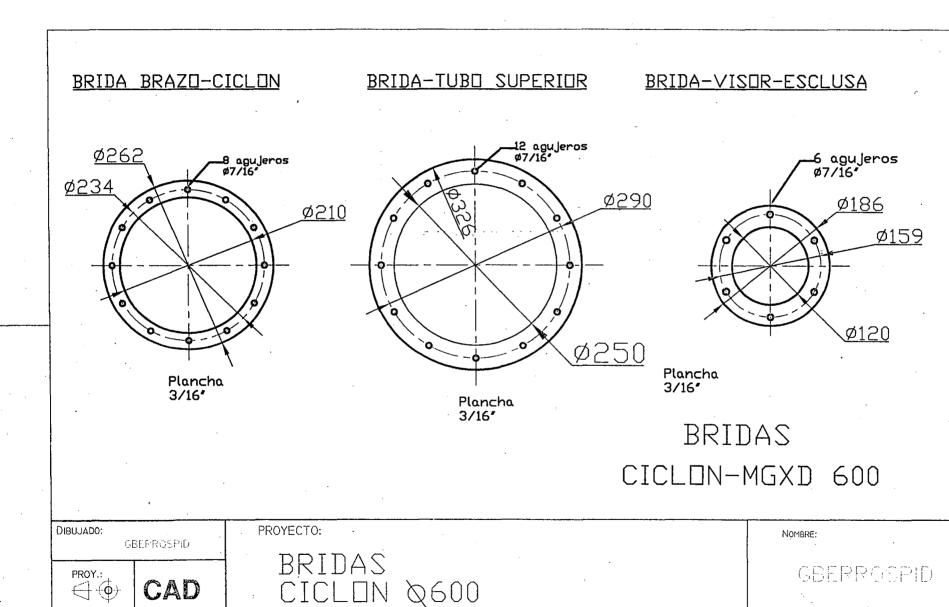
BRIDAS
CICLON-MGXD 500

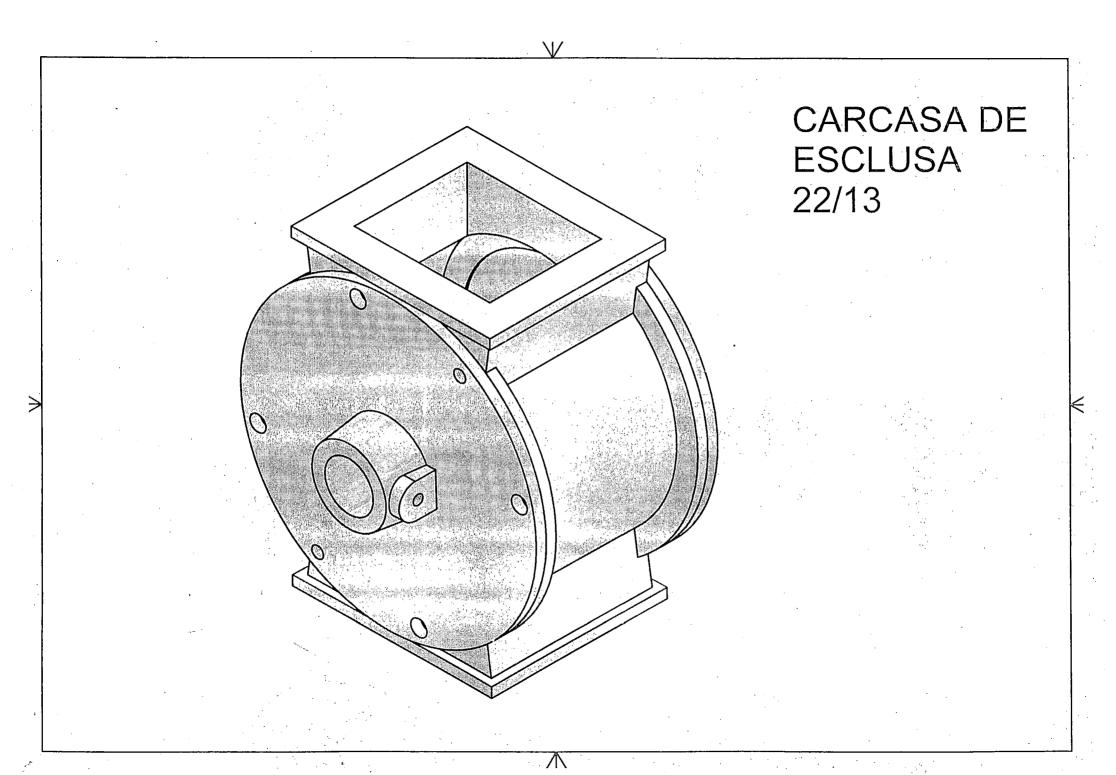
DIBUJADO:

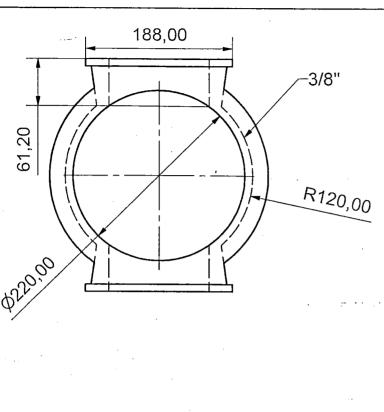
CBERROSPID

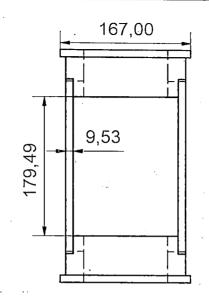
PROYECTO:


Nombre: -

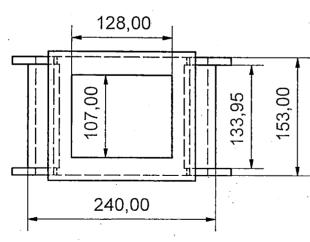

PROY::

