UNIVERSIDAD NACIONAL DEL CALLAO

FACULTAD DE INGENIERÍA PESQUERA Y DE ALIMENTOS

ESCUELA PROFESIONAL DE INGENIERÍA DE ALIMENTOS

"INFLUENCIA DE LA TEMPERATURA DE ALMACENAMIENTO SOBRE LAS CARACTERÍSTICAS FÍSICAS Y QUÍMICAS DE LA CHIRIMOYA (*Annona cherimola Miller*) VARIEDAD CUMBE DURANTE SU MADURACIÓN POSTCOSECHA"

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO DE ALIMENTOS

KARINA CECILIA MURRUGARRA SERREPE

Callao, 2019

PERÚ

"INFLUENCIA DE LA TEMPERATURA DE ALMACENAMIENTO SOBRE
LAS CARACTERÍSTICAS FÍSICAS Y QUÍMICAS DE LA CHIRIMOYA

(Annona cherimola Miller) VARIEDAD CUMBE DURANTE SU

MADURACIÓN POSTCOSECHA"

"INFLUENCIA DE LA TEMPERATURA DE ALMACENAMIENTO SOBRE LAS CARACTERÍSTICAS FÍSICAS Y QUÍMICAS DE LA CHIRIMOYA (Annona cherimola Miller) VARIEDAD CUMBE DURANTE SU MADURACIÓN POSTCOSECHA"

Bach. Karina Cecilia Murrugarra Serrepe
TESISTA

Dr. José Ramón Cáceres Paredes
ASESOR

DEDICATORIA

A mi abuelita Cecilia y mi tio Alejandro, mis ángeles de luz. Siempre los llevo conmigo.

A mi madre Luisa, la vida no alcanzará para agradecerte por todos tus sacrificios

A mis personas de confianza y queridas, por estar conmigo en los momentos mas dificiles.

AGRADECIMIENTOS

A Dios por escuchar mis ruegos y brindarme fe y salud en tiempos difíciles.

A mis padres Luisa y José, porque su apoyo ha sido fundamental en este proceso.

A mis hermanos Leonardo y Alessandra, son ustedes las personas que me motivan a salir adelante.

A mi ahijada Nicole, por sus innumerables muestras de cariño y confianza.

A mi abuelita Cecilia, por infundirme desde muy pequeña la valentía y el carácter firme.

A mi preciosa Alfa, que me nutre de amor y paz con su sola presencia.

A la Universidad Nacional del Callao, de la cual estoy más que orgullosa.

A Ing. Ana Mercado del Pino y Dr. José Ramón Cáceres Paredes por su apoyo, experiencia y motivación para el desarrollo del presente trabajo de investigación.

Al Ing. Erick Alvarez Yanamango por su tiempo y conocimientos invertidos en esta investigación.

A Ing. Mabel Luna, directora del Instituto de Investigación de Especialización en Agroindustria; por su apoyo continuo y amistad.

A mis estimados amigos y colegas de IIEA y FIPA, muchas gracias por los ánimos.

INDICE

RESUMEN	1
ABSTRACT	2
INTRODUCCION	3
PLANTEAMIENTO DEL PROBLEMA	4
1.1 Descripción de la realidad problemática	4
1.2 Formulación del problema	5
1.3 Objetivos	5
1.3.1 General	5
1.3.2 Específicos	5
1.4 Limitantes de la investigación	6
1.5 Importancia	6
MARCO TEÓRICO	8
2.1 Antecedentes	8
2.2 Base teórica	11
2.2.1. La chirimoya	11
2.3 Definiciones de términos básicos	20
HIPÓTESIS Y VARIABLES	23
3.1.1 Hipótesis general	23
3.1.2. Hipótesis específicas	23
3.2.1. Operacionalización de variables	25

DISEÑO METODOLÓGICO	26
4.1 Tipo y diseño de investigación	26
4.2 Método de investigación	26
4.3 Población y muestra	27
4.4 Lugar de estudio y periodo desarrollado	27
4.5 Técnicas e instrumentos para la recolección de información	27
4.5.1. Métodos de análisis	.27
4.5.2. PROCEDIMIENTO EXPERIMENTAL	.36
4.6 Análisis y procesamiento de datos	37
RESULTADOS	39
5.1 De la caracterización de las propiedades fisicoquímicas y químic	0 -
proximales de la chirimoya (Annona cherimola Miller) variedad Cumbe	en
diferentes estados de madurez	39
5.2 Respecto a la identificación de la temperatura óptima de almacenamie	nto
de chirimoya (Annona cherimola Miller) variedad Cumbe en función a	su
calidad organoléptica	40
5.3 De la obtención de una matriz de atributos físicos de la chirimoya (Anno	ona
cherimola Miller) variedad Cumbe por cada estado de madurez	53
DISCUSION DE RESULTADOS	68
RECOMENDACIONES	75
REFERENCIAS BIBLIOGRÁFICAS	76

ANEXOS83
ANEXO 1. Valores de análisis biométrico de chirimoyas almacenadas a
10°C83
ANEXO 2. Valores de análisis biométrico de chirimoyas almacenadas a
20°C86
ANEXO 3. Valores de análisis biométrico de chirimoyas almacenadas a
30°C88
ANEXO 4. Contenido de proteínas de chirimoyas almacenadas a 10°C 90
ANEXO 5. Contenido de proteína de chirimoyas almacenadas a 20ºC 91
ANEXO 6. Contenido de proteína de chirimoyas almacenadas a 30°C 91
ANEXO 7. Análisis de varianza para contenido de proteínas
ANEXO 8. Prueba tukey para contenido de proteínas
ANEXO 9. Contenido de grasa de chirimoyas almacenadas a 10°C 92
ANEXO 10. Contenido de grasa de chirimoyas almacenadas a 20°C 93
ANEXO 11. Contenido de grasa de chirimoyas almacenadas a 30°C 94
ANEXO 12. Análisis de varianza para contenido de grasa 94
ANEXO 13. Prueba tukey para contenido de grasa
ANEXO 14. Contenido de humedad de chirimoyas almacenadas a 10°C 95
ANEXO 15. Contenido de humedad de chirimoyas almacenadas a 20°C 96
ANEXO 16. Contenido de humedad de chirimoyas almacenadas a 30°C 96
ANEXO 17. Análisis de varianza para contenido de humedad

ANEXO 18. Contenido de ceniza de chirimoyas almacenadas a 10ºC 97
ANEXO 19. Contenido de ceniza de chirimoyas almacenadas a 20ºC 98
ANEXO 20. Contenido de ceniza de chirimoyas almacenadas a 30ºC 99
ANEXO 21. Análisis de varianza para contenido de cenizas
ANEXO 22. Contenido de carbohidratos de chirimoyas almacenadas a
10°C
ANEXO 23. Contenido de carbohidratos de chirimoyas almacenadas a
20°C
ANEXO 24. Contenido de carbohidratos de chirimoyas almacenadas a
30°C
ANEXO 25. Análisis de varianza para contenido de carbohidratos 101
ANEXO 26. Prueba tukey para contenido de carbohidratos 102
ANEXO 27. Valores de pH de chirimoyas almacenadas a 10°C 102
ANEXO 28. Valores de pH de chirimoyas almacenadas a 20°C 103
ANEXO 29. Valores de pH de chirimoyas almacenadas a 30°C 103
ANEXO 30 Análisis de varianza para contenido de pH 104
ANEXO 31. Prueba tukey para contenido de pH 104
ANEXO 32. Contenido de ácido málico de chirimoyas almacenadas a
10°C
ANEXO 33. Contenido de ácido málico de chirimoyas almacenadas a
20°C

ANEXO 34. Contenido de ácido málico de chirimoyas almacenadas a
30°C
ANEXO 35. Análisis de varianza para contenido de ácido málico 106
ANEXO 36. Prueba tukey para contenido de ácido málico 107
ANEXO 37. Contenido de SS (ºBrix) en chirimoyas almacenadas a 10ºC . 107
ANEXO 38. Contenido de SS (ºBrix) en chirimoyas almacenadas a 20ºC . 108
ANEXO 39. Contenido de SS (ºBrix) en chirimoyas almacenadas a 30ºC . 108
ANEXO 40. Análisis de varianza para contenido de SS (ºBrix) 109
ANEXO 41. Prueba tukey para contenido de solidos solubles (ºBrix) 109
ANEXO 42. Valores de textura de chirimoyas almacenadas a 10°C 109
ANEXO 43. Valores de textura de chirimoyas almacenadas a 20°C 110
ANEXO 44. Valores de textura de chirimoyas almacenadas a 30°C 111
ANEXO 45. Coordenadas L*, a* y b*; de unidades almacenadas a 10°C
obtenidas por toma de imágenes111
ANEXO 46. Coordenadas L*, a* y b*; de unidades almacenadas a 20°C
obtenidas por toma de imágenes
ANEXO 47. Coordenadas L*, a* y b*; de unidades almacenadas a 30°C
obtenidas por toma de imágenes 113
ANEXO 48. Valores de producción de CO2, de chirimoya almacenada a
10°C
ANEXO 49. Valores de producción de CO2, de chirimoya almacenada a
20°C

ANEXO 50. Valores de producción de CO ₂ , de chirimoya almacenada a
30°C
ANEXO 51. Ejemplar N° 1, evaluación de color de chirimoyas almacenadas a
10°C por el método de toma de imágenes
ANEXO 52. Ejemplar N° 2, evaluación de color de chirimoyas almacenadas a
10°C por el método de toma de imágenes
ANEXO 53. Ejemplar N° 3, evaluación de color de chirimoyas almacenadas a
10°C por el método de toma de imágenes
ANEXO 54. Ejemplar N° 1, evaluación de color de chirimoyas almacenadas a
20°C por el método de toma de imágenes
ANEXO 55. Ejemplar N° 2, evaluación de color de chirimoyas almacenadas a
20°C por el método de toma de imágenes
ANEXO 56. Ejemplar N° 3, evaluación de color de chirimoyas almacenadas a
20°C por el método de toma de imágenes
ANEXO 57. Ejemplar N° 1, evaluación de color de chirimoyas almacenadas a
30°C por el método de toma de imágenes
ANEXO 58. Ejemplar N° 2, evaluación de color de chirimoyas almacenadas a
30°C por el método de toma de imágenes
ANEXO 59. Ejemplar N° 3, evaluación de color de chirimoyas almacenadas a
30°C por el método de toma de imágenes
ANEXO 60. Matriz de consistencia

Indice de tablas

Tabla 1. Clasificación taxonómica de chirimoya. (Popenoe, 1975) 14
Tabla 2. Composición proximal de chirimoya por 100 g. (Kawamata, 1977) 15
Tabla 3. Operacionalización de variables. (Fuente propia)25
Tabla 4. Rendimiento, media y desviación estándar de los componentes de la
chirimoya variedad Cumbe
Tabla 5. Valores promedio de las características sensoriales de chirimoya
variedad Cumbe
Tabla 6. Media y desviación de los criterios fisicoquímicos y químico-
proximales presentes en las chirimoyas almacenadas a 10, 20 y 30°C 40
Tabla 7. Valores promedio de pH en las chirimoyas almacenadas a 10, 20 y
30°C; agrupadas por cada estado de madurez
Tabla 8. Valores promedio de % Acido málico en las chirimoyas almacenadas
a 10, 20 y 30°C; agrupadas por estado de madurez 43
Tabla 9. Valores promedio de solidos solubles (ºBrix) en las chirimoyas
almacenadas a 10, 20 y 30°C; agrupadas por estado de madurez 44
Tabla 10. Desviación máxima de contenido de fibra en chirimoyas
almacenadas a diferentes temperaturas
Tabla 11. Valores promedio de textura en las chirimoyas almacenadas a 10,
20 y 30°C; agrupadas por estado de madurez
Tabla 12. Valores promedio de las coordenadas L*, a* y b* de las chirimoyas
variedad cumbe almacenadas en diferentes temperaturas48

Tabla 13. Días postcosecha considerados por cada estado de madurez	de
acuerdo a la temperatura de almacenamiento	52
Tabla 14. Matriz de atributos físicos de chirimoya almacenada a 10°C	53
Tabla 15. Matriz de atributos físicos de chirimoya almacenada a 20°C	59
Tabla 16. Matriz de atributos físicos de chirimoya almacenada a 30°C	62

Indice de Gráficos

Gráfico	1.	Contenido	de h	numedad	de	la	chirimoya	variedad	Cumbe,
almacer	ada	as a 3 tempe	ratura	s diferent	es, d	urar	nte su vida	postcosec	ha 45
Gráfico	2.	Contenido	de	cenizas	de	la d	chirimoya	variedad	Cumbe,
almacen	ada	as a 3 tempe	ratura	s diferent	es, d	urar	nte su vida	postcosec	ha 46
Gráfico :	3. E	Evolución de	la text	tura de ch	irimo	ya v	ariedad C	umbe alma	cenadas
en difere	ente	s temperatu	ras			¡E	Error! Mar	cador no d	lefinido.
Gráfico	4.	Comportami	ento	de produ	ıcciór	n de	CO ₂ de	chirimoya	Cumbe
almacen	ada	a a 10°C						•••••	50
Gráfico	5.	Comportami	ento	de produ	ıcciór	n de	e CO ₂ de	chirimoya	Cumbe
almacen	ada	a a 20 ºC							51
Gráfico	6.	Comportami	ento	de produ	ıcciór	n de	e CO ₂ de	chirimoya	Cumbe
almacen	nada	a a 30 ºC							51

Indice de imágenes

Imagen fotografica 1. Chirimoya variedad Cumbe (Fuente propia)1	2
Imagen fotografica 2. Semillas de chirimoya variedad Cumbe (Fuente	
propia)1	3
Imagen fotografica 3. Vista interna de chirimoya variedad Cumbe (Fuente	
propia)1	13

RESUMEN

En la presente investigación se evaluó la influencia de la temperatura en las características físicas y químicas de chirimoya (*Annona cherimola Miller*) variedad Cumbe para ello, los frutos fueron almacenados a 10, 20 y 30°C.

Se evaluaron proteínas, grasas, humedad, cenizas, carbohidratos, fibra, pH, acidez titulable, solidos solubles (°Brix) con la metodología AOAC. Y la biometría, producción de CO₂, color y textura de métodos de investigación referenciales.

En la evaluación diaria, se consideró desde el día 1 después de la cosecha hasta la senescencia. Al obtener los resultados se conoció que la temperatura de almacenamiento influye en el contenido de grasa, carbohidratos, color, textura, pH, acidez, solidos solubles y producción de CO₂, de la chirimoya. De las 3 condiciones de almacenamiento la óptima fue 20°C ya que a esta temperatura logro la mejor calidad organoléptica, además de obtener 8 días de vida útil.

La chirimoya variedad Cumbe tuvo un comportamiento climatérico característico del género Annona, presentando los 2 picos de producción de CO₂. Registrando su mayor concentración en las unidades almacenadas a 20°C con 57.1180 mgCO₂/ kg. H.

ABSTRACT

In the present investigation, the influence of temperature on the physical and chemical characteristics of cherimoya (*Annona cherimola Miller*) Cumbe variety was evaluated, for this the fruits were stored at 10, 20 and 30°C.

Proteins, fats, moisture, ash, carbohydrates, fiber, pH, titratable acidity, soluble solids (°Brix) were evaluated with the AOAC methodology. And biometrics, CO₂ production, color and texture of referential research methods.

In the daily evaluation, it was considered from day 1 after harvest until senescence. When obtaining the results, it was known that the storage temperature influences the content of fat, carbohydrates, color, texture, pH, acidity, soluble solids and production of CO₂, of the cherimoya.

Of the 3 storage conditions, the better was 20°C, since at this temperature it achieved the best organoleptic quality, in addition to obtaining 8 days of useful life.

The cherimoya Cumbe variety had a characteristic climacteric behavior of the genus Annona, presenting the 2 peaks of CO₂ production. Recording its highest concentration in the units stored at 20°C with 57.1180 mgCO₂ / kg. H.