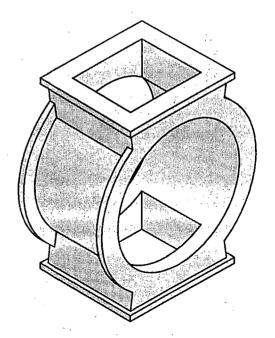

CAD


BRIDAS CICLON \$500

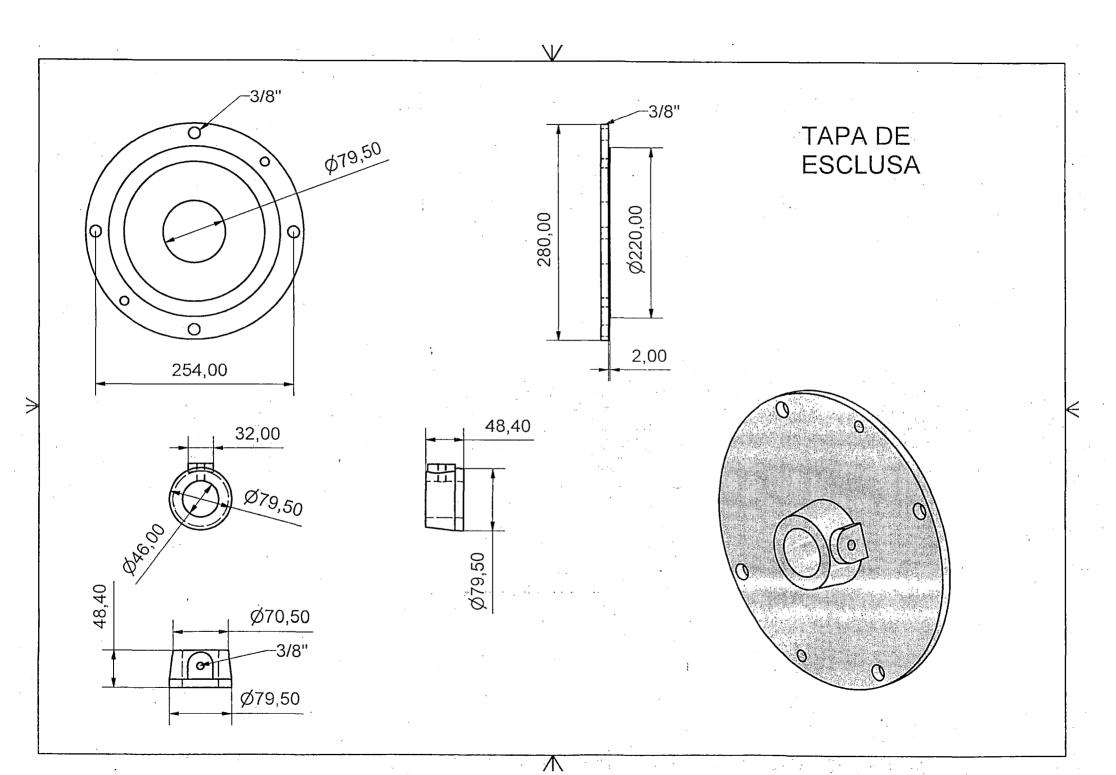

GBERROSPID

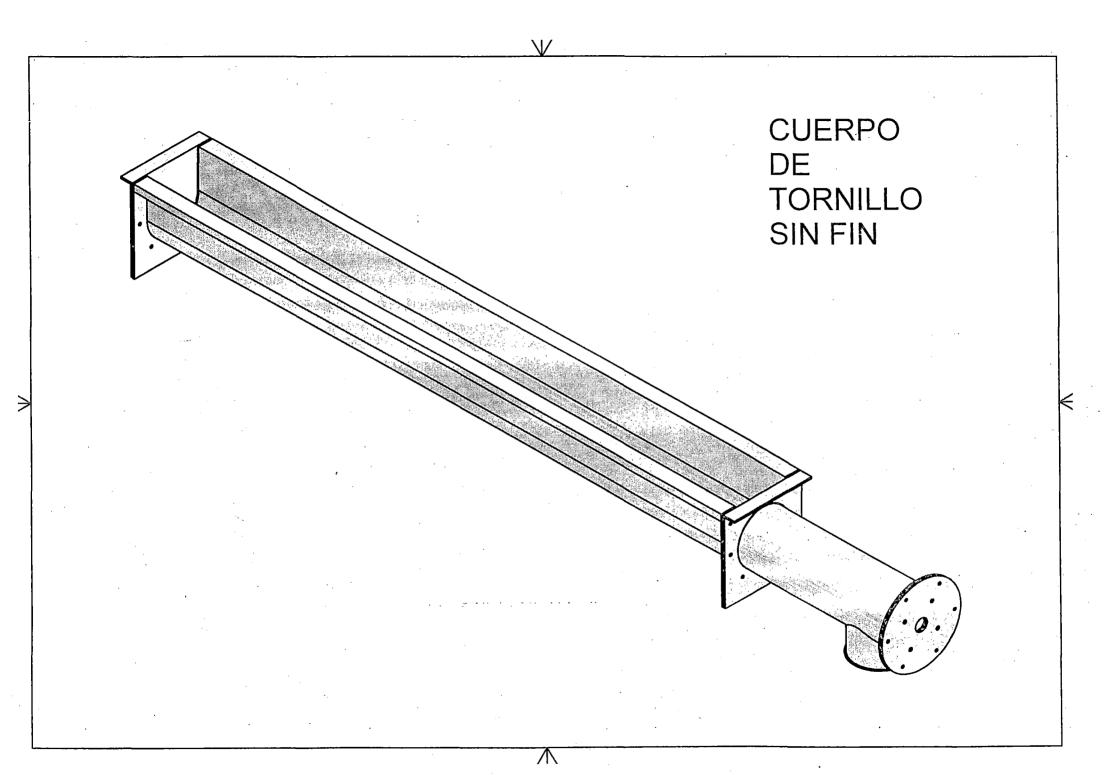


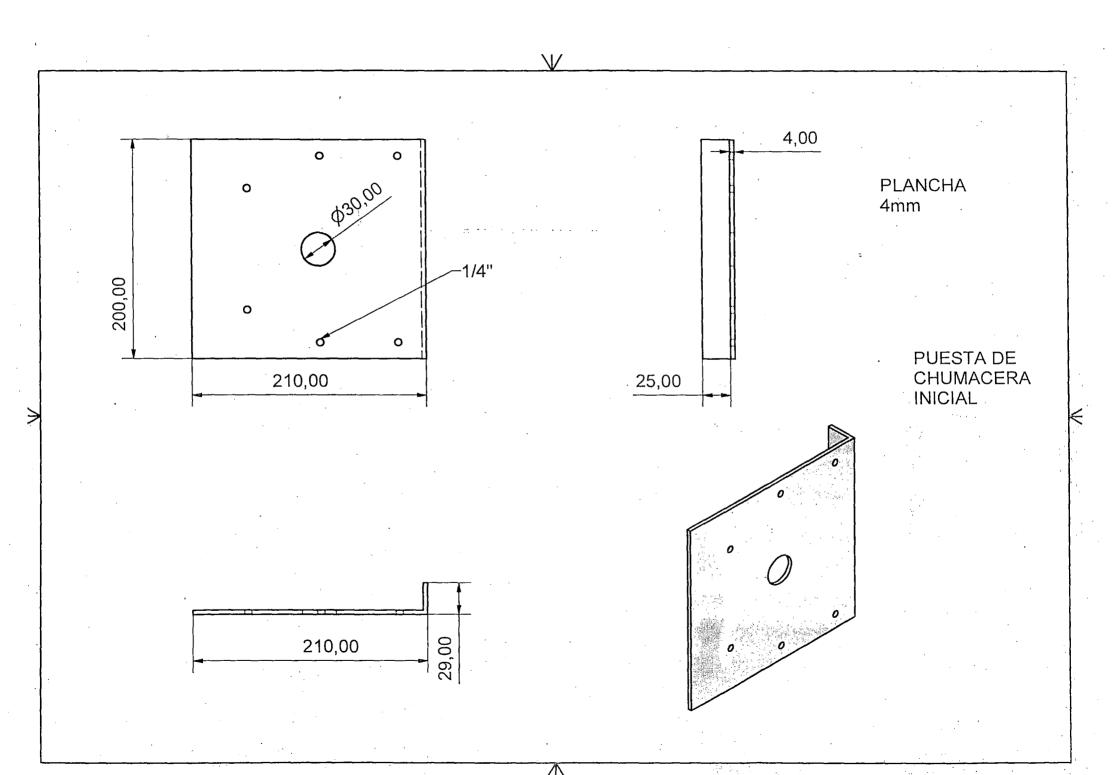


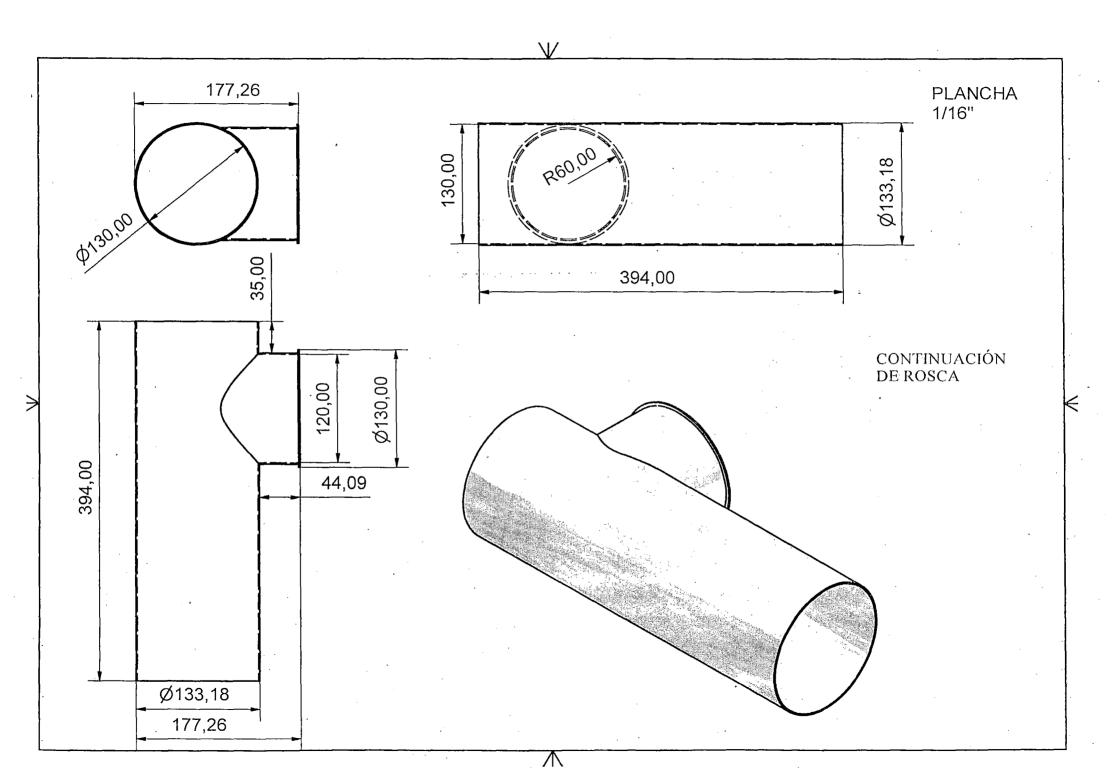



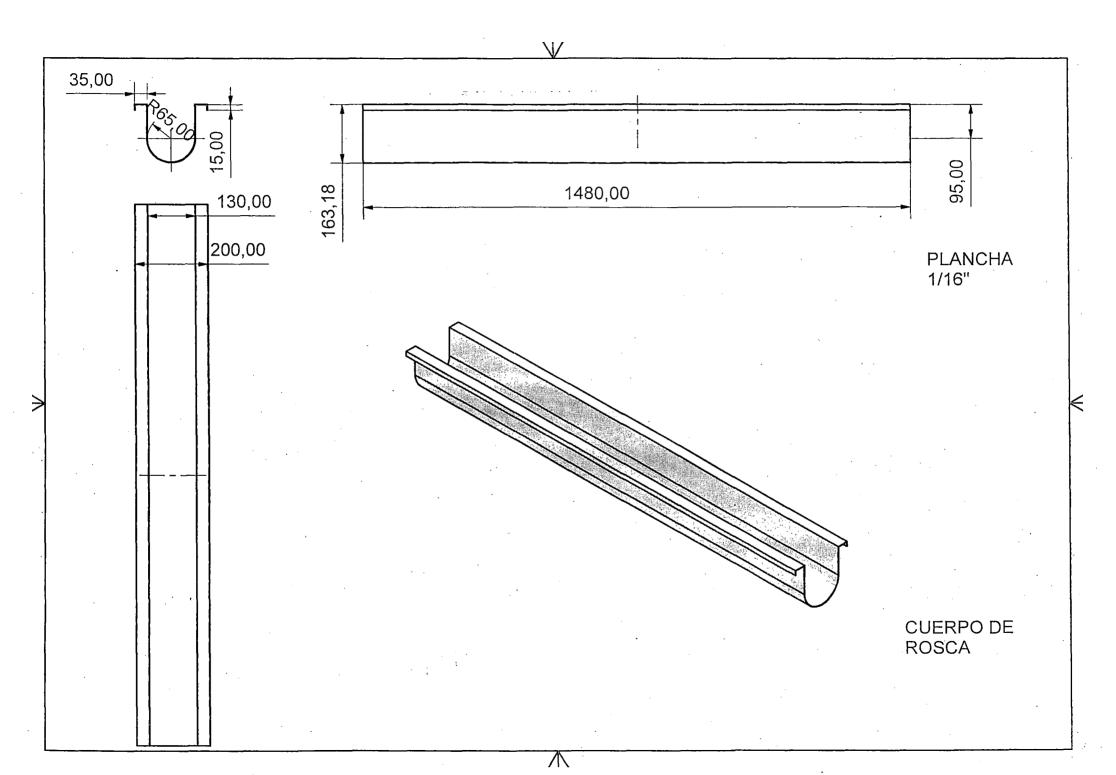


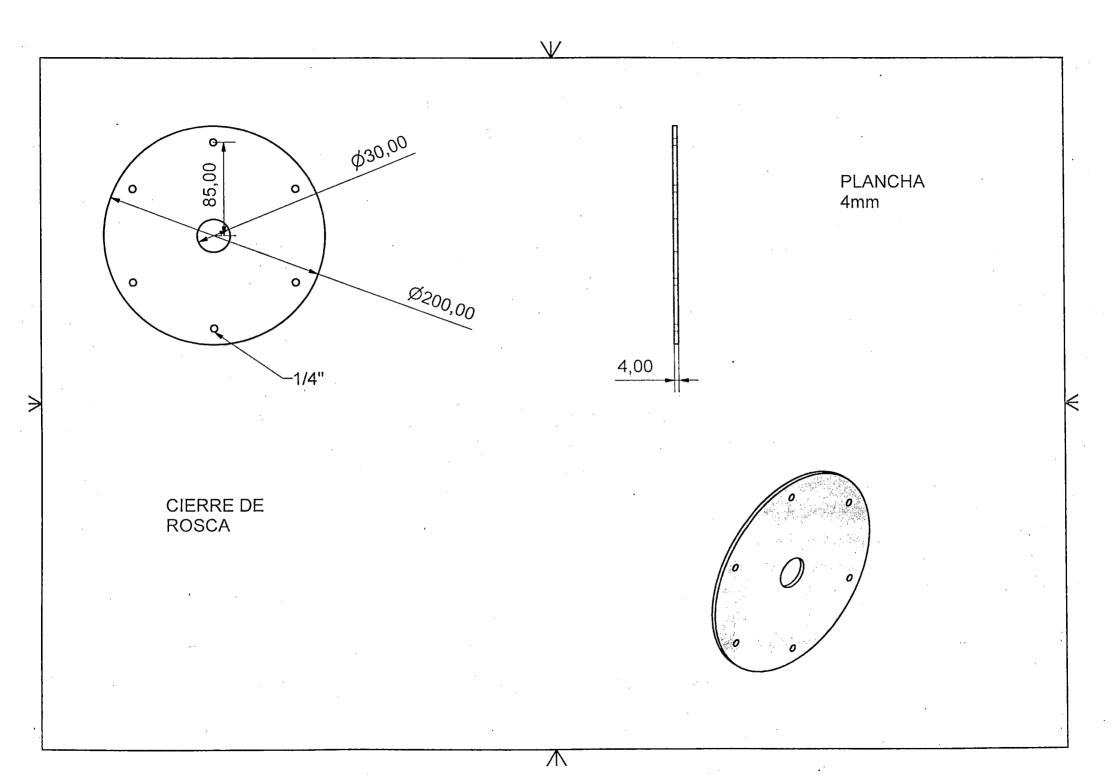





### CUERPO DE ESCLUSA

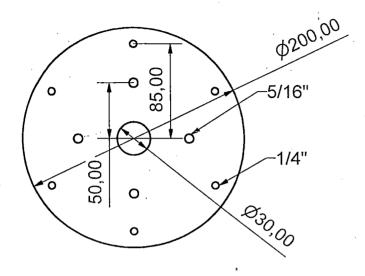