INTRODUCCION

Actualmente, el Perú es un país que se preocupa por explotar sustentablemente sus recursos naturales, con el fin de impulsar su economía. Ejemplo de ello es la gran producción de distintos frutos, que en su gran mayoría poseen alta capacidad nutricional, lo que los hace bastante atractivos al mercado nacional e internacional. Así, no solo los hace reconocidos, sino que con sus ventas mejora las condiciones de vida de todos los participantes de la cadena de valor. Para lograr esto, existen diversos factores que se deben considerar al momento de impulsar el comercio de un fruto, como los controles requeridos de la materia prima para su aceptación. Basado en la estandarización de condiciones de crecimiento, cosecha, maduración, almacenamiento, transporte y manipulación.

Es sabido, que algunas frutas por su naturaleza climatérica necesitan condiciones especiales de almacenamiento, incidiendo en la temperatura ya que este factor es determinante para la velocidad de maduración. Un ejemplo de este grupo de frutas es la chirimoya variedad Cumbe, que necesita control sobre las técnicas de cosecha, así como los factores que deterioran su estructura y composición a lo largo de su vida postcosecha.

Es por esto que la presente investigación determinó las condiciones óptimas de conservación de la chirimoya variedad Cumbe, de acuerdo a la influencia que tuvo la temperatura de almacenamiento en sus características físicas y químicas.

CAPITULO I

PLANTEAMIENTO DEL PROBLEMA

1.1 Descripción de la realidad problemática.

La chirimoya (*Annona cherimola Miller*) es una fruta climatérica, debido a que su maduración es un proceso complejo, marcado por la síntesis y degradación de nuevos compuestos (Azcón, 2008; Salisbury & Ross, 1994; Taiz & Zeiger, 2010). Posee una cáscara delgada, de color verde oscuro que presenta una red de sombras mediante la cual denota los límites de cada frutilla (Gardiazábal & Rosemberg, 1993). Debido a la delicadez y sensibilidad a la manipulación que posee, se recolecta de manera extremadamente cuidadosa. (Franciosi Tijero, Rafael; Fundacion para el Desarrollo del Agro, 1992). Además, sus condiciones de almacenamiento no deben provocar la aceleracion de su metabolismo climaterico.

Aunque es sabido que estos frutos no pueden ser expuestos a temperaturas de refrigeracion, porque presentan daño por frio (De la Cruz Gonzáles, 2015); es necesario conocer el rango de temperatura al que se deben almacenar para prolongar su vida útil.

Debido a lo antes expuesto es comprensible que, a pesar de la creciente demanda internacional de este fruto, aún no se logra reducir la merma de la producción de chirimoya ni maximizar la disponibilidad de éste fruto como materia prima o producto exportable.

1.2 Formulación del problema

¿Cuáles serán los cambios en las características físicas y químicas que presentará la chirimoya (*Annona cherimola Miller*) variedad Cumbe, si se almacena a diferentes temperaturas en su etapa postcosecha?

1.3 Objetivos

1.3.1 General

✓ Determinar la influencia de la temperatura de almacenamiento sobre las características físicas y químicas de la chirimoya (*Annona cherimola Miller*) variedad Cumbe durante su maduración postcosecha.

1.3.2 Específicos

- ✓ Caracterizar las propiedades fisicoquímicas y químico proximales de la chirimoya (*Annona cherimola Miller*) variedad Cumbe en diferentes estados de madurez.
- ✓ Identificar la temperatura óptima de almacenamiento de chirimoya (Annona cherimola Miller) variedad Cumbe en función a su calidad organoléptica.
- ✓ Obtener una matriz de atributos físicos de la chirimoya (*Annona cherimola Miller*) por cada estado de madurez.

1.4 Limitantes de la investigación

El desarrollo de los análisis realizados a la chirimoya (*Annona cherimola Miller*) variedad Cumbe, a lo largo de su vida postcosecha y almacenada a diferentes temperaturas, se vió afectada inicialmente por la temporalidad del fruto debido a que las unidades cultivadas en meses que no fueran desde marzo hasta agosto (temporada alta), presentaban deficiencias físicas.

Además, para provocar los microclimas propuestos en esta investigación, se tuvieron que hacer pruebas intentando generar de manera artesanal las temperaturas de almacenamiento; ocasionando pérdidas de tiempo y materia prima, por la falta de una conservadora que propicie los 20°C para el almacenamiento de las chirimoyas, por lo cual se tuvo que esperar a que el clima de forma natural tenga esta temperatura.

1.5 Importancia

La chirimoya (*Annona cherimola Miller*) variedad Cumbe, llamada así por el pueblo donde se cultiva, es considerada una de las variedades con mejores características físicas y químicas. Sin embargo, la naturaleza climatérica de la máxima representante de las Annonas en Perú; que posee polifenoloxidasas, al ser sometida a condiciones de almacenamiento inadecuadas; provoca la aceleración del proceso de maduración y pronto ablandamiento causando inconvenientes en su manipulación y transporte.

Dificultando así, la explotación máxima de su capacidad de comercio y transformación; muestra de ello es el 60% descartado de la producción, cantidad que podría utilizarse para hacer productos con valor agregado, afirmó Sierra Exportadora (GESTION, 2014).

Aunque, su exportación durante el 2015 sumó US\$ 660 mil, lo que representó un crecimiento 323.37% respecto a lo exportado en el 2014 (US\$ 156,051) (GESTION, 2016).

La reducción de merma es importante para continuar con el crecimiento del comercio de esta fruta y sus derivados. Por esto se requiere optimizar los procesos postcosecha como las condiciones de almacenamiento, que permitan reducir daños a la fruta.

Por ello la presente investigación ha valorado las características físicas y químicas de la chirimoya a lo largo de su vida postcosecha, así como la influencia de la temperatura de su almacenamiento.

CAPITULO II

MARCO TEÓRICO

2.1 Antecedentes.

ARRAZOLA, G. y col (2013) Caracterizaron los frutos de la Guanábana cimarrona en tres estados de madurez: verde, pintona y madura, analizando características físicas (tamaño, penetrometría) y bromatológicas (acidez titulable, pH, °Brix, índice de madurez, humedad, cenizas, fibra bruta, contenido de vitamina C, sacarosa mediante HPLC). Los frutos empleados en esta investigación no presentaron pre - tratamientos ni condiciones de almacenamiento especiales. Los resultados arrojaron diferencias estadísticas significativas entre los estados de madurez del fruto en sus propiedades bromatológicas y fisicoquímicas, exceptuando el contenido de cenizas. La composición promedio de la Guanábana cimarrona fue: Acidez titulable 2.6%; pH 4.55 °Brix 11.5; humedad 81%; cenizas 0.72% y fibra bruta 8.55%.

CASTRO, J. y col (2013) Determinaron el color del exocarpo de la guayaba (*Psidium guajava*) cv. pera, como indicador de desarrollo fisiológico y madurez, mediante el procesamiento digital de imágenes. Para lo cual emplearon frutos de guayaba pera de tres tipos de cosecha: recolección a 120 días después de la floración T1, recolección a 112 días después de la floración T2 y recolección a 110 días después de la floración T3, los tres tratamientos fueron almacenados en condiciones ambientales de 26 °C y 58% HR y en ambiente refrigerado con

7,5 °C y 85% HR. Para la determinación del color se utilizaron dos espacios de color: RGB y CIE-L*a*b*. El color de la piel de la guayaba presentó una evolución desde el verde intenso recién recolectado hacia colores verde claro amarillentos en todos los ensayos realizados, aunque en los tres tratamientos almacenados en ambiente refrigerado el fruto no alcanzó el amarillo brillante típico en su madurez de consumo, al término del almacenamiento. También pudieron observar que los sólidos solubles se incrementan durante la etapa de almacenamiento en todos los tratamientos y la acidez titulable sufre una reducción paulatina y pequeña, siendo estos comportamientos muy similares en todos los ensayos. En cuanto a la evolución del pH para todos los tratamientos realizados, este parámetro permanece muy estable durante la etapa de maduración.

CORDEIRO, N. y col (2013) Evaluaron los cambios en el mesocarpo de chirimoya (Annona cherimola Mill.) 'Madeira' durante su maduración postcosecha. Las frutas fueron recolectadas en etapa verde madura y almacenadas a 20 – 22 °C en un lugar poco iluminado. Determinaron la firmeza de la fruta empleando un instrumento de presión, el contenido de cenizas fue obtenido por incineración, de proteínas por el método Kjeldahl, de humedad con balanza de humedad y la acidez por titulación que fue expresada en equivalentes de ácido cítrico. Obteniendo que la fuerza de penetración empleada fue superior a 63,6 N en los dos primeros días después de la cosecha de frutas y disminuyó drásticamente en el día 4 alcanzando un promedio de 2.7 N, ya en el día 5 la fruta era demasiado madura. La acidez titulable aumento entre los días 2 y 3 de

postcosecha, al quinto día fue dos veces mayor que la medida del primer día. Los valores de contenido de humedad durante la maduración postcosecha están en el rango de 73 a 83 %. El contenido de proteínas oscilo entre 0.009% y 0.017%. No se encontraron cambios significativos (p<0.05) en el contenido de cenizas y proteínas, durante la maduración postcosecha.

DE LA CRUZ GONZÁLES (2015) Investigó las temperaturas de almacenamiento en la vida postcosecha de chirimoya (*Annona cherimola*) ecotipo Cumbe. Almacenó los frutos en medio ambiente y a 12, 10 y 7 °C con 90 % HR. Retiró los frutos de las condiciones de frío después de 7, 14 y 21 días, además concedió un tiempo (no especificado) al medio ambiente para que los frutos alcancen la madurez organoléptica. Obtuvo que los sólidos solubles de los frutos no se vieron afectados por los tratamientos de refrigeración y presentaron valores iniciales de 7.7% hasta llegar a 22 % aprox., presentando diferencias mínimas entre los días de almacenamiento. Así mismo, midió la acidez titulable y la expresó en contenido de ácido cítrico; el análisis determinó que el contenido de éste a 10 y 12 °C se vio afectado significativamente a los 7 y 14 días respectivamente. Resultado de esto, son los siguientes valores; contenido inicial de 0.19%, 0.50% aprox. a los 7 días, 0.20% aprox. a los 14 días y finalmente 2.80% a los 21 días. También observó que a los 7 días en medio ambiente los frutos llegaron a un 0.82% de acidez titulable, el cual describe como el mayor de los contenidos.

MÁRQUEZ,C. y col (2012) Caracterizaron los aspectos fisiológicos y fisicoquímicos de la guanábana (*Annona muricata L. cv. Elita*) recolectaron los

frutos en estado de madurez fisiológica, para determinar su tasa de respiración, rendimiento de pulpa, sólidos solubles totales y firmeza. El comportamiento de este fruto muestra el primer pico respiratorio el día 4 después de la cosecha, con una tasa de producción de 148.1 mg CO₂ / kg. h ± 9.43, alcanzando su intensidad máxima (el pico climatérico más alto) en el día 6, con un valor de 186.1 mg CO₂ / kg.h ± 9.56. A su vez el promedio de semillas fue de 129, con un rango de 58 a 250. El peso promedio de las semillas fue de 0.87 ± 0.11 g. Respecto a la firmeza, las frutas inmaduras (día 0) tienen un promedio de 80 N, que persistió hasta el día 2 después de la cosecha y desde el día 4, la curva disminuye con una pendiente suave, mostrando valores respectivos de 7.48 y 4.72 N en los días 5 y 7 (frutos maduros). Las frutas maduras (día 9) mostraron una firmeza promedio de 3.62 N, lo que caracteriza al tejido como extremadamente suave. Concluyendo que la madurez de consumo se alcanzó el día 6 después de la cosecha, coincidiendo con el máximo rendimiento de pulpa de 60%.

2.2 Base teórica

2.2.1. La chirimoya

a. Descripción general

La chirimoya (*Annona cherimola Miller*) es originaria de Sudamérica tropical y subtropical (De la Plaza, Fuster y Préstamo, 1980; Lizana e Irarrazabal, 1984). No es una fruta simple, sino un agregado de frutos adheridos sobre un solo receptáculo producto de las pequeñas flores que se fecundan por separado. Posee una cáscara delgada y frágil; su superficie

verde oscura, casi lisa, lleva como una red de sombras que denota los límites de cada frutilla (Gardíazábal & Rosemberg, 1993), ésta forma es también llamada Impressa ya que la superficie de la cáscara está cubierta con aureolas en forma de U que se asemejan a las huellas de los dedos. (Franciosi Tijero, Rafael, 1992).

Imagen fotografica 1. Chirimoya variedad Cumbe

Fuente: propia

Un ejemplar de ésta fruta puede pesar entre 200 y 800 g (Farré Massip, 1999) Su interior es de color blanco, posee una textura carnosa, blanda, cremosa, poderosamente jugosa y de sabor dulce; con numerosas semillas de color desde marrón oscuro a negro (Alique & Oliveira, 1994), posee un sabor subácido delicado (Ronning, Schnell, & Gazit, 1995) y tiene como ácido orgánico principal en su composición al málico (Alique & Oliveira, 1994).

Imagen fotografica 2. Semillas de chirimoya variedad Cumbe

Fuente: propia

Imagen fotografica 3. Vista interna de chirimoya variedad Cumbe

Fuente: propia

b. Clasificación taxonómica

Tabla 1. Clasificación taxonómica de chirimoya.

Clasificación taxonómica					
Reino Vegetal					
Subreino	Embriophyta				
División	Spermatophyta				
Subdivisión	Angiospermae				
Clase	Dicotyledoneae				
Orden	Ranales				
Suborden	Magnoliales				
Familia	Annonaceae				
Subfamilia	Annonoideae				
Género	Annona				
Especie	Annona cherimola Miller				

Fuente: Popenoe, 1975

Ésta fruta pertenece a la familia de las anonáceas, las cuales han sido clasificadas como climatéricas (Biale & Barcus, 1970)

c. Composición química

Según Kawamata (1977) la composición nutricional de la chirimoya (*Annona cherimola Miller*) en 100 g es:

Tabla 2. Composición proximal de chirimoya por 100 g.

Atributo	Porcentaje
Agua	75,7 %
Carbohidratos	22 %
Fibra	1,8%
Proteínas	1 %
Cenizas	1 %
Grasas	0,1%
	<u> </u>

Fuente: Kawamata, 1977

Además de su alto contenido de agua; ésta fruta posee características muy particulares, dada la combinación armónica en su composición de ácidos y azúcares. Los últimos son producto de la reducción de almidón, predominando la glucosa (11.75 %) y sacarosa (9.4 %) (Kawamata, 1977).

Referente a la fibra, se debe mencionar que está constituida por los componentes estructurales de las paredes celulares de los vegetales (celulosa, hemicelulosa y pectinas). Sin embargo, existe distinción entre la fibra cruda y la fibra dietética; la primera es la documentada en tablas nutricionales, normalmente es menor que la dietética, ya que esta última representa el contenido total de los polímeros. (BADUI DERGAL, 2006)

d. Cultivares representativos

Aunque provienen de una misma familia; al ser cultivados en diferentes lugares del mundo, las Annonas adquieren diferentes particularidades y con ello diversos nombres como:

"Fino de Jete", que ocupa el 95 % del área sembrada de chirimoya en España (Farré & Hermoso, 1997), mientras que "Bays", "Booth", "White" y "Pierce" son las más conocidas en Estados Unidos de América y Australia (Grossberger, 1999). En el caso de Nueva Zelanda encontramos a "Reretai" y "Bronceada" (Richardson & Anderson , 1996)

Para el caso de los países sudamericanos como Chile las variedades "Bronceada" y "Concha Lisa" son las más conocidas (National Academy Press, 1989) y en Perú la variedad representativa es "Cumbe" (Franciosi Tijero, R., 1992)

La última mencionada, es una selección obtenida a partir de líneas procedentes de semillas. La yema de esta planta ha sido injertada en la comunidad de Cumbe (Cuenca de Canchacalla, distrito de Otao, provincia de Huarochirí, Lima).