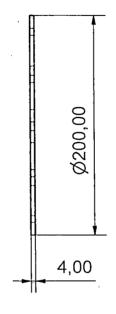





 $\Lambda$ 



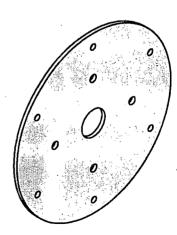


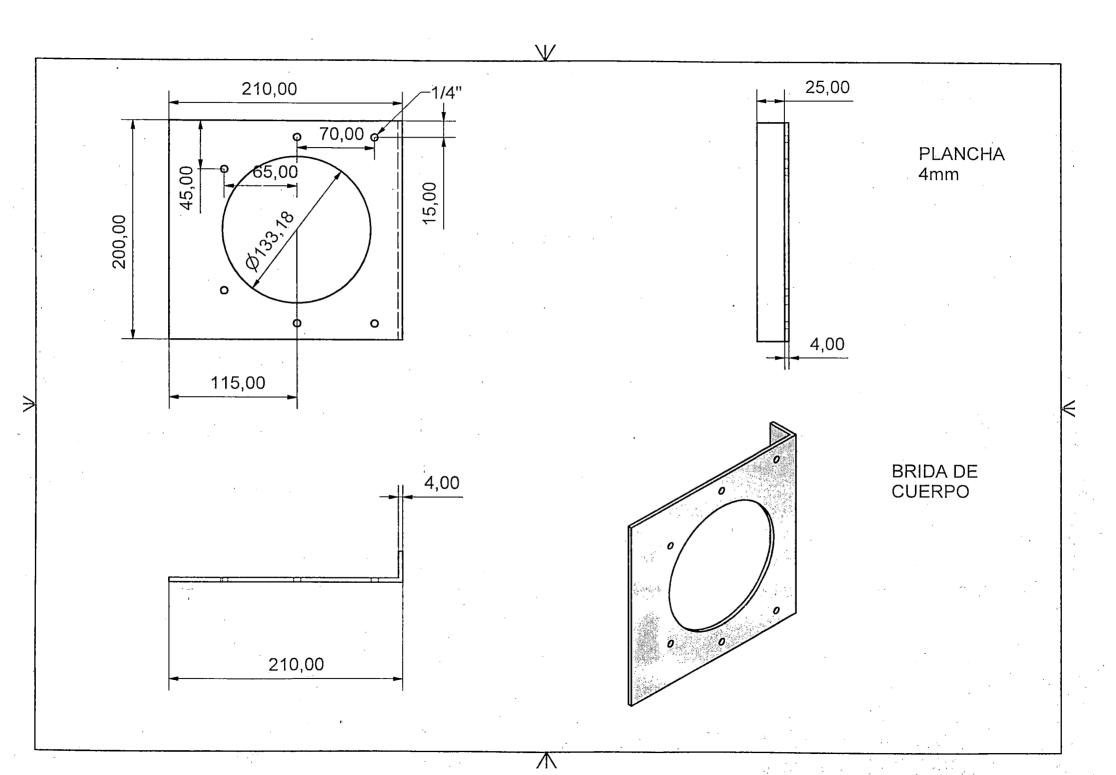



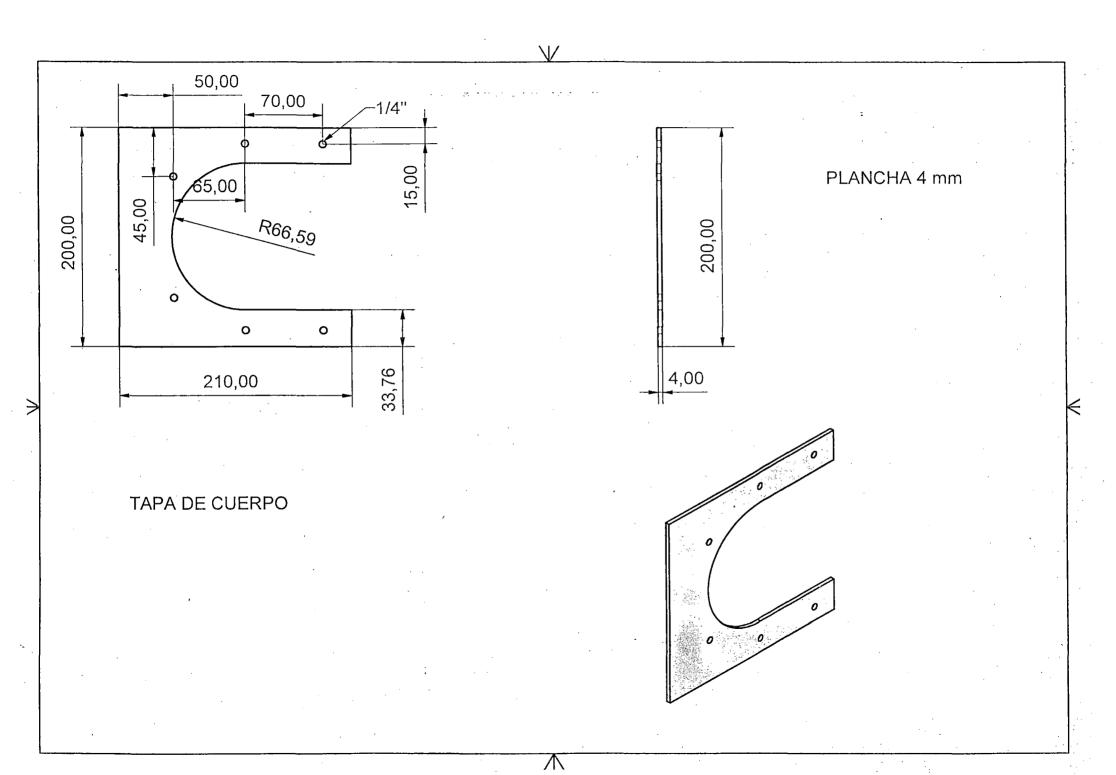