La producción nacional de chirimoya alcanza las 20 mil toneladas anuales, de las cuales la región Lima produce aproximadamente entre 7,500 y 8,000 toneladas, lo que representa cerca del 40% de la producción total. (Miranda Edgar, Sierra Exportadora, 2015)

e. Características especiales

La chirimoya a diferencia de las frutas climatéricas normales que presentan una sola alza de su respiración, ésta una vez cosechada aumenta su respiración, presentando dos alzas bien marcadas que se encuentran altamente correlacionadas con otros procesos indicativos de madurez (Kosiyachinda & Young, 1975) como el cambio de textura que de tener una consistencia dura comienza un ablandamiento por la actividad enzimática, desarrollando sabor y aroma que se consigue en aprox. 3 días a 18°C.

Al ser una fruta poco ácida posee un pH máximo de 4.3 en su madurez. (Guevara Pérez, 1990). Así mismo, los sólidos solubles en chirimoyas maduras alcanzan valores promedio de 24.5%. (Velezmoro Sánchez, 1988). El sabor de esta fruta se desarrolla como resultado de la combinación y balance entre los ácidos y azucares. (Ministerio de Agricultura, 1997)

Las chirimoyas presentan una tasa respiratoria que va entre 25 a 100, 45 a 150 y 75 a 250 ml CO₂/ Kg. h correspondientes a temperaturas de almacenamiento de 10, 15 y 20 °C, respectivamente. (Kader , A.A.; Arpaia, M.L., 1999).

En cuanto al estudio de color, según (Padrón, 2010) los parámetros de color L*, a* y b* en una muestra de alimento, designan: L* la luminosidad (0 = negro y 100 = blanco), siendo a* y b* las coordenadas cromáticas rectangulares (+a = rojo y -a = verde / +b = amarillo y -b = azul).

Los cambios de color han sido considerados indicadores prácticos de la maduración; según (Pantastico, 1979) estos cambios pueden deberse a procesos ya sea de degradación o de síntesis o de ambos tipos. En el caso de la chirimoya durante su maduración, existe una gradual perdida del color verde amarillento, dado por la clorofila, presente en su piel. (MERODIO & DE LA PLAZA, 1997)

f. Criterios de cosecha

No existen valores exactos para el índice de madurez de cosecha adecuado, sin embargo, los índices actualmente utilizados son: cambio de coloración de la piel, cambios en la forma de los alvéolos del fruto, desprendimiento de semillas de la pulpa. (Gardiazábal & Rosemberg, 1993) considerando que esta fruta es muy delicada y sensible al manipuleo, se debe recolectar en forma extremadamente cuidadosa, para esto podrá considerarse cosechar solo cuando el ambiente está seco, además el personal no debe lastimar la fruta ni arrancar el fruto, sino cortar el pedúnculo al ras de la fruta. Ya que, si esta porción cae, la abertura que queda en la fruta servirá de entrada a los hongos causantes de podredumbre. (Franciosi Tijero, Rafael, 1992)

Cuando un tejido vegetal es dañado mecánicamente se produce la interacción de enzimas y sustrato, que normalmente se localizan en estructuras separadas, pero dada la acción del daño y la presencia de oxígeno se hace posible el desarrollo de pardeamiento, que en la mayoría de los casos, es el resultado de la acción de polifenoloxidasas (PPO) sobre un sustrato en presencia de oxígeno (Joslyn & Ponting, 1951).

La acción de PPO podría ser la responsable del pardeamiento a que está expuesta la cáscara de la chirimoya después de cosecha (Martinez - Cayuela, Sanchez - Medina, Faus, & Gil, 1988)

Es importante tener en cuenta que las Annonas cosechadas temprano se tornan negras y llegan a ser invendibles además de poco atractivas. Cuando se las cosecha en el momento adecuado se asegura una firmeza de la pulpa que

permite transportarlas manteniendo una excelente calidad. (Gardíazábal & Rosemberg, 1993).

g. Criterios de almacenamiento

Se presentan problemas debido a que la chirimoya se considera sensible a las bajas temperaturas, por lo cual el uso de refrigeración trae consigo riesgos de alteraciones en la fisiología de la fruta. Todas las temperaturas usadas para prolongar la vida útil en almacenaje de la chirimoya están limitadas por el daño por frío que le pueda causar a ésta, lo cual es específica para cada cultivar. (Ministerio de Agricultura, 1997)

Un estudio antiguo expuso chirimoyas a 5 y 7 °C describiendo el desarrollo en algunos frutos de desórdenes fisiológicos como moteado, pardeamientos y endurecimiento, como cambios estructurales en diversos tejidos de la fruta (Loyola, 1988).

Las chirimoyas para su almacenamiento, conservación y transporte, deben mantenerse a temperaturas comprendidas entre 9 y 12 °C con 85 y 90 % HR. Pero, (Reginato & Lizana, 1980) afirmaron que el almacenamiento en refrigeración tradicional a 10°C no puede ser utilizada con esta fruta por su susceptibilidad al daño por frío.

Diversos estudios confirman valores para cada variedad, por ejemplo:

(Reginato & Lizana, 1980) almacenaron frutos de chirimoyas de la variedad "Concha Lisa" a 7, 11 y 15 °C y 85 – 90% HR. Después de 35, 21 y 15 días respectivamente. Entre las anormalidades fisiológicas detectadas encontraron pardeamiento superficial, mayor incidencia en 7°C y manchas acuosas en la pulpa, cambios que se presentan después del almacenamiento.

Ejemplares de "Concha Lisa" fueron almacenadas a 80 – 85% de HR; de la cual se comprobó que puede conservarse a 7 °C durante 30 a 35 días, para luego sacarla al medio ambiente y se mantuvo en buenas condiciones durante 2 días adicionales. La variedad "Bronceada" se puede conservar a 11 °C, durante 21 días conservando sus características.

Por último (Fuster & Prestamo, 1980) almacenaron chirimoyas de las variedades "Campas" y "Fino de Jete" bajo las siguientes condiciones: 20 °C y 40% HR, condiciones ambientales; 5 °C y 40% HR y 10°C y 80% HR. Las muestras se tomaron cada 2 ó 3 días y se determinó: pérdida de peso, peso específico, contenido de solidos solubles totales y medidas de textura.

Entre los resultados obtenidos, encontraron una correlación entre el contenido de sólidos solubles totales y el sabor de la fruta. Cuando la chirimoya no estaba madura el valor de ^oBrix fue menor de 22, en cuanto a la deformación incremento con el tiempo de almacenamiento y la temperatura.

Así determinaron que las condiciones de almacenamiento más aceptables fueron a 10°C y 85%HR, mientras que en el caso del almacenamiento a 5°C fue descartado porque la cáscara se vuelve dura y oscura. La maduración de los frutos ocurre en un estrecho rango de temperatura. En temperaturas inferiores a la temperatura crítica se interrumpe el proceso de maduración.

2.3 Conceptual

2.4 Definiciones de términos básicos

Daño por frio: Fenómeno presente en frutas que no toleran la exposición a temperaturas de 0 - 15 °C. Los síntomas son: ennegrecimiento de la cáscara, maduración desuniforme; además de pardeamientos internos. (López Camelo , Andrés F.; FAO, 2003)

Fruto climatérico: Aquel que es cosechado después de su madurez fisiológica y presenta un ascenso notable en su actividad respiratoria que lo lleva a obtener la madurez organoléptica fuera del árbol. (Villomiza, 1995).

Maduración: Es el proceso que inicia antes de finalizar el crecimiento del fruto en el árbol; originando cambios en el fruto como: la consistencia y el desarrollo de las características organolépticas como color, olor y sabor. Este proceso termina con el envejecimiento y muerte de los tejidos llamado senescencia. (Parra Coronado & Hernandez Hernandez, 2005).

Madurez fisiológica: Inicia antes de terminar el crecimiento y solo se completa cuando el fruto permanece unido a la planta de la que procede. Durante ella se adquiere la constitución básica característica del producto; la madurez fisiológica indica el momento en que debe realizarse la recolección del producto. (Parra Coronado & Hernandez Hernandez, 2005)

Madurez organoléptica: Es el grado en el cual los productos presentan todas las características organolépticas que los hacen aptos para el consumo. Y es obtenido después de la madurez fisiológica. (Parra Coronado & Hernandez Hernandez, 2005)

Polifenoloxidasas: Son las enzimas responsables de las reacciones de pardeamiento enzimático que ocurren durante el almacenamiento, manipulación y procesamiento de frutas y vegetales. Estas reacciones modifican las características organolépticas y nutricionales del alimento, depreciando su calidad. (McEvily et al., 1992; Friedman, 1996; Matheis & Whitaker, 1984; Sanchez-Ferrer et al., 1995). El ph óptimo de acción de las polifenoloxidasas es 6 (BADUI DERGAL, 2006)

Postcosecha: Es el periodo transcurrido desde la recolección de los productos en el campo hasta que son consumidos en estado fresco o son utilizados en un proceso de preproducción o transformación. (FAO, Corporación Colombiana de Investigación Agropecuaria.)

Respiración: Es el proceso por el cual se obtiene la energía necesaria para desarrollar una serie de procesos biológicos indispensables; ocurre a expensas de las sustancias de reserva (azúcares, almidones, etc.) las que son oxidadas, con el consiguiente consumo de oxígeno (O2) y producción de dióxido de carbono (CO₂). (Arias Velázquez, C.; Toledo Hevia, J.; FAO, 2000).

CAPITULO III

HIPÓTESIS Y VARIABLES

3.1.1 Hipótesis general

La temperatura de almacenamiento de la chirimoya (*Annona cherimola Miller*) variedad Cumbe, influye en sus cambios físicos y químicos durante su maduración postcosecha.

3.1.2. Hipótesis específicas

Los estados de madurez se diferencian por los valores de las propiedades fisicoquímicas y químico – proximales de la chirimoya (*Annona cherimola Miller*) variedad Cumbe.

La temperatura óptima de almacenamiento de chirimoya (*Annona cherimola Miller*) variedad Cumbe, para conservar su calidad organoléptica es 20 °C.

Se aprecian diferencias notables en la matriz elaborada, luego de los análisis experimentales, a partir de los atributos físicos de la chirimoya (Annona cherimola Miller) variedad Cumbe, por cada estado de madurez.

3.2 Definición conceptual de variables

Variable independiente:

a) Temperatura de almacenamiento

Variables dependientes:

- a) Composición químico proximal
 Proteínas, grasas, humedad, cenizas, fibra y carbohidratos.
- b) Parámetros físicos y químicos
 Color, textura, pH, acidez titulable, SS (ºBrix) y biometría.
- c) Tasa de respiraciónProducción máxima de CO₂

3.2.1. Operacionalización de variables

Tabla 3. Operacionalización de variables.

	VARIABLES	TIPO	DIMENSION	INDICADORES	ESCALA
INDEPENDIENTE	Temperatura de almacenamiento	CUANTITATIVA	Grado de calor que posee el ambiente en el cual se almacena la chirimoya	EXPRESADA EN ºC	10±1 20±1 30±1
DEPENDIENTES	Proteínas Grasas Humedad Cenizas Fibra Carbohidratos	CUANTITATIVA	Componentes nutricionales presentes en la pulpa de chirimoya	EXPRESADO EN %	0 – 100
DEPE	Color Textura pH	CUA	Atributos externos e internos de la chirimoya	EXPRESADO EN: L*, a*, b* N ——	 3 - 285 4 - 6

Acidez titulable		% Ácido Málico	5 – 43
Sólidos solubles		ºBrix	9 – 27
Biometría		Gramos	
	5 1 1/ / 1		
Tasa de respiración	Producción máxima de CO ₂ durante la vida postcosecha	ml CO₂ /Kg. de chirimoya x hora	57.1180

CAPITULO IV

DISEÑO METODOLÓGICO

4.1 Tipo y diseño de investigación

El tipo de investigación es: longitudinal y aplicada. Porque la evaluación de la chirimoya (*Annona cherimola Miller*) variedad Cumbe, fue realizada en el transcurso de su vida postcosecha y los valores obtenidos permitieron establecer criterios postcosecha de esta fruta, los mismos que podrán ser usados como un referente para los interesados. Su diseño es simple aleatorio, compuesto por 3 tratamientos de temperatura.

4.2 Método de investigación

Es experimental porque se manipula la temperatura de almacenamiento para provocar que la fruta tenga cambios físicos y químicos.

4.3 Población y muestra

Para la recolección de datos, inicialmente se cosecharon las chirimoyas cuando alcanzaron su tamaño promedio. A continuación, fueron colocadas en jabas plásticas, especiales para frutas y transportadas desde Cumbe hasta el Instituto de Investigación de Especialización en Agroindustria (IIEA) – UNAC.

La población estuvo compuesta por 60 Kg de Chirimoya (*Annona cherimola Miller*) de variedad Cumbe cultivadas en el pueblo de Cumbe (Latitud: -11.8833 y Longitud: -76.55), distrito: San Mateo de Otao, Provincia: Huarochirí, Departamento: Lima; sin presencia de daños físicos o por plagas. De la cual se obtuvieron los 45 Kg que conformaron la muestra.

4.4 Lugar de estudio y periodo desarrollado

Los análisis fueron realizados en el laboratorio químico del Instituto de Investigación de Especialización en Agroindustria (IIEA), en un periodo comprendido desde Mayo hasta Agosto del 2018.

4.5 Técnicas e instrumentos para la recolección de información

4.5.1. Métodos de análisis

4.5.5.1 ANÁLISIS QUÍMICO - PROXIMALES

a) Determinación de Proteínas – Método Kjeldahl (AOAC 955.04, 1998)
 Para este proceso se realizaron 3 muestras.

Por cada tubo del digestor Kjeldahl se colocaron: 1 g. de pulpa de chirimoya, la mezcla de catalizadores (5 g. sulfato de potasio y 0.5 g. sulfato de cobre) y 15 ml de ácido sulfúrico q.p.

Se procesó la digestión a 420°C por 30 min. Esta etapa terminó cuando se obtuvo el color verde esmeralda, al enfriar se le agregó 20 ml de agua destilada a cada tubo.

Estos luego fueron colocados en el destilador, donde se alcalinizo la muestra digerida con NaOH 40%, el nitrógeno se desprendió en forma de amoniaco y este destilado se recogió en 25 ml de ácido bórico al 4% con indicador tashiro. La cuantificación del nitrógeno presente se realizó mediante la titulación con HCI 0.1N. El gasto fue evaluado mediante la siguiente ecuación:

$$\% N = \frac{14 * NHCl * VHCl * 100}{m * 1000}$$

Donde

% N: porcentaje de nitrógeno presente en la chirimoya.

N HCI: normalidad de HCI

V HCI: Volumen gastado de HCI en ml

m: peso de chirimoya en gramos

El %N, se multiplico con el factor 6.25; para obtener el % Proteínas.

b) Determinación de Grasas – Método Soxhlet (AOAC 920.85, 1998)

Este proceso consta de 3 etapas:

1. Inmersión 2. Lavado 3. Recuperación

Para la primera etapa, se pesaron 2 g. de pulpa de chirimoya que fueron introducidos en cada capsula de celulosa, por 3 capsulas; posteriormente

se colocaron junto con 3 vasos recuperadores de grasa, de peso

conocido, con 40 ml de éter de petróleo cada uno en el equipo Soxhlet.

Este proceso dura 30 minutos.

La segunda y tercera etapa, duraron 60 y 20 minutos. Las 3 etapas, se

realizaron en el mismo equipo de manera continua.

Al término de las 3 etapas, se llevaron los vasos a la campana extractora

de gases por un espacio de 12 horas para terminar de evaporar el

solvente.

Finalmente se pesaron los vasos con la grasa obtenida y se realizaron los

cálculos con la siguiente ecuación.

$$\%Grasa = \frac{(Wvaso + grasa) - Wvaso}{Wmuestra}x$$
 100

Donde:

W vaso: peso del vaso recuperador de grasa

W muestra: peso de la pulpa de chirimoya.

Grasa: peso de grasa obtenida de la chirimoya.

c) Contenido de Humedad (AOAC 934.06, 1998)

Se realizaron 3 muestras. Pesando 1 g. de pulpa de chirimoya en una

placa. Éstas se llevaron a la estufa y se pesaron cada hora, hasta obtener

29

peso constante. Luego se calculó el contenido de humedad, con la siguiente ecuación:

%
$$Humedad = \frac{W_2 - W_3}{W_2 - W_1} \times 100$$

W₁: Peso de placa

W₂: Peso de placa + muestra fresca

W_{3:} Peso de placa + muestra seca

d) Contenido de Cenizas (AOAC 940.26, 1998)

Se pesaron 3 crisoles, con 1 g. de pulpa de chirimoya, fueron llevados a la mufla a 525°C hasta lograr cenizas blancas.

El % de cenizas fue hallado con la siguiente ecuación:

%Cenizas =
$$\frac{C_F}{M_i}x$$
 100

Donde:

C_F: peso de ceniza final

M_i: peso de muestra inicial

e) Determinación de fibra (AOAC 7.061, 1980)

Este proceso consta de 2 etapas de digestión:

Para la digestión acida, se pesaron 3 g. de chirimoya (previamente exenta de grasa), que fueron hervidos con 200 ml de H2SO4 al 1.25% durante 30 minutos, luego se filtró y lavo con agua destilada caliente.

Para la digestión alcalina, se tomó la chirimoya digestada y se llevó a hervir con 200 ml de NaOH 1.25% por 30 minutos, luego se filtró y lavo con agua destilada caliente.

La muestra digestada se llevó a la estufa hasta que formó una capa seca, esta fue pesada (P1) para después ser incinerada y al obtener las cenizas, se pesaron nuevamente (P2).

Los cálculos se realizaron con la siguiente ecuación:

% Fibra Cruda =
$$\frac{P_1 - P_2}{W} x 100$$

f) Contenido de Carbohidratos Totales - por diferencia (FAO)

Fueron determinados por diferencia respecto del 100% y los contenidos de: cenizas, humedad, grasas y proteínas; por 100 g.

El resultado se obtuvo con la siguiente ecuación:

4.5.5.2 ANÁLISIS FISICOQUÍMICOS

g) Medición del color (Castro Camacho J. y col, 2012)

Se tomaron fotografías a las chirimoyas, desde el 1er día postcosecha hasta la senescencia, con una cámara digital convencional configurada en modo automático y con flash encendido. La cual tuvo el lente a 12 cm de distancia de la fruta; en un ambiente cerrado iluminado frontalmente por un fluorescente de luz blanca de 18 watts y por los laterales con focos espirales también de luz blanca de 12 watts que estarán ubicados a 24 cm de la fruta con 30º de inclinación respecto del nivel de referencia de la chirimoya.

Estas imágenes se obtuvieron a lo largo de su vida postcosecha y luego de fotografiadas fueron obtenidas en formato JPEG de 3280 x 2460 pixeles; se descargaron en la computadora y los pixeles se promediaron mediante el software Adobe Photoshop cs6, que a su vez indicó las coordenadas R (red), G (Green) y B (blue) del espacio de color RGB, el color promedio de la medición de cada unidad de chirimoya se consideró como resultante de la medición diaria.

Estos datos fueron llevados al software "EASYRGB" en el cual se obtuvieron los valores L*, a* y b* de la ley de Lambert & Beer.

Con los cuales, se elaboró una tabla de color por cada estado de madurez.

h) Medición de textura (Herrero & Guardia, 1992)

Las chirimoyas fueron liberadas de su piel en la zona ecuatorial procurando no retirar pulpa. Con el penetrómetro sujetado horizontalmente a las unidades se ejerció presión en dos puntos paralelos

de cada fruta hasta que penetró el pistón. Se emplearon los pistones de 11mm para el estado verde y el de 8 mm para los estados pintón y maduro. Posteriormente se realizó la lectura de la medición y se calculó promediando las dos mediciones paralelas de la zona ecuatorial de cada unidad. En kgf/cm2 que fueron convertidas a N. Este procedimiento se realizó 3 veces por cada unidad de cada almacenamiento.

i) Medición de pH (AOAC 981.12, 1982)

Se extrajo el zumo de la pulpa de chirimoya, de éste se midieron 30 ml en un beaker y se realizaron 3 mediciones con el potenciómetro previamente calibrado. Luego se anotaron los resultados.

j) Medición de acidez titulable (AOAC 939.05, 1965)

Se extrajo el zumo de la pulpa de chirimoya, de éste se midieron 20 ml y enrasaron hasta 500 ml con agua destilada en una fiola.

Luego se dividió en 3 matraces con 100 ml de la suspensión y 3 gotas de fenolftaleína como indicador, cada uno. Se valoraron con una solución de NaOH al 0.1 N hasta que la solución viró a color rosa.

Se midieron y anotaron los ml gastados de NaOH.

Los resultados fueron calculados con la siguiente ecuación:

$$\%Acido\ malico = \frac{mequiv.\ acido\ malico\ x\ f\ NaOH\ x\ N\ NaOH\ x\ G\ NaOH}{\frac{20\ (ml)}{500(ml)x\ 100(ml)}}$$

Donde:

Mequiv de ácido málico: 0.06704

N NaOH: Normalidad de solución NaOH

F NaOH: Factor de corrección NaOH

GNaOH: volumen gastado de NaOH hasta el viraje de color

k) Medición de Sólidos solubles (AOAC 932.12, 1980)

Se trozaron 5g. de pulpa de chirimoya que fueron filtrados hasta obtener

10 ml aprox. Luego se midieron los ^oBrix, echando 2 – 3 gotas de jugo de

chirimoya en el refractómetro digital, para realizar la lectura, este proceso

se realizó por triplicado.

I) Biometría

Se pesaron las chirimoyas enteras, luego se les retiró toda la piel y se

separaron los elementos: pulpa, semillas y piel para ser pesados; además

se realizó el conteo de semillas.

4.5.5.3 TASA DE RESPIRACIÓN

m) Método Pettenkofer (Bornelli de Castro, 2011)

El aparato inicialmente fue ensamblado y estuvo constituido por cuatro

frascos transparentes, los dos primeros contenían hidróxido de sodio

(NaOH) a 25% que tenían por finalidad retener el CO2 del ambiente; el

tercero contenía una chirimoya entera sin ningún tipo de tratamiento

34

previo y el último contenía hidróxido de Bario (Ba(OH)₂) a 0.1 N el cual

reacciono con el CO₂ proveniente de la actividad respiratoria de la fruta y

formo Carbonato de Bario (BaCO₃).

Los frascos fueron cerrados con tapones de silicona e interligados por una

manguera de silicona y el flujo de aire fue controlado por una bomba. Se

tomaron tres alícuotas de 20 ml de Carbonato de Bario (BaCO₃) para la

titulación (sin introducir la chirimoya al sistema) después de 24 horas para

establecer el valor en blanco.

Después se tomaron tres alícuotas de 20 ml de Carbonato de Bario

(BaCO₃) diariamente para la titulación. Cada alícuota recibirá dos gotas

de indicador fenolftaleína y será sometida a titulación con ácido clorhídrico

(HCI) 0.1N en una bureta de 50 ml. El volumen de gasto de HCI será

anotado hasta el punto de viraje de fucsia a incoloro.

El resultado fue expresado en cantidades de dióxido de carbono liberado

por gramos de fruta por hora (g CO₂ g de chirimoya / g* h)

Los valores son hallados con la siguiente fórmula:

$$(Lb - La) * \frac{1.1 * 10^6}{h * g}$$

Donde:

Lb: Lectura de titulación en blanco (ml)

La: Lectura de titulación de muestra (ml)

35

H: horas de permanencia en el sistema

g: peso en gramos de chirimoya

4.5.2. PROCEDIMIENTO EXPERIMENTAL

4.5.3.1 Caracterización de sus propiedades fisicoquímicas y químico – proximales, en diferentes estados de madurez.

Se consideró una población de 27 chirimoyas (aprox. 9 Kg) sin evidencia de contaminación o daño mecánico, con medidas aproximadas de 8 y 6 cm de ancho y alto respectivamente. Formando 3 subgrupos de 9 unidades, de acuerdo a las características sensoriales.

Previamente a la realización de los análisis se acondicionó cada chirimoya, retirándole el polvo y excluyendo del lote las unidades con piel de color amarillo; para luego realizarse el análisis biométrico según método descrito en el punto 4.5.5.2 apartado L. Definiendo los valores promedio y rendimientos de pulpa, piel y semilla.

Luego de la evaluación biométrica, se realizó la medición de textura según lo expresado en el punto 4.5.5.2 apartado H, con este proceso se obtuvo la pulpa que fue empleada en el desarrollo de los siguientes análisis: proteínas, grasas, cenizas, humedad, carbohidratos, fibra, pH, acidez titulable, solidos solubles (°Brix) y textura.

4.5.3.2 Identificación de la temperatura óptima de su almacenamiento, en función a su calidad organoléptica

Con una población de 111 chirimoyas (aprox. 34 kg) se formaron 3 subgrupos de 57, 36 y 18 unidades que fueron almacenadas a 10, 20 y 30°C respectivamente, de los cuales se muestreo diariamente para realizar los análisis de acuerdo a lo descrito en el apartado 4.5.1, determinándose: proteínas, grasas, cenizas, humedad, carbohidratos, fibra, pH, % ácido málico, sólidos solubles (°Brix), textura y color; que permitieron identificar los cambios en la calidad organoléptica de la chirimoya en las diferentes condiciones de almacenamiento. En el caso de la evaluación de tasa de respiración, fue realizado por una unidad entera. Todos los análisis se realizaron por un periodo máximo de 21 días.

Para establecer las condiciones óptimas de almacenamiento se tomaron de referencia los parámetros: pH, % ácido málico, sólidos solubles (°Brix), textura y color; con rangos de medición de: (5.2 - 4.9), (5 - 23), (10 - 27.4), (284 a ≤ 3.14), (L*: 62 - 49, a*: -16 a -5, b*: 48 - 42) respectivamente; que permitieron establecer el periodo o vida útil en almacenamiento.

4.5.3.3 Obtención de una matriz de sus atributos físicos por cada estado de madurez.

En base a los resultados anteriores, se consideró como parámetros referenciales para la matriz de atributos físicos a los cambios de color y textura por cada temperatura para cada estadio de madurez.

4.6 Análisis y procesamiento de datos.

Con los resultados obtenidos luego del desarrollo experimental, se realizó un análisis de varianza utilizando un nivel de significancia del 5%. la existencia de

diferencias significativas conllevó a la aplicación de la prueba de Tukey al α = 0.05, estableciendo el nivel de diferencia significativa entre las medias de los valores obtenidos. El análisis estadístico se realizó empleando el software Minitab 17.

CAPITULO V

RESULTADOS

5.1 De la caracterización de las propiedades fisicoquímicas y químico - proximales de la chirimoya (*Annona cherimola Miller*) variedad Cumbe en diferentes estados de madurez.

En la tabla 4, se establecen el rendimiento, media y desviación de los resultados del análisis biométrico (Anexos 1, 2 y 3); realizado de acuerdo a lo detallado en el apartado 4.5.2 a la población de chirimoyas empleada en la presente investigación.

Tabla 4. Rendimiento, media y desviación estándar de los componentes de la chirimoya variedad Cumbe

	Fruta	Valores p	or cada cł	nirimoya	Unidad de Peso		Respecto del peso de fruta entera			Ancho	Alto
	entera (g)	Pulpa (g)	Piel (g)	Sem. (g)	semillas	unitario de semilla	% Pulpa	% Piel	% Semillas	(cm)	(cm)
X	220.134	194.683	19.780	5.670	8.807	0.635	87.938	9.536	2.525	8.439	6.177
S	46.537	42.337	7.788	2.347	3.194	0.129	3.200	3.053	0.610	0.857	0.255

El rendimiento de la pulpa fue de $87.938\% \pm 3.2$. Y cada semilla tuvo un peso de 0.635 g. \pm 0.129 g. con una presencia de 8.807 ± 3.194 unidades por cada chirimoya. Los frutos midieron 8.439 y 6.177 cm aproximadamente de ancho y alto respectivamente, por lo cual se puede considerar una fruta de forma redondeada.

Luego de la evaluación biométrica, se realizó la clasificación de la población por sus atributos sensoriales, según como se presenta en la tabla 5.

Tabla 5. Valores promedio de las características sensoriales de chirimoya variedad Cumbe

Estado de Madurez	Color		Txt (N)	рН	% Acido málico	⁰Brix
	L*	56.82 ± 4.08				
Verde	a*	-18.05 ± 2.10	≥284.78	5.5 ± 0.3	7.167 ± 2.092	12.4 ± 2.3
	b*	48.80 ± 1.29				
	L*	54.07 ± 0.46				
Pinton	a*	-16.92 ± 1.15	3.67 ± 0.29	4.9 ± 0.2	19.159 ± 8.386	20.7 ± 0.4
	b*	48.18 ± 0.44	0.20		0.000	
	L*	50.70 ± 0.96				
Maduro	a*	-11.28 ± 2.43	3.30 ± 0.07	4.7 ± 0.2	21.287 ± 2.316	25.4 ± 2.0
	b*	44.60 ± 2.16				
	L*	54.63 ± 6.09				
Senescencia	a*	-5.06 ± 3.44	≤3.14	4.5± 0.1	32.299 ± 9.126	23.7 ± 1.8
	b*	43.11 ± 1.79			01.20	

5.2 Respecto a la identificación de la temperatura óptima de almacenamiento de chirimoya (*Annona cherimola Miller*) variedad Cumbe en función a su calidad organoléptica.

En la tabla 6. se muestran los valores promedio obtenidos del análisis de los criterios físicos y químicos de la chirimoya en diferentes condiciones de almacenamiento.

Tabla 6. Media y desviación de los criterios fisicoquímicos y químico- proximales presentes en las chirimoyas almacenadas a 10, 20 y 30°C

Tempera almacenam		% Proteínas	% Grasas	% Cenizas	% Humedad	% Carb.	рН	% Acido málico	Solidos solubles (°Brix)
40	Х	0.015	0.432	0.593	75.373	23.588	4.968	9.609	18.067
10	S	0.004	0.146	0.142	2.177	1.903	0.293	3.382	4.486
	Х	0.015	0.546	0.563	74.826	23.500	4.890	20.194	20.414
20	S	0.006	0.110	0.223	3.136	1.386	0.472	11.763	5.327
30	Х	0.012	0.771	0.464	75.177	23.045	4.675	14.142	21.561
	S	0.005	0.069	0.192	3.083	0.905	0.239	2.696	5.862

De los valores obtenidos, se determinó que existieron diferencias estadísticamente significativas (p <0.05) en contenido de: proteínas, grasas, carbohidratos, pH, acidez titulable y solidos solubles (°Brix). (Anexos 7, 12, 25, 30, 35 y 40)

Los valores obtenidos del contenido de proteínas (Anexos 4, 5 y 6) registraron diferencias significativas (α<0.05) entre las 3 condiciones de almacenamiento (Anexo 8); a 20°C se observó el mayor rango con 0.009 a 0.020% y a 30°C se observó el menor rango con 0.008 a 0.017%. Las proteínas tuvieron valores entre 0.009% hasta 0.020%. Independientemente de sus condiciones de almacenamiento.

El contenido de grasas (Anexos 9, 10 y 11) registró diferencias significativas (α<0.05) entre las 3 condiciones de almacenamiento (Anexo 13); las unidades almacenadas a 10 °C, presentaron el menor valor con 0.523% el 1er día, que disminuyo el 13vo día con 0.233%. Cuando fueron almacenadas a 20°C, el 1er día postcosecha presentaron 0.742% valor que descendió el 5to día con 0.324%. A 30 °C presentaron el mayor promedio de grasa con 0.771 %, el 2do día aumento a 0.835% y descendió el 4to día a 0.706%.

Los valores obtenidos del contenido de carbohidratos (Anexos 22, 23 y 24) registraron diferencias significativas (α<0.05) entre las 3 condiciones de almacenamiento (Anexo 26); Las unidades almacenadas a 10 °C presentaron 21.659% el 1er día y aumento el 11vo día con 26.002%. En 20°C de almacenamiento el 1er día tuvo 26.276% y su menor valor registrado fue 21.699% el 9no día. A 30 °C el mayor valor fue 24.555% el 3er día postcosecha.