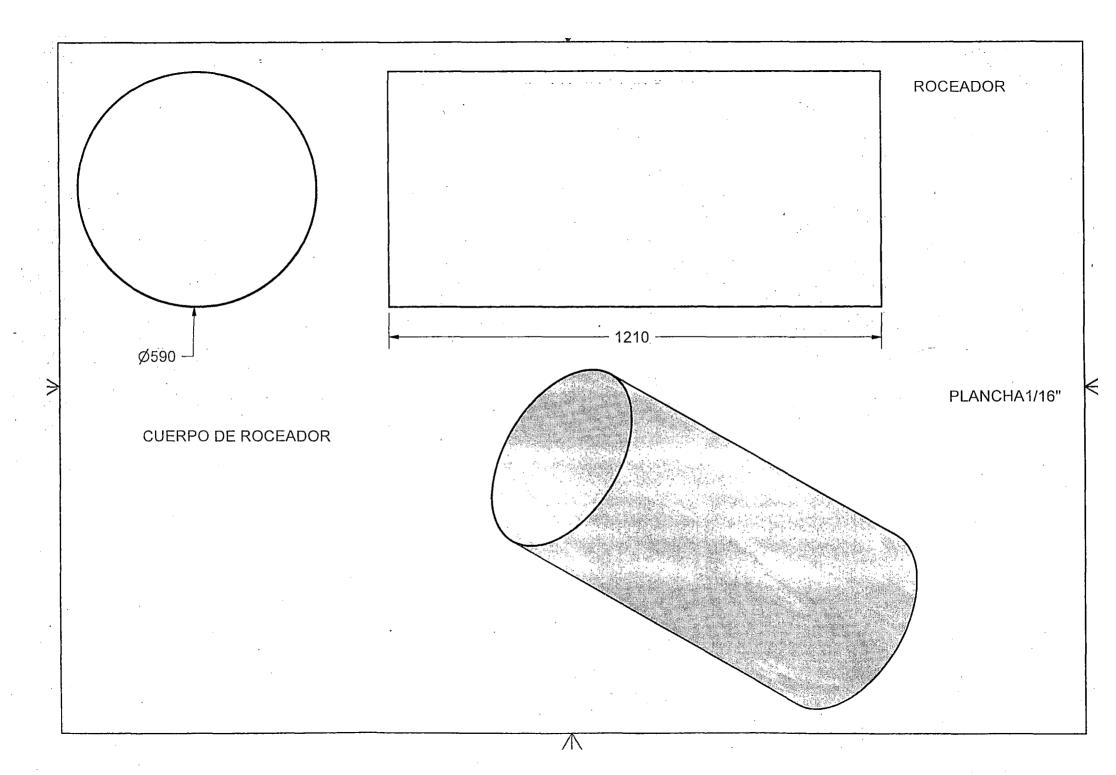


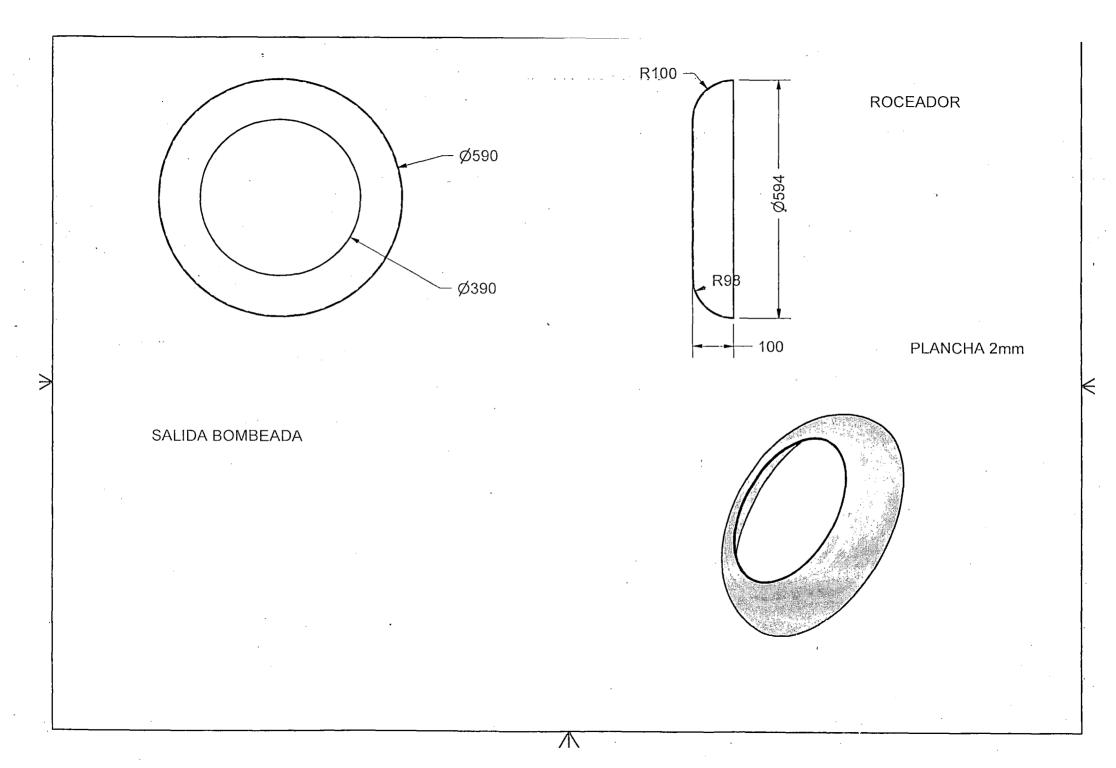


 $\Lambda$ 

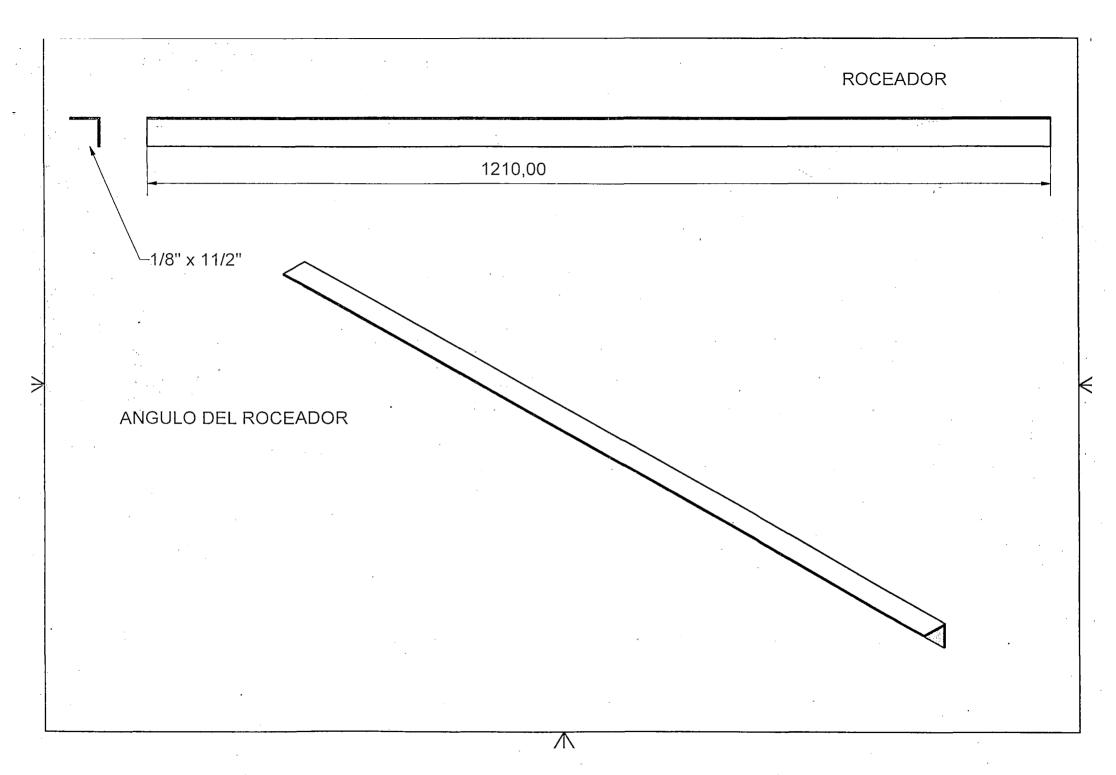


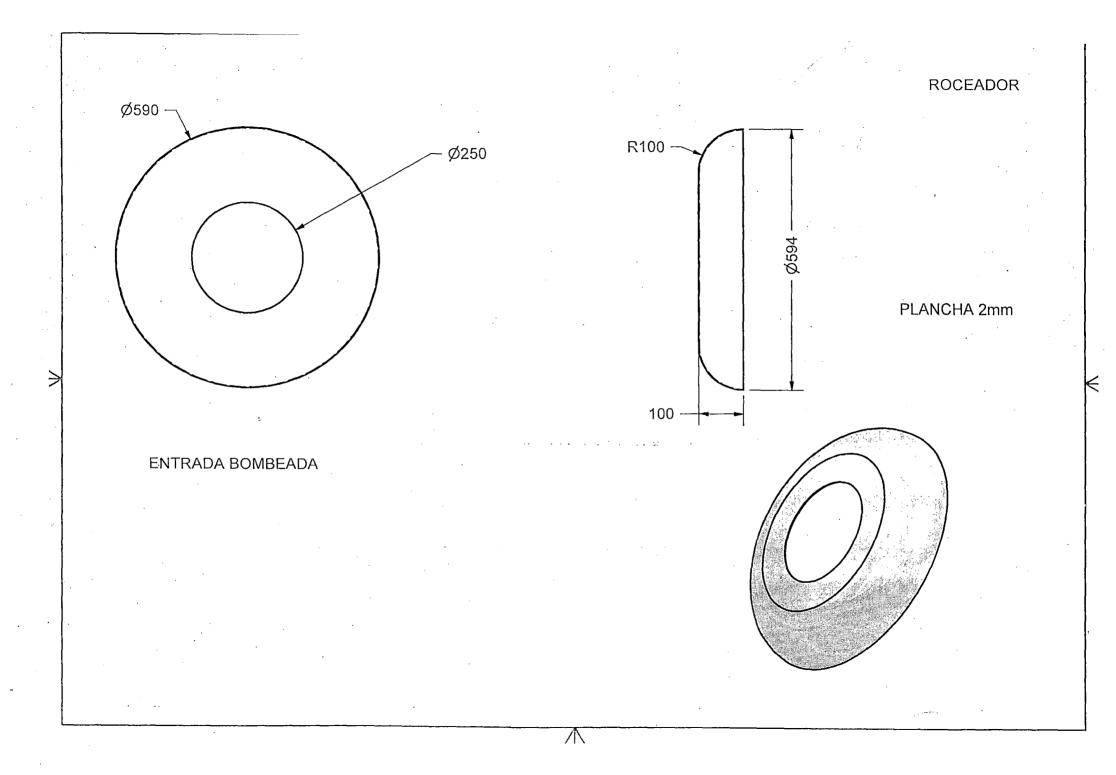