Tabla 7. Valores promedio de pH en las chirimoyas almacenadas a 10, 20 y 30°C; agrupadas por cada estado de madurez.

Estado de _		рН	
Madurez	10	20	30
Verde	5.5 ± 0.2	5.5 ± 0.3	5.1± 0.01
Pinton	5.3± 0.2	4.9 ± 0.2	4.5 ± 0.1
Maduro	5.3 ± 0.1	4.7 ± 0.2	4.6± 0.01
Senescencia	5.3 ± 0.1	4.5± 0.1	4.6 ± 0.2

Los valores obtenidos de pH (Anexos 27, 28 y 29) presentaron diferencias significativas (α <0.05) entre las 3 condiciones de almacenamiento (Anexo 31).

Sus valores promedios y desviaciones estándar se observan en la tabla 7, en diferentes estados de madurez por cada condición de almacenamiento, presentando el mayor valor de pH en el almacenamiento a 10°C, del 3er a 4to día descendió de 5.72 a 5.28, del día 15 al 16 hubo un descenso de 5.43 a 5.23. Cuando las unidades fueron almacenadas a 20°C el 1er día tuvo 5.907 y fue disminuyendo diariamente hasta lograr su valor más bajo el 10mo día con 4.407. A 30°C el menor valor reportado fue 4.433 el 3er día de almacenamiento. Estos valores muestran que la elevación de la temperatura de almacenamiento y el aumento de los días postcosecha, propician la reducción de pH en la fruta.

Tabla 8. Valores promedio de % Acido málico en las chirimoyas almacenadas a 10, 20 y 30°C; agrupadas por estado de madurez

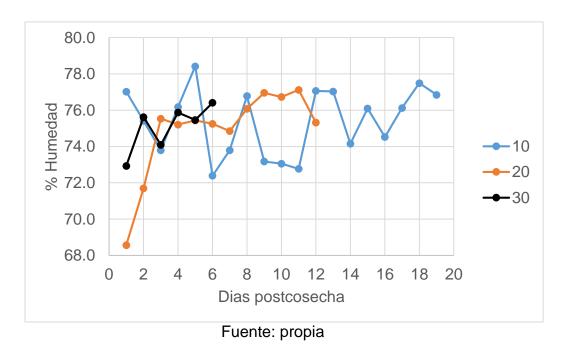
Estado de		% Acido málico)
Madurez	10	20	30
Verde	11.098 ±	7.167 ±	12.821 ±
	4.023	2.092	0.011
Pinton	10.128 ±	19.159 ±	15.278 ±
	3.517	8.386	5.396
Maduro	10.007 ±	21.287 ±	12.543 ±
	4.097	2.316	0.001
Senescencia	7.027 ±	32.299 ±	14.467 ±
	1.268	9.126	0.382

El contenido de ácido málico (Anexos 32, 33 y 34) registró diferencias significativas (α<0.05) entre las 3 condiciones de almacenamiento (Anexo 36). Sus valores promedios y desviaciones estándar se observan en la tabla 8, en diferentes estados de madurez por cada condición de almacenamiento.

A 10°C tuvo 17.466% el 5to día y disminuyo el 6to día con 9.279%. El 12vo día tuvo 9.825% y disminuyo a 6.004% el día 13. Finalmente, el día 15 tuvo 14.191% marcando el fin de la vida útil de la fruta. Almacenadas a 20°C, el 1er día tuvo 6.558% incrementando su concentración el 5to día con 23.416%; el 8vo día presento 19.649% aumentando a 28.328% el 9no día. Cuando fueron almacenadas a 30°C el valor más alto se registró el 3er día con 19.093% que disminuyo el 4to día a 12.543%.

Tabla 9. Valores promedio de solidos solubles (ºBrix) en las chirimoyas almacenadas a 10, 20 y 30°C; agrupadas por estado de madurez

Estado de		⁰Brix	
Madurez	10	20	30
Verde	10.9 ± 1.9	12.4 ± 2.3	11.2 ± 0.05
Pinton	17.3 ± 3.1	20.7 ± 0.4	20.2 ± 1.8
Maduro	21.8 ± 0.7	25.4 ± 2.0	25.9 ± 0.07
Senescencia	22.4 ± 1.2	23.7 ± 1.8	26 ± 0.5
	Euchto	· nronia	


Los ^oBrix (Anexos 37, 38 y 39) registraron diferencias significativas (α<0.05) entre las 3 condiciones de almacenamiento (Anexo 41). Sus valores promedios y desviaciones estándar se observan en la tabla 9, en diferentes estados de madurez por cada condición de almacenamiento.

A 10 °C inicio su vida postcosecha con 9.50°Brix que fue incrementando hasta el día 15 que tuvo un pico de 22.57°Brix, éste decreció el día 16 hasta 21.20°Brix como inicio de su senescencia. En 20°C las unidades el 1er día tuvieron 10.6 °Brix valor que incremento diariamente hasta lograr un pico de 21°Brix; nuevamente el 8vo día presento un pico de 26.867°Brix, el cual disminuyo el 9no día con 21.333°Brix. Las unidades sometidas a 30°C, del 1er al 2do día de almacenamiento incrementaron de 11.2 a 18.90 °Brix, el 4to día obtuvieron 25.867 °Brix valor que representa la llegada de la madurez de la fruta.

A su vez, otros criterios no presentaron diferencias significativas (p>0.05) a causa de las temperaturas de almacenamiento. Ejemplo de ellos son: el contenido de humedad (Anexo 17) y cenizas (Anexo 21) en las chirimoyas.

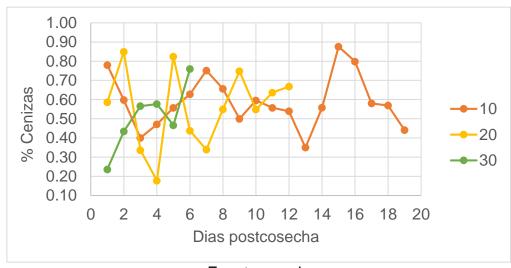
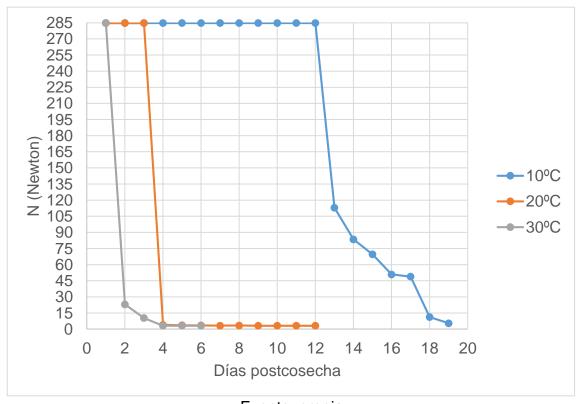

Los valores de humedad (Anexos 14, 15 y 16) se encontraron en el rango de 67 a 79%, su comportamiento se aprecia en el Grafico 1.

Gráfico 1. Contenido de humedad de la chirimoya variedad Cumbe, almacenadas a 3 temperaturas diferentes, durante su vida postcosecha.

Los valores de ceniza (Anexos 18, 19 y 20) se encontraron en un rango de 0.272 a 0.786%, su comportamiento se aprecia en el Grafico 2.

Gráfico 2. Contenido de cenizas de la chirimoya variedad Cumbe, almacenadas a 3 temperaturas diferentes, durante su vida postcosecha.

En el caso de la fibra presente en la chirimoya, durante el proceso de maduración, sufre metabolismos que reducen su concentración, como lo evidencian los resultados experimentales de la tabla 10.


Tabla 10. Desviación máxima de contenido de fibra en chirimoyas almacenadas a diferentes temperaturas

Temperatura	Días postcosecha	% Fibra	% Desviación Máxima
10	1	9.782	7 770/
10	19	2.011	7.77%
20	1	8.617	6.700/
20	12	1.830	6.79%
20	1	6.727	F 260/
30	6	1.469	5.26%

Tabla 11. Valores promedio de textura en las chirimoyas almacenadas a 10, 20 y 30°C; agrupadas por estado de madurez

Estado de	Textura (N)					
Madurez	10	20	30			
Verde	≥284.78	≥284.78	≥284.78			
Pinton	≥284.78	3.67 ± 0.29	16.68 ± 9			
Maduro	88.70 ± 22.18	3.30 ± 0.07	≤3.14			
Senescencia	29.10 ± 24.11	≤3.14	≤3.14			

Gráfico 3. Evolución de la textura de chirimoya variedad Cumbe almacenadas en diferentes temperaturas.

De los valores obtenidos en la medición de textura (Anexos 42, 43 y 44) se observan sus valores promedios y desviaciones estándar, en la tabla 9 que los clasifica en diferentes estados de madurez por cada condición de almacenamiento. Los cambios registrados se aprecian en el grafico 3.

Las unidades almacenadas a 10°C, iniciaron su vida postcosecha con una fuerza de penetración superior a 284.78 N y disminuyo drásticamente el 13vo día con 113.004 N, valor que fue disminuyendo diariamente hasta una fuerza mínima de 5.457 N. En el caso del almacenamiento a 20°C, tuvieron una fuerza de penetración superior a 284.78 N los 3 primeros días postcosecha y el 4to día experimentaron un ablandamiento extremo con 3.996 N, valor que continuó disminuyendo hasta el 9no día que llego a valores inferiores de 3.138 N. Las chirimoyas almacenadas a 30°C tuvieron una fuerza de penetración superior a 284.78 N solo el 1er día, ya que el 2do día postcosecha presentaron 23.048 N, valor que disminuyo rápidamente el 4to día con una fuerza menor a 3.138 N.

Los cambios mencionados son representados en la tabla 11, de la cual se aprecia la diferenciación de valores por cada estadio de madurez, de las unidades almacenadas en diferentes condiciones.

Tabla 12. Valores promedio de las coordenadas L*, a* y b* de las chirimoyas variedad cumbe almacenadas en diferentes temperaturas

		10°C			20°C			30°C	
	L*	a*	b*	L*	a*	b*	L*	a*	b*
Χ	55.330	-7.308	44.932	54.382	-12.312	46.047	73.148	-14.744	44.953
S	5.164	6.834	8.031	4.170	6.236	2.909	4.191	5.762	6.388

En la tabla 12 se muestran los promedios de los valores obtenidos del desarrollo de la metodología descrita en el punto 4.5.5.2. apartado g, del cual se obtuvieron las imágenes para la toma de color (Anexos 51 al 59).

De las coordenadas de color (Anexos 45, 46 y 47) se obtuvo que el valor de la coordenada L* más bajo es el de 10°C, es decir llegó a un grado de oscurecimiento superior a las demás condiciones de almacenamiento, esto puede deberse al daño por frio. La coordenada a*, que disminuyó diariamente presentó mayor diferencia entre los valores del 1er y ultimo día postcosecha cuando las unidades fueron almacenadas a 10°C con 18.707, respecto de 17.540 en 20°C y 16.029 en 30°C, es decir que a mayor intervalo presenta un cambio más notorio sobre la disminución de su color verde por madurez del fruto y la coordenada b* fue menor en el almacenamiento a 10°C con un valor de 29.495, lo que indica que bajo ésta condición la fruta pierde las tonalidades amarillas en su piel. Seguido de los valores 41.391 y 34.620 en almacenamiento a 20°C y 30°C respectivamente.

En la evaluación de color, bajo las 3 condiciones de almacenamiento se observó que la coordenada L* disminuye conforme aumenta la maduración de la fruta, lo que indica que la piel de la chirimoya tiene tendencia a oscurecerse, mientras que la coordenada a* presenta inicialmente valores negativos para convertirse en positivos conforme aumenta la maduración de la fruta, es decir presenta tendencia a disminuir su color verde por madurez del fruto y la coordenada b* posee valores que decrecen, conforme aumenta la maduración de la fruta, indicando la liberación de los tonos amarillos.

Para la evaluación de la tasa de respiración, se obtuvieron datos diarios de la producción de CO₂ en diferentes condiciones de almacenamiento (Anexos 48, 49 y 50). Cuando las unidades fueron almacenadas a 10°C se obtuvieron 2 picos de producción de CO₂, los días 6 y 9 con 25.4630 y 39.6158 mgCO₂/ kg. H, apreciables en el Grafico 4. Considerando la máxima producción de CO₂ para esta condición de almacenamiento a 39.6158 mgCO₂/ kg. H.

A 20°C, se generaron 2 picos de producción de CO₂, los días 2 y 5 con 45.6304 y 57.1180 mgCO₂/ kg. H, tal como se ve en el Grafico 5. Considerando la máxima producción de CO₂ para esta condición de almacenamiento a 57.1180 mgCO₂/ kg.H

Gráfico 4. Comportamiento de producción de CO₂ de chirimoya Cumbe almacenada a 10°C.

Gráfico 5. Comportamiento de producción de CO₂ de chirimoya Cumbe almacenada a 20 °C

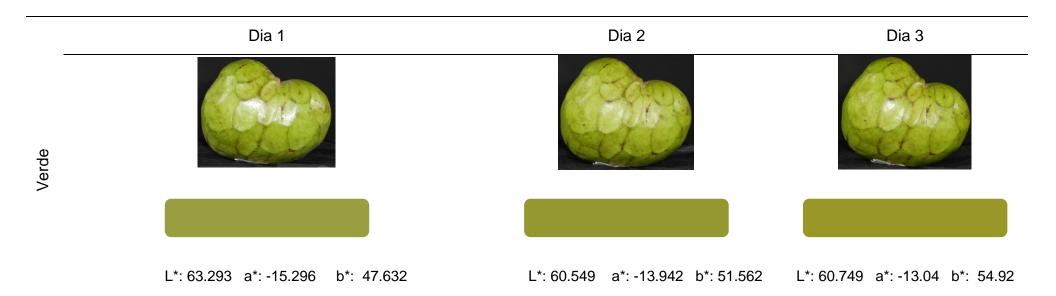


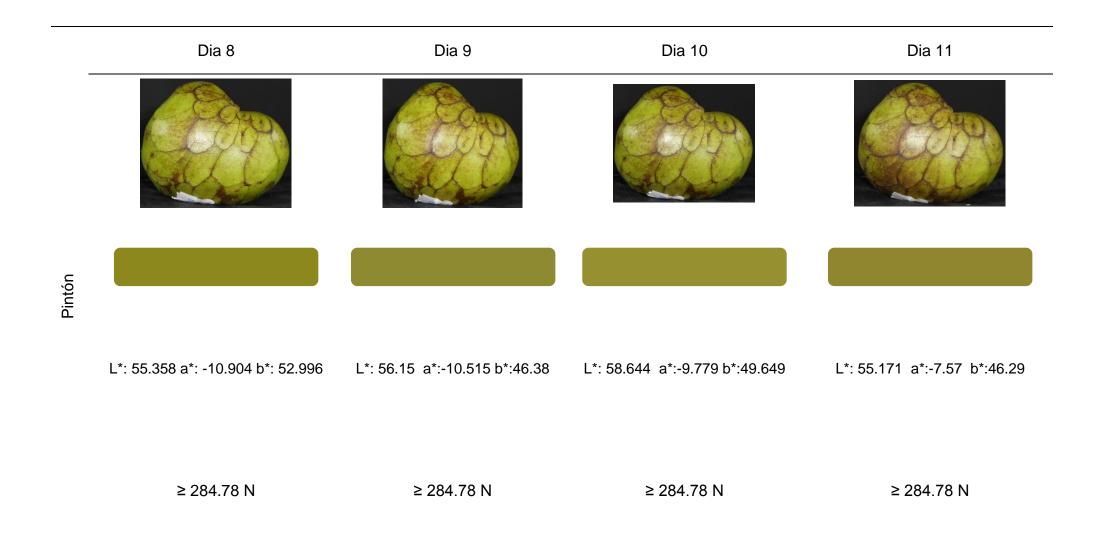
Gráfico 6. Comportamiento de producción de CO₂ de chirimoya Cumbe almacenada a 30 °C

Con el almacenamiento a 30°C, se obtuvieron 2 picos de producción de CO₂, los días 2 y 5 con 30.2957 y 27.9777 mgCO₂/ kg. H, como se aprecia en el Grafico 6; considerando la máxima producción de CO₂ para esta condición de almacenamiento a 30.2957 mgCO₂/ kg.H.

Aunque el comportamiento común de las 3 condiciones de almacenamiento, es presentar 2 puntos de máxima producción de CO₂, demostrando su carácter climatérico de 2 picos propio del género Annona. Es importante mencionar que la medición se detuvo un día antes de iniciar su proceso de descomposición.

Luego de conocer el comportamiento de la chirimoya variedad Cumbe en diferentes condiciones de almacenamiento se tomaron de referencia los parámetros: pH, % ácido málico, sólidos solubles (ºBrix), textura y color; para establecer el periodo o vida útil en almacenamiento, tal como se aprecia en la tabla 13.

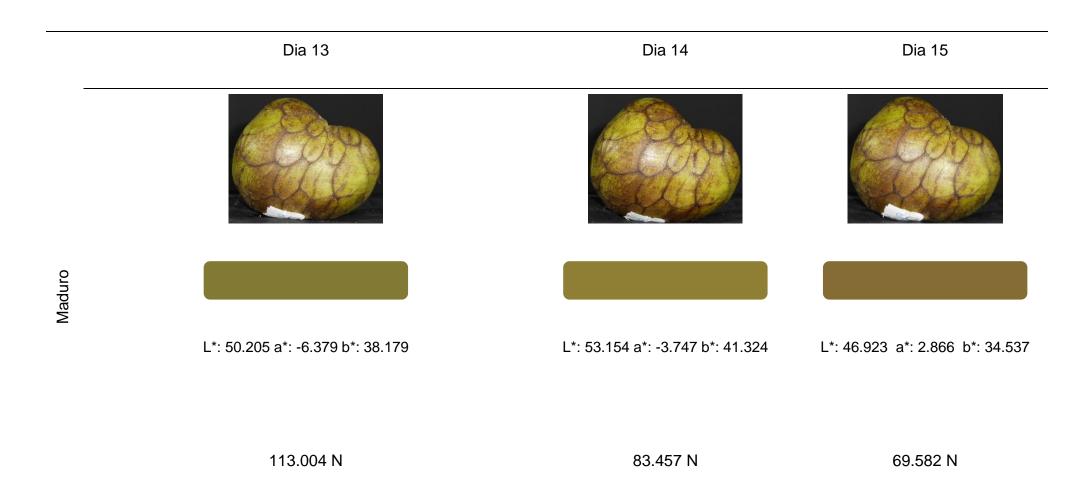

Tabla 13. Días postcosecha considerados por cada estado de madurez de acuerdo a la temperatura de almacenamiento.

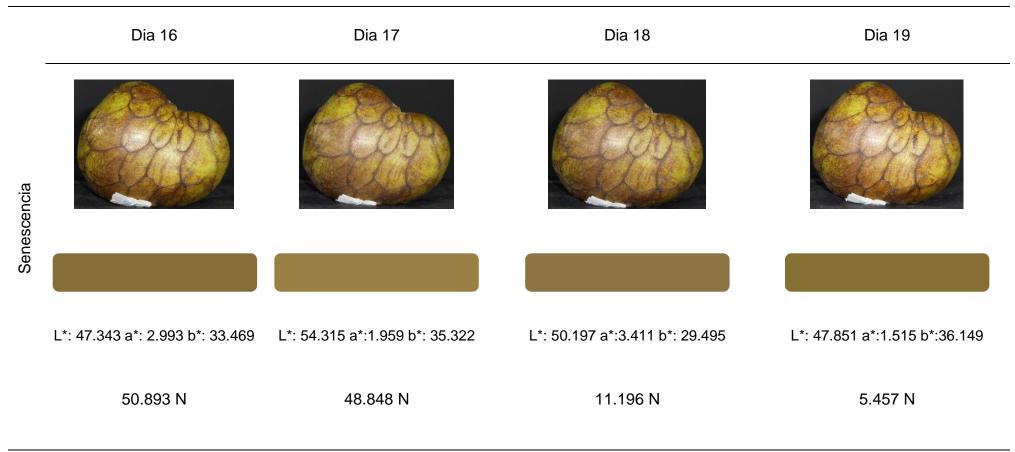

	VERDE	PINTON	MADURO	SENESCENCIA
10°C	1 - 3	4 - 12	13 - 15	16 - 19
20°C	1 - 3	4 - 6	7 - 8	9 - 12
30°C	1	2 - 3	4	5 - 6

5.3 De la obtención de una matriz de atributos físicos de la chirimoya (Annona cherimola Miller) variedad Cumbe por cada estado de madurez.

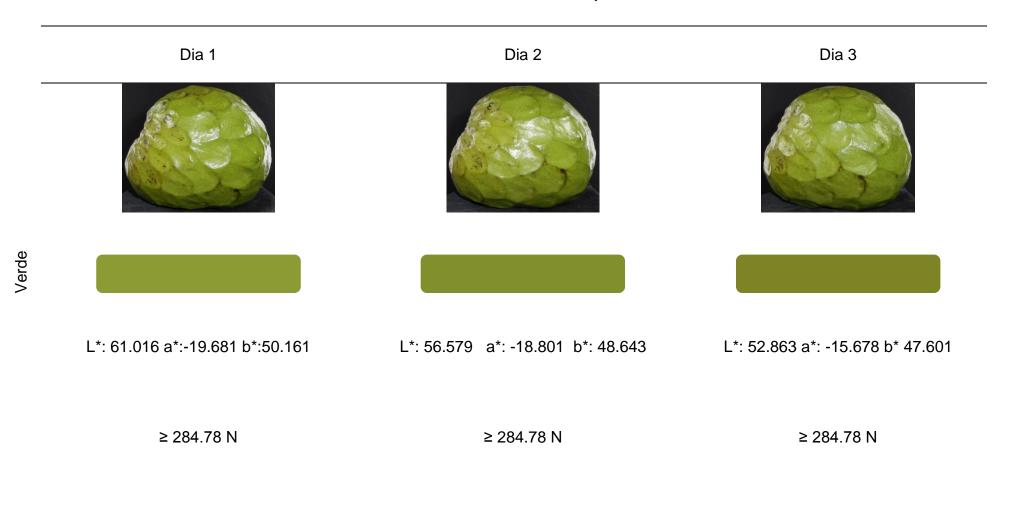
Se elaboraron 3 matrices de color y textura como patrón; 1 por cada temperatura de almacenamiento, especificando su estado de madurez.

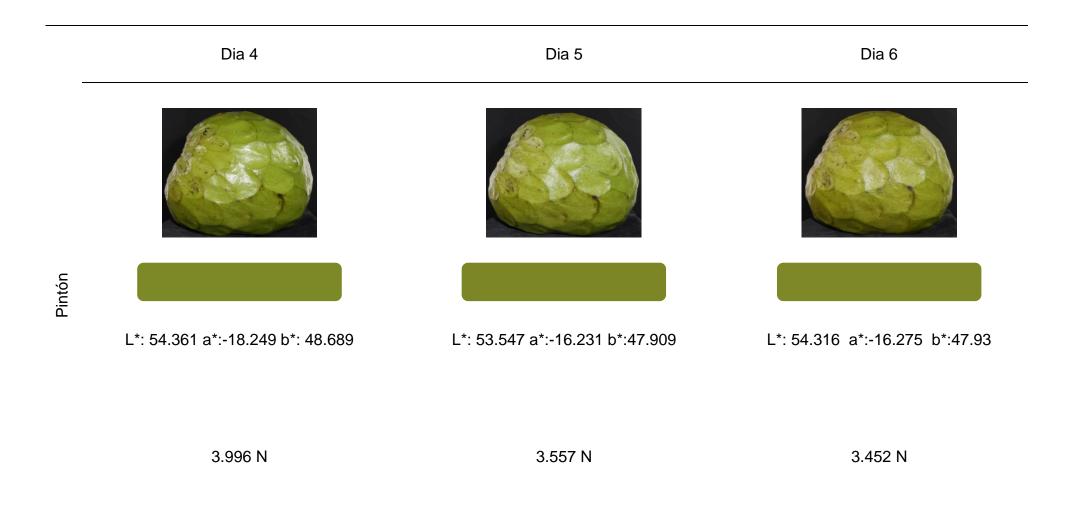
Tabla 14. Matriz de atributos físicos de chirimoya almacenada a 10°C




Pintón

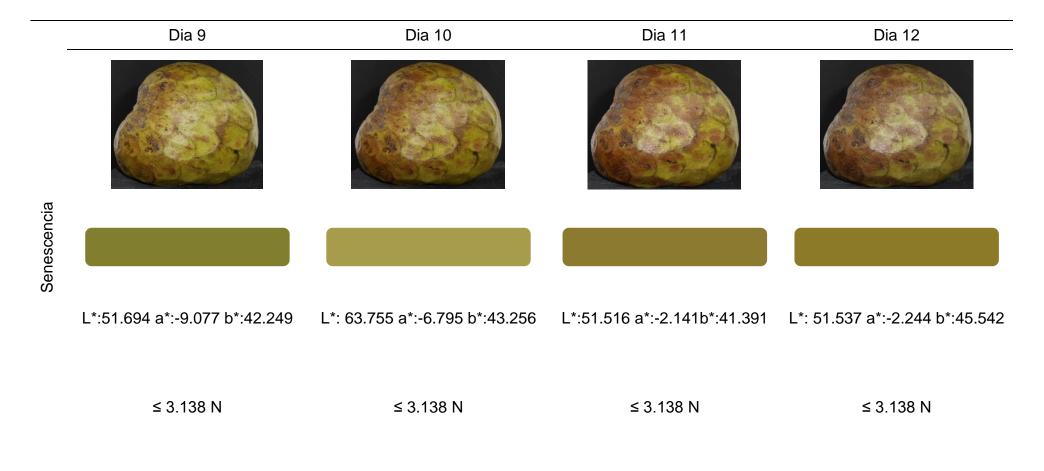
L*: 52.448 a*: -5.566 b*:47.638


≥ 284.78 N



Fuente: propia

Tabla 15. Matriz de atributos físicos de chirimoya almacenada a 20°C



L*: 51.379 a*: -13.001 b*: 46.126

3.243 N 3.347 N

L*: 50.025 a*:-9.566 b*:43.07

Fuente: propia

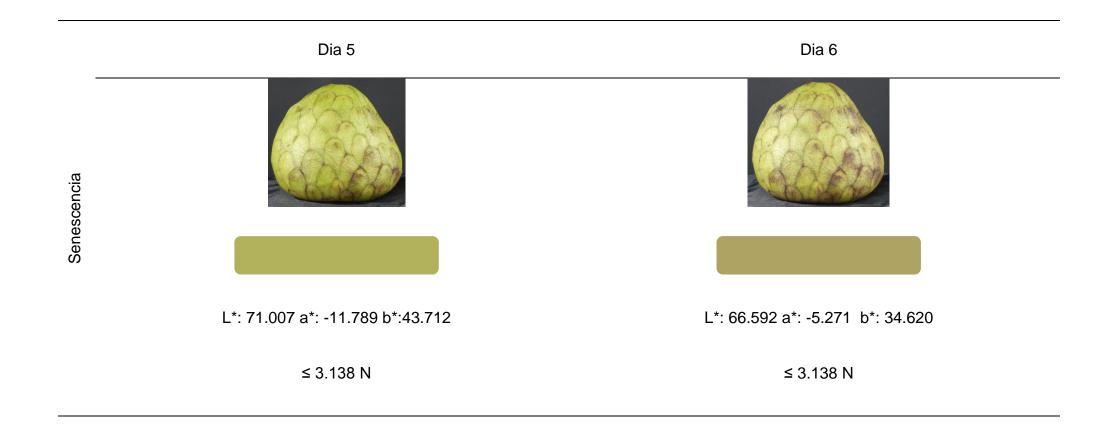
Tabla 16. Matriz de atributos físicos de chirimoya almacenada a 30°C

/erde

L*: 73.380 a*:-21.300 b*:52.002

≥ 284.78 N

23.048 N


10.314 N

Dia 4

L*: 79.256 a*: -14.359 b*:42.231

≤ 3.138 N

Fuente: propia

CAPITULO VI

DISCUSION DE RESULTADOS

- Las unidades de chirimoya Cumbe que fueron almacenadas a 10°C, el día 11 después de su cosecha presentan manchas en la pulpa, confirmando lo que afirmaron (Reginato & Lizana, 1980) que el almacenamiento en refrigeración tradicional a 10°C no puede ser utilizada en chirimoyas por su susceptibiilidad al daño por frío; el día 13 postcosecha presentaron una pérdida de firmeza con 113.004 N, el estudio de color registró el valor de la coordenada L* más bajo de 29.495, esto debido al daño por frio; la coordenada a* presenta mayor intervalo con 18.707, esto quiere decir que presento un cambio más notorio sobre la disminución de su color verde por madurez del fruto, como lo afirma (MERODIO & DE LA PLAZA, 1997). La chirimoya durante su maduración, experimenta una gradual perdida del color verde amarillento, dado por la clorofila, presente en su piel; el pH tuvo una reducción de 5.320 a 5.150; el contenido de grasa tuvo una reducción desde 0.645% hasta 0.233% y las cenizas presentaron su valor más bajo con 0.350%, junto con uno de los contenidos más altos de humedad con 77.029%.
- A 10°C los cambios fisiológicos continuaron el día 15 de almacenamiento donde la coordenada a* evidenció la pérdida del color verde por madurez del fruto, este mismo día la acidez titulable presentó un pico de 14.191% de ácido málico, corroborando esto con el incremento de los grados Brix a 22.567. En estas condiciones las unidades iniciaron su vida postcosecha con 9.782% y terminaron con 2.011% de fibra. Respecto al

contenido de carbohidratos las unidades tuvieron un contenido promedio de 23.588%, también se obtuvo el mayor contenido de proteínas con una media de 0.015%, similar a lo documentado por (Cordeiro y col., 2013), quienes reportaron el contenido de proteínas en chirimoyas variedad Madeira en un rango entre 0.009% y 0.017%, además presentaron un contenido promedio de grasa de 0.546%, el 1er día postcosecha presento 0.742%, el menor valor se registró el 5to día con 0.324% y tuvo 2 incrementos los días 6 y 10 con 0.583 % y 0.628 % respectivamente.

- Almacenando a 10°C, en la evaluación de producción de CO₂, Se evidencian 2 picos, los días 6 y 9 con 25.4630 y 39.6158 mgCO₂/ kg. H, considerando la máxima producción de CO₂ para esta condición de almacenamiento a 39.6158 mgCO₂/ kg. H.
- e En las unidades almacenadas a 20°C se apreciaron los menores valores de pH en el 6to y 10mo día con 4.710 Y 4.407 respectivamente concordantes con la medición de textura que fue superior a 284.78 N y disminuyo drásticamente el 4to día postcosecha a 3.99 N, a partir del 5to día fue disminuyendo hasta ser menor a 3.139 N comportamiento similar a lo documentado por (Cordeiro y col., 2013) ya que la fuerza de penetración empleada para medir la textura de la chirimoya variedad Madeira; fue superior a 63,6 N en los dos primeros días después de la cosecha de frutas y disminuyó drásticamente en el día 4 alcanzando un promedio de 2.7 N, ya en el día 5 la fruta era demasiado madura. Sincronizado con los valores más altos de los días postcosecha 4 y 8 con 21 y 26.867 º Brix respectivamente. Coincidentemente con el valor más

bajo de la coordenada L* de 29.495, el 8vo día postcosecha. Y el contenido de ácido málico con 3 elevaciones marcadas en los días 5, 9 y 12 de postcosecha; siendo el día 12 perteneciente a la senescencia.