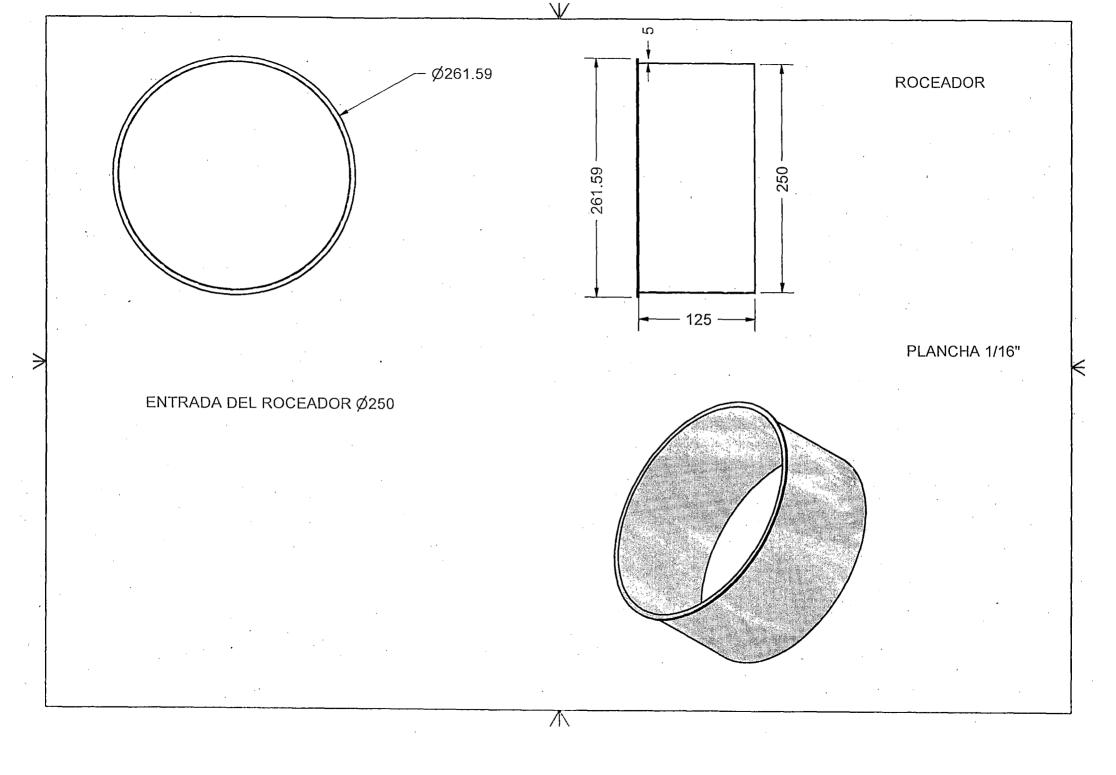

PLANCHA 4mm


PUESTA DE CHUMACERA

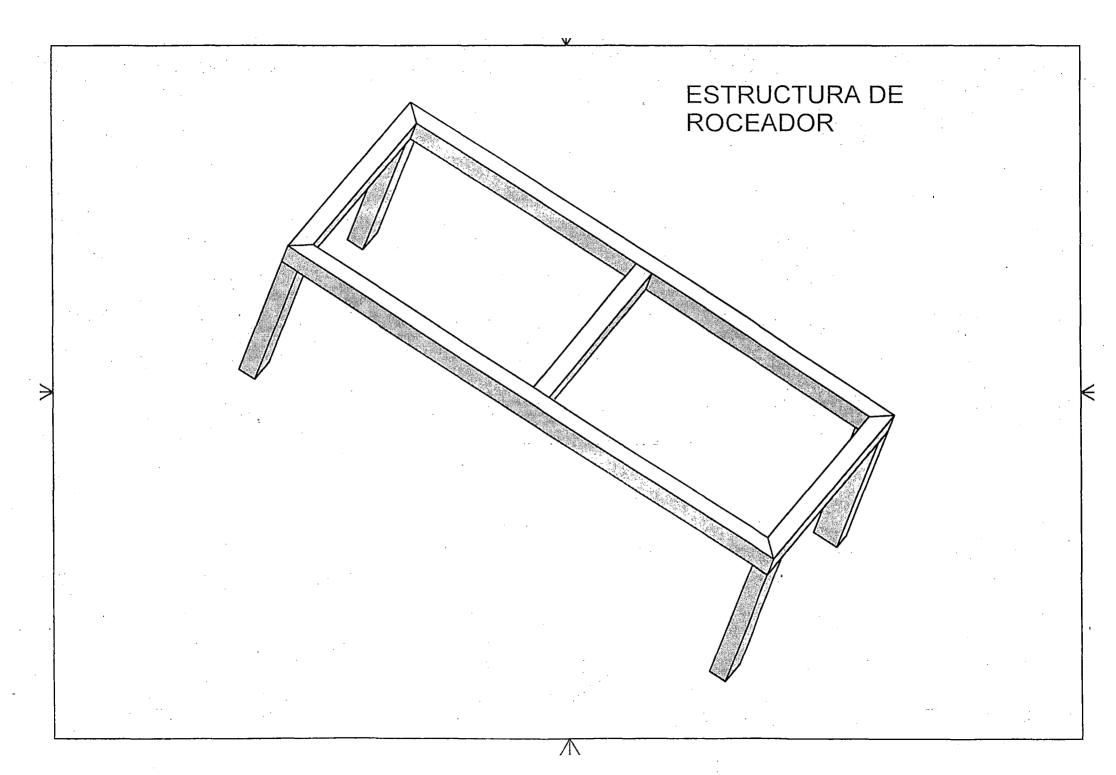


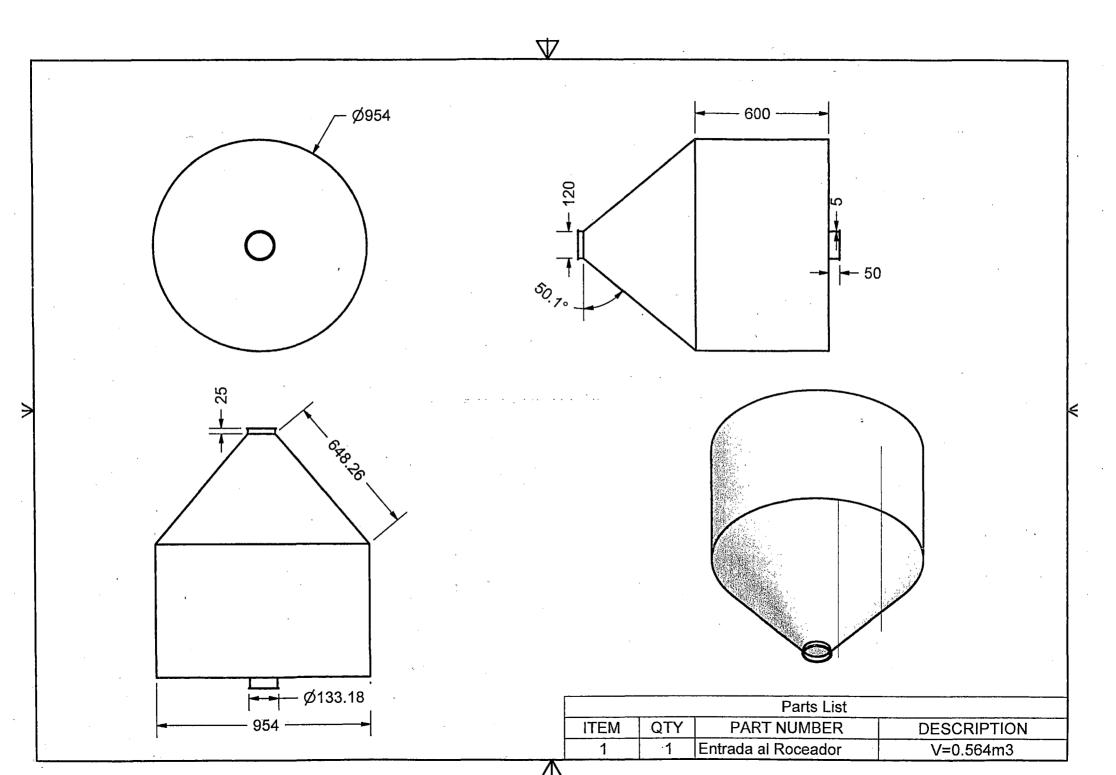



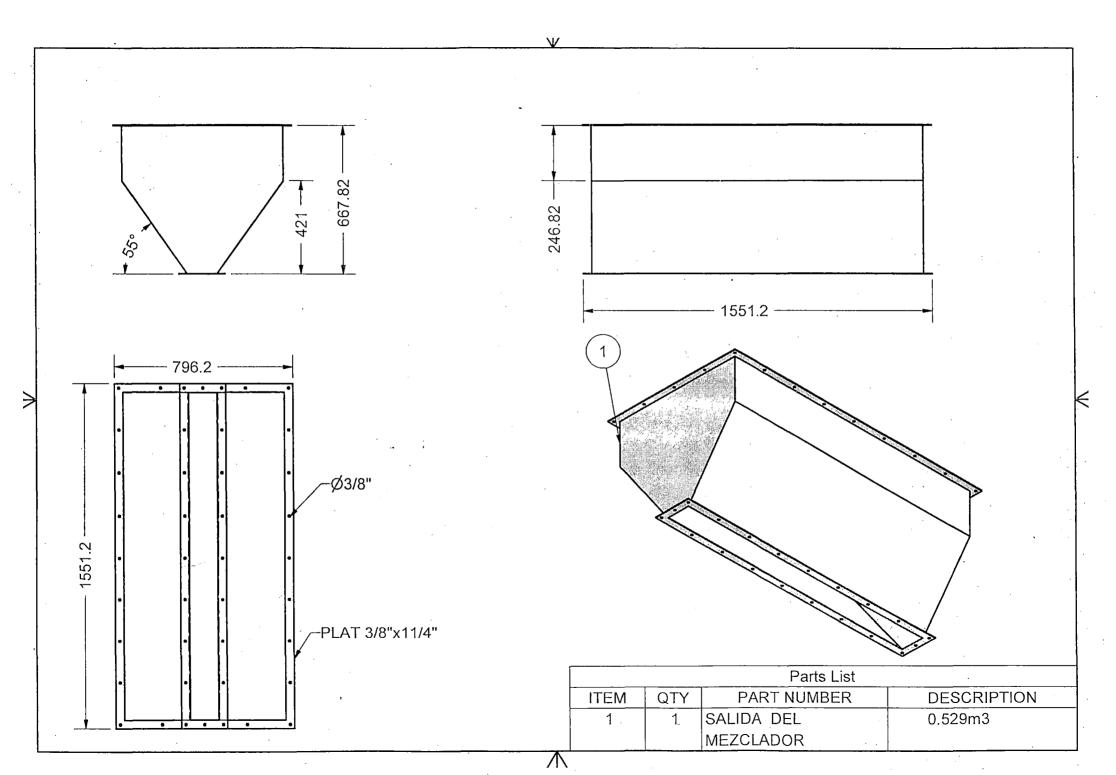