- Las chirimoyas almacenadas 20°C tuvieron contenido de fibra al inicio de su vida postcosecha 8.617% y terminaron con 1.830% y su tasa de respiración tuvo 2 picos de producción de CO₂, los días 2 y 5 con 45.6304 y 57.1180 mgCO₂/ kg, considerando la máxima producción de CO₂ para esta condición de almacenamiento a 57.1180 mgCO₂/ kg. H.
- La tasa de respiración a 30°C, el comportamiento de la chirimoya muestra 2 picos de producción de CO₂, los días 2 y 5 con 30.2957 y 27.9777 mgCO₂/ kg. H, considerando la máxima producción de CO₂ para esta condición de almacenamiento a 30.2957 mgCO₂/ kg.H. Con esto confirman su especial carácter climatérico, que es representado por dos alzas bien marcadas que se encuentran altamente correlacionadas con otros procesos indicativos de madurez según Kosiyachinda & Young (1975)
- Los carbohidratos disminuyeron conforme avanzo su vida postcosecha iniciando con 26.276% y terminando con 23.406%.
- coincidiendo con el % de carbohidratos que tuvo 2 incrementos el 3er y 5to día postcosecha con 24.555% y 23.172%., además presentó el contenido más alto de grasa el 2do día con 0.835% y el más bajo el 4to día postcosecha con 0.706%, coincidentemente con la textura que tuvo una reducción de rigidez notoria el 2do día con 23.048 N y al 4to día la

chirimoya presentaba una textura menor a 3.138 N, Esta misma población presentó un decrecimiento de ph con 4.433 en el 3er día. Los valores hallados discrepan con lo reportado por (Guevara Pérez, 1990) que la chirimoya posee un ph máximo de 4.3 en su vida postcosecha; sin embargo, demuestran que la elevación de la temperatura de almacenamiento y el progreso de los días postcosecha, propician la reducción de pH en la fruta.

- El menor valor de fibra hallado fue 1.469%, menor que al 1.8% reportado por (Kawamata, 1977). A 30°C el contenido de ácido málico presenta 2 elevaciones de 19.093% y 14.737%, de los días 3 y 6 respectivamente.
 Siendo el 3er día postcosecha el de mayor concentración concordando con los valores del 6to día que presentó un incremento de 26.333 grados Brix.
- Se observó reducción del contenido de carbohidratos a lo largo de la vida postcosecha en las unidades almacenadas a 20 y 30°C de acuerdo a lo expresado por (Pech y col, 2008) los que afirman que durante la senescencia la síntesis de carbohidratos cesa y tiene lugar la degradación, además el contenido de carbohidratos hallado se encuentra en el rango de 21.685% hasta 25.491% coincidente con el 22% encontrado por (Kawamata, 1977)
- La variación de %humedad en las 3 condiciones de almacenamiento es mínima, sus valores oscilan en el rango de 71 a 79%; en concordancia con lo documentado por (Kawamata, 1977) que reporta 75.7% y (CORDEIRO, N. y col 2013) concluye que el contenido de humedad de

- chirimoyas almacenadas a 20 22°C durante la maduración postcosecha está en el rango de 73 a 83 %, lo que indica que las condiciones de almacenamiento no condicionan el contenido de humedad en el fruto
- Cada unidad de chirimoya pesó un aproximado de 220 g., de acuerdo a lo reportado por Farré Massip (1999), que afirmo que una chirimoya puede pesar entre 200 y 800 g.
- En cada fruto se encontró 8.807 ± 3.194 semillas, un rango mucho menor a lo encontrado en guanábana evaluada por (Márquez y col, 2012) de 129 semillas por unidad, con un rango de 58 a 250. Además, el peso promedio de las semillas hallado fue de 0.635 g. ± 0.129 g mucho menor que lo reportado por (Márquez y col, 2012) en la evaluación de guanábana con 0.87 g. ± 0.11 g.
- La población de chirimoyas empleada en el estudio presentó un rendimiento de pulpa de 87.938% ± 3.2 superior al rendimiento en guanábanas (Annona muricata L) 75% y 60% documentados por León Méndez y col (2016) y Márquez Cardozo y col (2012), respectivamente.
- La variación del contenido de cenizas en las 3 condiciones de almacenamiento es mínima, los valores oscilan en un rango de 0.272 a 0.786%, estos resultados son similares a los presentados en la guanábana cimarrona, evaluada por Arrazola, G. y col (2013), la cual no presento cambios significativos en el contenido de ceniza, con un contenido promedio de 0.72%

- Las 3 condiciones de almacenamiento muestran contenido de grasa en chirimoya Cumbe, superior a lo reportado por (Kawamata, 1977) con 0.1% de grasa.
- El contenido de proteínas, de la variedad Cumbe oscila entre 0.009% hasta 0.020%. Independientemente de sus condiciones de almacenamiento
- Los resultados de acidez titulable, concuerdan con lo mencionado por (GIL, 2001, mencionado por Pentzke V., 2006) que la concentración de ácidos disminuye durante la maduración de la mayoría de las frutas por ser usados como sustrato de respiración o estructura de otras sustancias sintetizadas.

CONCLUSIONES

- La temperatura de almacenamiento influye en el contenido de grasa, carbohidratos, color, textura, pH, acidez, solidos solubles (ºBrix) y producción de CO₂, de la chirimoya (*Annona cherimola Miller*) variedad Cumbe.
- Se lograron caracterizar las propiedades fisicoquímicas y químico proximales por temperatura y clasificar de acuerdo a su comportamiento en 4 estados de madurez.
- La temperatura óptima de almacenamiento fue 20°C debido a que en estas condiciones obtiene valores característicos de los criterios organolépticos.
- 4. La chirimoya (*Annona cherimola Miller*) variedad Cumbe, presenta comportamiento climatérico característico del género Annona, cumpliendo con los 2 picos de producción de CO₂. Registrando la mayor producción de CO₂ en la unidad almacenada a 20°C con 57.1180 mgCO₂/ kg. H.
- La madurez organoléptica de la chirimoya variedad Cumbe almacenada a 20°C se obtuvo al 7mo día postcosecha.
- Se elaboró 1 cartilla de parámetros físicos que incluyeron el color y la textura por cada temperatura de almacenamiento para distinguir los cambios del fruto.
- La cartilla de parámetros físicos de las unidades almacenadas a 20°C servirá como indicador postcosecha para los interesados.

RECOMENDACIONES

- Continuar con la evaluación de la chirimoya variedad Cumbe, con cubiertas de cera que reduzcan su producción de etileno.
- Almacenar la chirimoya variedad Cumbe en temperaturas entre 12 y 18°C, ya que por la evaluación realizada se conoce que a 10°C ya existe daño por frio.
- 3. Indagar acerca de posibles utilidades para la industria, ya que una de las causas de perdida es la poca industrialización.

REFERENCIAS BIBLIOGRÁFICAS

A.O.A.C. (1965) "Oficial Methods of Analysis" . Association of Official Analytical Chemists . Washington D.C. U.S.A.

A.O.A.C. (1980) "Oficial Methods of Analysis" . Association of Official Analytical Chemists . Washington D.C. U.S.A.

A.O.A.C. (1982) "Oficial Methods of Analysis" . Association of Official Analytical Chemists . Washington D.C. U.S.A.

A.O.A.C. (1998) "Oficial Methods of Analysis" . Association of Official Analytical Chemists . Washington D.C. U.S.A.

- Alique, R., & Oliveira, G. (1994). Changes in sugar and organic acids in cherimoya (Annona cherimola Miller) fruit under controlled atmosphere storage. *Journal of Agricultural and Food Chemistry*.
- Arias Velázquez, Ciro; Toledo Hevia, Julio; ORGANIZACIÓN DE LAS NACIONES UNIDAS PARA LA

 AGRICULTURA Y LA ALIMENTACIÓN (FAO). (2000, Enero). MANUAL DE MANEJO

 POSTCOSECHA DE FRUTAS TROPICALES. "Técnicas mejoradas de postcosecha,

 procesamiento y comercialización de frutas". Retrieved from

 www.fao.org/inpho/content/documents/vlibrary/ac304s/ac304s00.htm
- Arrazola Paternina, Guillermo S.; Barrera Violeth, José L.; Villalba Cadavid, Marcela
 I.; Universidad de los Llanos. (2013). Determinación física y bromatológica de la
 guanábana cimarrona (Annona glabra L.) del departamento de Córdoba. *ORINOQUIA,*17(2). Retrieved from https://dialnet.unirioja.es/servlet/articulo?codigo=5615249
- Azcón, J. (2008). Fundamentos de fisiología vegetal (Second ed.). Zaragoza, España: McGraw Hill.

- BADUI DERGAL, S. (2006). Química de los alimentos (4ta ed.). México: PEARSON EDUCACIÓN.
- Biale , J., & Barcus, D. (1970). Respiratory patterns in tropical fruits of the Amazon basin. .

 Tropical Science, 93 104.
- Bornelli de Castro, M. (2011). avaliação da qualidade fisiológica de sementes de milho por meio da atividade respiratória. Lavras: Universidad Federal de Lavras. Retrieved from http://repositorio.ufla.br/jspui/handle/1/3843
- Cordeiro, N., Sousa, L., Freitas, N., & Gouveia, M. (2013). Changes in the mesocarp of Annona cherimola Miller "Madeira" during postharvest ripening. *El sevier*, 179 184.
- De la Cruz Gonzáles, F. O. (2015). Temperaturas de almacenamiento en la vida poscosecha de chirimoya (Annona cherimola) ecotipo Cumbe. *UNALM*.
- De la Plaza, J. (1980). Controlled atmosphere storage of Cherimoya. *Proceedings of the International Congress on Refrigeration*, 3, 701.
- De Souza Dode, J., Meneghello, G. E., Munt de Moraes , D., & Teichert Peske, S. (2012). Teste de respiração para avaliar a qualidade fisiológica. *Revista Brasileira de Sementes, 34*(4), 686 691.
- DIARIO GESTION. (2014, Mayo 21). El 60 % de chirimoya puede utilizarse para hacer productos con valor agregado .
- E. Vargas , I. (1999). El cultivo del Chirimoyo, manejo tecnico y mercados . *Centro de Investigación y Promoción del Campesinado* .
- FAO, Corporación Colombiana de Investigación Agropecuaria. (n.d.). *Cosecha y manejo poscosecha*. Retrieved from http://www.fao.org/3/a-a1374s/a1374s07.pdf

- Farré Massip, J. (1999). Informe del viaje a Ecuador y Perú entre el 13 de marzo y el 2 de abril de 1999. Estación Experimental La Mayora , 12.
- Farré Massip, J., & Hermoso González, J. (1997). El chirimoyo en España. *Anonáceas, produçao e mercado.*, 84 87 .
- Franciosi Tijero, Rafael ; Fundacion para el Desarrollo del Agro . (1992). *El Cultivo del Chirimoyo en el Perú*. Lima, Perú.
- Fuster, C., & Prestamo, G. (1980). Variation of cherimoya (Annona cherimolia) texture during storage, as determined with an Instron food testing instrument. . *Journal Food Science* , 142 -145.
- Gardiazábal, J., & Rosemberg, M. (1993). "Cultivo del Chirimoyo". Universidad Católica de Chile- Facultad de Agronomía.
- González Vega, M. E. (2013). CHIRIMOYA (Annona cherimola Miller), FRUTA TROPICAL Y SUB TROPICAL DE VALORES PROMISORIOS. . *INCA*.
- Grossberger, D. (1999). The California cherimoya industry. Proceedings of the First International Symposium on Cherimoya. *Acta Horticulturae*, 131 142.
- Guevara Pérez, A. (1990). Obtención de Chirimoya (Annona cherimolia) en polvo por atomización. .
- Gutierrez , M., Pascual , L., Sola, M., Rodríguez García , M., & Vargas , A. (1992). SEM studies of cherimoya fruits during ripening. *Elctron Microscopy 3*.
- Hernandez, M., Martinez, O., & Fernandez Trujillo, J. (2007). *Behavior of arazá fruit quality* traits during growth, development and ripening. Scientia Horticulturae.

- Herrero, A., & Guardia, J. (1992). *Conservación de frutos. Manual Técnico.* Madrid: Editorial Mundi Prensa .
- Joslyn, M., & Ponting, J. (1951). Enzyme catalyzed oxidative browning of fruit products.

 *Advances in Food Research, 3, 1 37.
- Kader , A.A.; Arpaia, M.L. (1999, Febrero). *Cherimoya (Atemoya & Sweetsop):***Recommendations for Maintaining Postharvest Quality. Retrieved from UC DAVIS

 **POSTHARVEST TECHNOLOGY : http://postharvest.ucdavis.edu/PFfruits/Cherimoya/
- Kawamata, S. (1977). Bulletin studies on determining the sugar composition of fruits by gas liquid chratography. *Agricultural Experimental Station Tokio*, 10, 53 67.
- Kosiyachinda, S., & Young, R. (1975). Ethylene production in relation to the initiation of respiratory climateric in fruit. *Plant and Cell Physiology*, 595 601.
- Lahoz, J., Gutiérrez, M., Sola, M., Salto, R., Pascual , L., Martinez Cayuela, M., & Vargas, A. (1993). Ethylene in cherimoya fruit (Annona cherimola Mill.) under different storage conditions . *Journal Agriculture Food Chemistry* , 721 723 .
- León Méndez, Glicerio; Granados Conde, Clemente; Osorio Fortich, María del Rosario; Universidad de Cartagena. (2016, Abril). Caracterización de la pulpa de Annona Muricata L. cultivada en el Norte del Departamento de Bolivar Colombia. *Revista Cubana de Plantas Medicinales, 21*(4). Retrieved from http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962016000400012
- López Camelo , Andrés F.; FAO. (2003). MANUAL PARA LA PREPARACIÓN Y VENTA DE FRUTAS Y HORTALIZAS. *BOLETIN DE SERVICIOS AGRICOLAS DE LA FAO*.

- Loyola, N. (1988). *Identificación y caracterización morfológica de los desórdenes fisiológicos en chirimoyas (Annona cherimola Mill.) cv. Concha Lisa*. Universidad Católica de Valparaíso , Valparaíso.
- MÁRQUEZ CARDOZO, C., VILLACORTA LOZANO, V., YEPES BETANCUR, D., CIRO VELÁSQUEZ, H.,
 & CARTAGENA VALENZUELA, J. (2012). Physiological and Physico-Chemical
 Characterization of the Soursop Fruit (Annona muricata L. cv. Elita). Facultad Nacional
 de Agronomía, 65(1), 6477 6486.
- Martinez Cayuela, M., Sanchez Medina , L., Faus, M., & Gil, A. (1988). Cherimoya (Annona cherimola Mill.) polyphenoloxidase: monophenolase and dihydroxiphenolase activities. *Journal Food Science*, *53*(4), 1191 1194.
- Mathew, A., & Parpia, H. (1971). Food browning as a polyphenol reaction. *Adv. Food Nutr. Res*, 75 -145.
- MERODIO, C., & DE LA PLAZA , J. (1997). Postharvest physiology and storage of tropical and subtropical fruits. *CAB International* , 269-293.
- Ministerio de Agricultura, I. (1997). El Cultivo del Chirimoyo: aspectos de la producción, manejo en postcosecha y comercializacion. *Boletin Técnico CONAFRUT*.
- Miranda Edgar, Sierra Exportadora . (2015, Mayo 27). (G. RPP, Ed.) *Lima concentra casi el 40%*de la producción nacional de chirimoya. Retrieved from

 http://rpp.pe/economia/economia/lima-concentra-casi-el-40-de-la-produccionnacional-de-chirimoya-noticia-801544
- Morton, J. (1987). Fruits of warm climates. Winterville, USA: Creative Resource Systems.
- National Academy Press. (1989). Lost crops of the Incas, little known plants of the Andes with promise of worldwide cultivation. *Report of and advisory horticultural panel of the*

- committee on tecnology innovation board of science and technology for international development., 229 385.
- Padrón , C. (2010). Procesamiento digital de imágenes de frutos de semeruco (Malpighia glabra L.) durante el crecimiento y maduración. *Revista Científica Electrónica de Agronomía*, 17(2), 1-17.
- Pantastico, B. (1979). Fisiologia de la posrecolección, manejo y utilizacion de frutas y hortalizas tropicales y subtropicales. Mexico: CECSA.
- Parra Coronado, A., & Hernandez Hernandez, J. (2005). FISIOLOGIA POSTCOSECHA DE FRUTAS Y HORTALIZAS . Bogotá.
- Pech , J., Purgatto, E., Girardi, C., Rombaldi , C., & Latché, A. (2013). Current challenges in postharvest biology of fruit ripening. *Current Agriculture Science Technology*, 1-18.
- Pentzke V., M. (2006). Efecto del oxígeno ionizado y el triacilglicerol en la calidad de poscosecha de frutos de chirimoyo (Annona cherimola Mill.) cv. Concha lisa, provenientes de altas y bajas densidades de plantación, en almacenaje refrigerado.