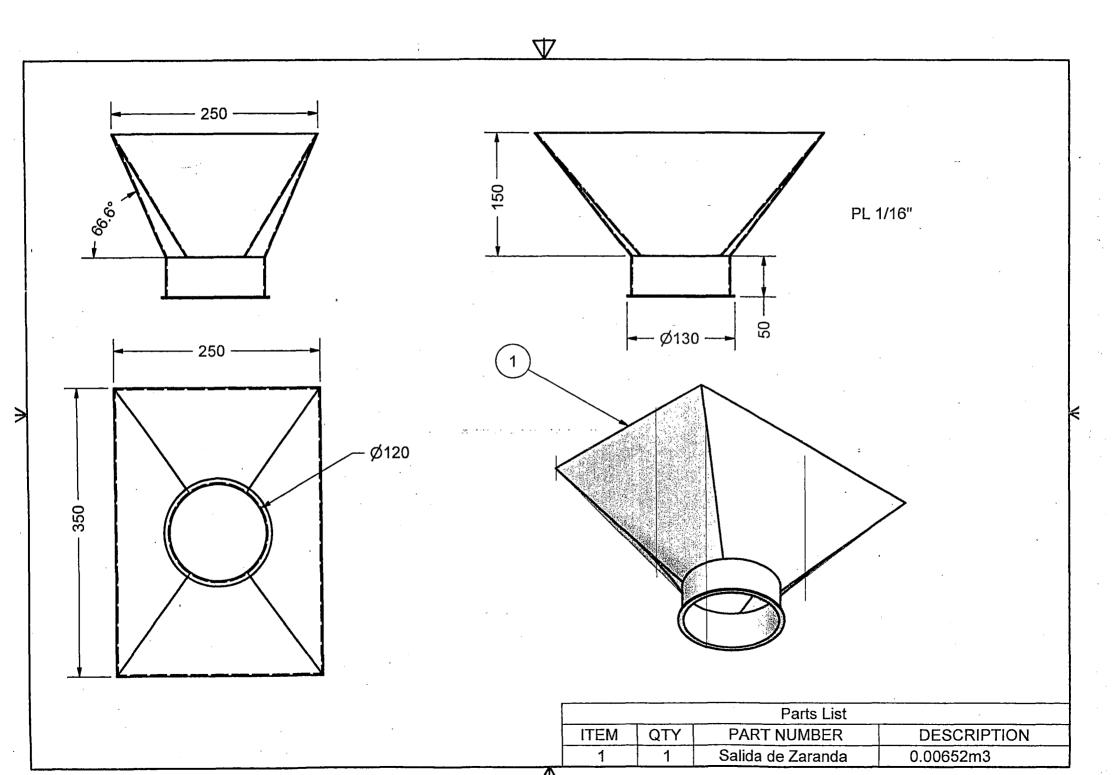


# ROCEADOR



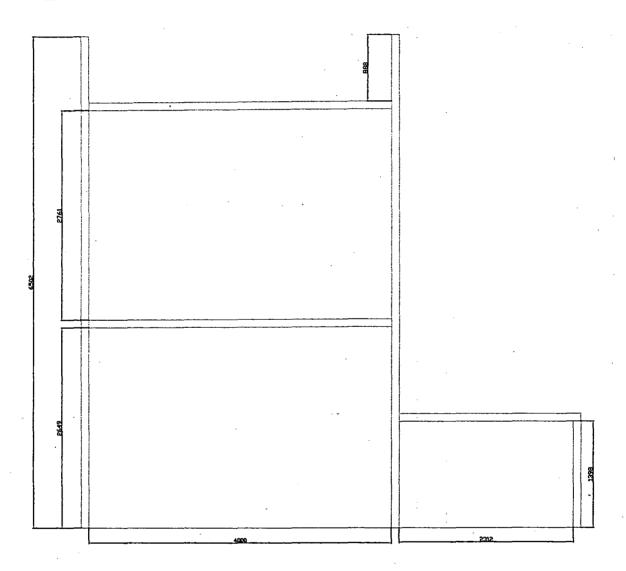


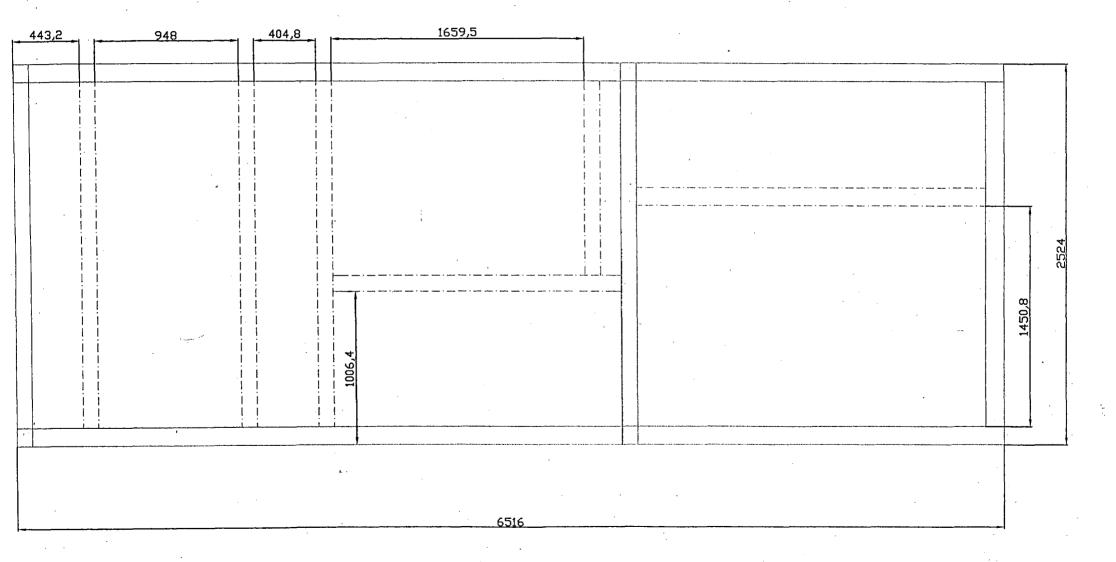



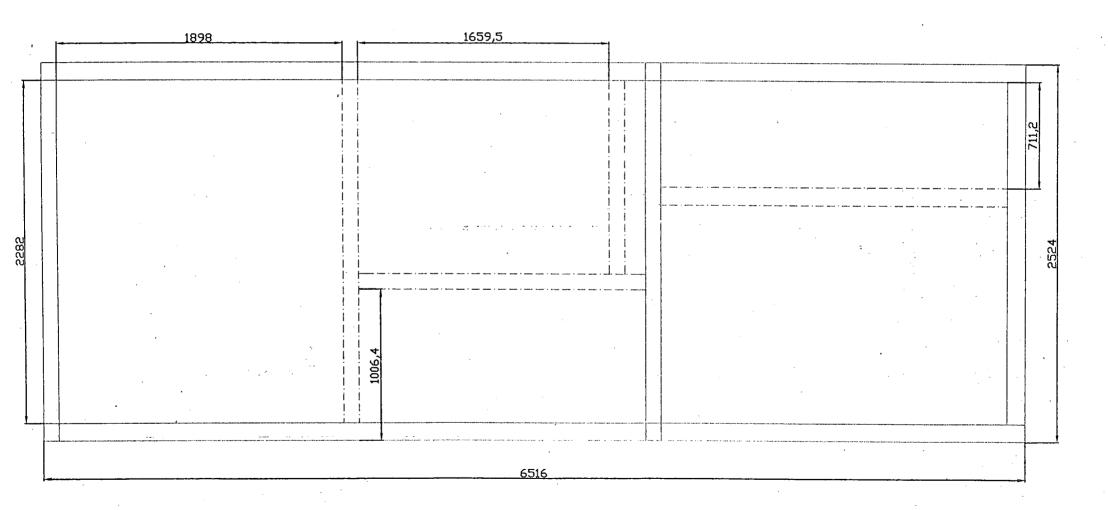

ROCEADOR R295 \ R195 PLANCHA 1/16" CARTELA INTERIOR DEL ROCEADOR









## ESTRUCTURA VISTA FRONTAL ESC 1:50



# ESTRUCTURA VISTA FRONTAL B-B ESC 1:25



# ESTRUCTURA VISTA FRONTAL A-A ESC 1:25