 Tesis (Ing. Agrónomo). Quillota, Chile: Pontificia Universidad Cátolica de Valparaíso.

 Escuela de Agronomía.
- Popenoe, J. (1975). Status of Annona culture in South Florida. Annual Meeting. *Florida State*Horticulture Society, 87, 342 344.
- REDACCIÓN GESTION. (2016, Agosto 14). Pequeños productores buscan conquistar Hong Kong y Canadá con una fruta peruana. *GESTIÓN*. Retrieved from https://gestion.pe/economia/pequenos-productores-buscan-conquistar-hong-kong-canada-fruta-peruana-112364

- Reginato, M., & Lizana, M. (1980). Alteraciones detectadas en chirimoyas (Annona cherimolia Mill.) durante el almacenamiento. *Inv. Agricola, 6*(3), 97 101.
- Richardson , A., & Anderson , P. (1996). Hand pollination affects on the set and development of cherimoya (Annona cherimola) fruit in a humid clima. . *Scientia Horticulturae*, 273 281.
- Ronning, C., Schnell, R., & Gazit, S. (1995). Using randomly amplified polymorphic DNA (RAPD) markers to identify Annona cultivars. *Journal of the American Society for Horticultural Science*, 120(5), 726-729.
- Salisbury, F., & Ross, C. (1994). Fisiología vegetal. México D.F.: Grupo Editorial Iberoamerica.
- Sierra Exportadora. (2015, Mayo 27). Lima concentra casi el 40% de la produccion nacional de chirimoya. *RPP Noticias*. Retrieved from https://rpp.pe/economia/economia/lima-concentra-casi-el-40-de-la-produccion-nacional-de-chirimoya-noticia-801544
- Taiz, L., & Zeiger, E. (2010). Plant physiology. Massachusetts: Sinauer Associates.
- VÁSQUEZ SERNA, J., & ARANGO CHACÓN, C. (1986). El cultivo del maracuya (Passiflora edulis var. Flavicarpa Degener). Federación Nacional de Cafeteros de Colombia, 3-31.
- Velezmoro Sánchez, C. (1988). Conservación de pulpa de Chirimoya (Anona cherimilia). 143.

ANEXOS

ANEXO 1. Valores de análisis biométrico de chirimoyas almacenadas a 10°C

,			ESO (g)			% (CONTENIC	00	%	PROMED	10	DIMENSIO	ONES (CM)
DÍA POST COSECHA	ENTERA PESO (g)	PULPA	PIEL	SEM	# SEM.	PULPA	PIEL	SEM	PULPA	PIEL	SEM	ANCHO	ALTO
	252	238.00	6.00	8.00	10	94.444	2.381	3.175				10.500	5.500
1	277	259.00	10.00	8.00	8	93.502	3.610	2.888	94.072	3.039	2.889	10.000	7.500
	192	181.00	6.00	5.00	6	94.271	3.125	2.604				9.400	5.300
	229	218.70	6.10	4.20	5	95.502	2.664	1.834				11.500	5.000
2	296	281.40	9.90	4.70	6	95.068	3.345	1.588	95.346	2.868	1.787	11.400	5.400
	289	275.90	7.50	5.60	7	95.467	2.595	1.938				11.000	5.500
	245.9	229.30	10.90	5.70	7	93.249	4.433	2.318				9.200	5.100
3	268.6	252.90	10.70	5.00	6	94.155	3.984	1.862	93.694	4.332	1.973	10.300	5.300
	281.6	263.80	12.90	4.90	6	93.679	4.581	1.740				10.800	5.300
	194.3	175.70	12.60	6.00	7	90.427	6.485	3.088				8.400	6.300
4	204.3	191.00	5.90	7.40	10	93.490	2.888	3.622	91.482	4.802	3.716	7.900	6.300
	184.8	167.30	9.30	8.20	10	90.530	5.032	4.437				7.400	6.000
	249	230.00	8.00	11.00	12	92.369	3.213	4.418				9.800	6.900
5	266	239.40	21.00	5.60	7	90.000	7.895	2.105	88.850	7.348	3.802	9.500	6.400
	256	215.50	28.00	12.50	14	84.180	10.938	4.883				9.000	6.500

	159	147.40	7.60	4.00	5	92.704	4.780	2.516				7.600	6.000
6	189	176.70	9.00	3.30	4	93.492	4.762	1.746	92.973	4.734	2.293	8.300	6.700
	191	177.10	8.90	5.00	6	92.723	4.660	2.618				8.000	7.000
	382.8	355.90	19.60	7.30	12	92.973	5.120	1.907				10.000	8.500
7	319.4	284.40	23.30	11.70	14	89.042	7.295	3.663	91.438	5.828	2.734	9.600	7.000
	410.3	378.70	20.80	10.80	9	92.298	5.069	2.632				10.600	9.000
	243.1	226.80	12.70	3.60	4	93.295	5.224	1.481				8.900	6.500
8	276.6	256.70	15.10	4.80	5	92.805	5.459	1.735	91.874	5.526	2.600	8.300	8.400
	213.8	191.40	12.60	9.80	12	89.523	5.893	4.584				8.800	6.700
	305.1	286.80	12.40	5.90	7	94.002	4.064	1.934				9.000	7.400
9	303.9	279.30	17.10	7.50	9	91.905	5.627	2.468	91.966	5.564	2.470	8.200	7.000
	212.8	191.50	14.90	6.40	7	89.991	7.002	3.008				8.100	6.700
	216.7	202.20	9.10	5.40	7	93.309	4.199	2.492				8.400	7.500
10	246.1	220.40	20.60	5.10	7	89.557	8.371	2.072	90.989	6.709	2.302	9.000	6.500
	243.5	219.40	18.40	5.70	7	90.103	7.556	2.341				9.000	6.500
	359.3	323.20	23.10	13.00	18	89.953	6.429	3.618				11.100	7.400
11	349	308.80	25.90	14.30	15	88.481	7.421	4.097	90.235	6.400	3.365	10.700	6.700
	340.3	314.00	18.20	8.10	10	92.272	5.348	2.380				10.400	6.600
	336.6	310.20	18.00	8.40	11	92.157	5.348	2.496				8.900	6.000
12	264.2	240.90	16.40	6.90	8	91.181	6.207	2.612	90.826	6.408	2.766	9.100	7.500
	279	248.70	21.40	8.90	12	89.140	7.670	3.190				9.500	6.500
13	336.8	309.00	18.60	9.20	13	91.746	5.523	2.732	── 91.150 l	.150 6.353	2.496	10.600	5.400
13	340.2	308.00	22.00	10.20	13	90.535	6.467	2.998		0.333	2.490	9.800	6.500

	306.9	279.80	21.70	5.40	8	91.170	7.071	1.760				10.800	5.000
	344.8	321.20	19.40	4.20	5	93.155	5.626	1.218				11.200	6.800
14	428	375.70	39.10	13.20	14	87.780	9.136	3.084	88.478	8.669	2.853	11.700	6.800
	387.7	327.60	43.60	16.50	14	84.498	11.246	4.256				10.300	7.300
	281.1	254.70	20.20	6.20	8	90.608	7.186	2.206				9.300	6.400
15	258.3	215.20	33.80	9.30	11	83.314	13.086	3.600	84.363	12.301	3.336	9.400	7.000
	273.6	216.60	45.50	11.50	15	79.167	16.630	4.203				8.900	6.600
	312	278.10	24.00	9.90	14	89.135	7.692	3.173				9.000	9.000
16	303.3	272.50	18.70	12.10	14	89.845	6.166	3.989	90.142	6.737	3.121	10.100	6.200
	327.4	299.40	20.80	7.20	16	91.448	6.353	2.199				10.600	6.000
	425.1	381.00	32.90	11.20	14	89.626	7.739	2.635				11.300	9.500
17	473.6	413.40	43.30	16.90	18	87.289	9.143	3.568	88.188	8.831	2.981	11.100	9.600
	430.7	377.50	41.40	11.80	16	87.648	9.612	2.740				10.600	8.300
	430.6	382.70	36.10	11.80	14	88.876	8.384	2.740				11.400	9.000
18	361.4	329.10	23.00	9.30	12	91.063	6.364	2.573	86.908	10.221	2.871	9.400	9.500
	378.9	306.10	60.30	12.50	10	80.786	15.914	3.299				9.800	9.200
	248	222.60	17.30	8.10	11	89.758	6.976	3.266	87.137			8.800	6.600
19	288.9	252.50	26.70	9.70	10	87.400	9.242	3.358		9.216	3.646	8.400	7.400
	257.2	216.70	29.40	11.10	13	84.253	11.431	4.316				8.400	7.100

ANEXO 2. Valores de análisis biométrico de chirimoyas almacenadas a 20°C

DÍA POST	FRUTA	F	PESO (g)			% C	ONTENI	00	%	PROMEDI	0	DIMENSIONES (CM)	
COSECHA	ENTERA PESO (g)	PULPA	PIEL	SEM	# SEM	PULPA	PIEL	SEM	PULPA	PIEL	SEM	ANCHO	ALTO
	226	207.31	13.689	5.000	9.00	91.731	6.057	2.212		7.755		7.100	7.000
1	204.9	177.19	20.710	7.000	14.00	86.476	10.107	3.416	89.774		2.471	7.100	6.800
	201.7	183.78	14.319	3.600	7.00	91.116	7.099	1.785				8.300	5.200
	270.2	242.60	24.000	3.600	10.00	89.785	8.882	1.332				9.100	6.900
2	256.4	227.70	23.800	4.900	6.00	88.807	9.282	1.911	88.029	9.961	2.010	8.700	6.500
	262	224.00	30.700	7.300	13.00	85.496	11.718	2.786				9.100	6.250
	232.6	209.90	19.600	3.100	6.00	90.241	8.426	1.333		9.019		7.400	6.900
3	230.1	201.20	22.900	6.000	14.00	87.440	9.952	2.608	89.015		1.966	8.250	6.100
	224.7	200.80	19.500	4.400	7.00	89.364	8.678	1.958				9.150	6.700
	172.1	138.70	25.600	7.800	16.00	80.593	14.875	4.532				7.600	5.400
4	180.9	144.40	32.800	3.700	7.00	79.823	18.132	2.045	79.625	17.451	2.924	8.500	5.600
	177.8	139.50	34.400	3.900	7.00	78.459	19.348	2.193				7.600	5.800
	112.1	96.90	9.900	5.300	15.00	86.441	8.831	4.728				6.500	5.700
5	126.8	108.80	13.100	4.900	11.00	85.804	10.331	3.864	86.600	9.686	3.715	6.400	6.400
	160.7	140.70	15.900	4.100	7.00	87.554	9.894	2.551				7.700	5.700

	173.8	146.15	23.300	4.350	10.00	84.091	13.406	2.503				8.600	6.600
6	135.8	108.90	23.000	3.900	8.00	80.191	16.937	2.872	81.180	16.094	2.727	7.600	5.200
	153.3	121.50	27.500	4.300	9.00	79.256	17.939	2.805	1			7.800	5.700
	192.8	152.40	33.800	6.600	13.00	79.046	17.531	3.423				8.700	5.500
7	218.1	176.00	37.700	4.400	8.00	80.697	17.286	2.017	80.233	17.074	2.693	8.900	5.000
	223.7	181.10	36.700	5.900	9.00	80.957	16.406	2.637				8.800	6.000
	178.2	161.90	13.600	2.700	5.00	90.853	7.632	1.515				7.400	6.000
8	198.9	179.80	14.000	5.100	9.00	90.397	7.039	2.564	89.583	8.459	1.958	8.200	6.500
	161.6	141.40	17.300	2.900	5.00	87.500	10.705	1.795				7.500	5.700
	189.6	169.30	15.000	5.300	11.00	89.293	7.911	2.795				9.000	4.800
9	165.9	147.30	15.500	3.100	7.00	88.788	9.343	1.869	89.125	8.662	2.213	8.800	4.000
	192.4	171.80	16.800	3.800	6.00	89.293	8.732	1.975				5.600	6.400
	123.3	96.10	24.500	2.700	4.00	77.940	19.870	2.190				7.300	5.000
10	134.1	101.00	30.900	2.200	4.00	75.317	23.043	1.641	78.398	19.559	2.043	8.300	5.300
	121.8	99.80	19.200	2.800	7.00	81.938	15.764	2.299				7.300	5.300
	165.5	128.60	33.600	3.300	6.00	77.704	20.302	1.994				8.200	4.700
11	137.6	105.50	28.200	3.900	10.00	76.672	20.494	2.834	77.313	20.188	2.499	7.300	4.900
	146.2	113.40	28.900	3.900	8.00	77.565	19.767	2.668				7.100	4.700
10	167.7	132.70	31.600	3.400	5.00	79.129	18.843	2.027	79.535	18.433	2 022	8.000	5.500
12	164.7	129.60	31.700	3.400	5.00	78.689	19.247	2.064			2.032	9.000	5.900

ANEXO 3. Valores de análisis biométrico de chirimoyas almacenadas a 30°C

	FRUTA	P	ESO (g)			% C	ONTENIC	00	%	PROMEDIC)	DIMENSIONES (CM)	
DÍA POST COSECHA	ENTERA PESO (g)	PULPA	PIEL	SEM	# SEM	PULPA	PIEL	SEM	PULPA	PIEL	SEM	ANCHO	ALTO
	182.800	167.80	12.20	2.80	7	91.794	6.674	1.532				7.900	6.600
1	189.800	172.30	13.80	3.70	5	90.780	7.271	1.949	90.711	7.638	1.651	8.100	6.400
	142.700	127.80	12.80	2.10	4	89.559	8.970	1.472				7.400	6.500
	180.000	165.10	11.10	3.80	6	91.722	6.167	2.111				7.000	5.500
2	149.300	135.80	10.40	3.10	7	90.958	6.966	2.076	90.647	7.263	2.089	7.400	5.400
	149.000	133.00	12.90	3.10	8	89.262	8.658	2.081				7.600	5.200
	210.000	190.90	14.70	4.40	8	90.905	7.000	2.095		7.609		9.000	6.000
3	192.000	172.10	16.90	3.00	6	89.635	8.802	1.563	90.288		2.104	8.000	6.100
	192.200	173.60	13.50	5.10	12	90.323	7.024	2.653				7.400	6.000
	189.500	169.60	12.30	7.60	10	89.499	6.491	4.011				7.200	7.700
4	250.100	220.50	18.00	11.60	13	88.165	7.197	4.638	89.623	6.830	3.547	7.000	7.200
	205.800	187.70	14.00	4.10	6	91.205	6.803	1.992				7.500	6.500
	185.700	163.00	18.10	4.60	9	87.776	9.747	2.477				8.400	5.400
5	182.200	161.60	19.00	1.60	8	88.694	10.428	0.878	88.329	10.050	1.620	8.000	5.500
	212.500	188.10	21.20	3.20	6	88.518	9.976	1.506				9.000	5.000
6	159.700	138.30	15.90	5.50	11	86.600	9.956	3.444	85.895	95 11.335	2.769	7.400	5.000
U	178.200	157.20	18.40	2.60	6	88.215	10.325	1.459		11.333	2.709	7.500	5.400

	190.900	158.20	26.20	6.50	12	82.871	13.724	3 405		8.000	4.800
	100.000	100.20	20.20	0.00	14	02.07	10.721	5.705		0.000	1.000

ANEXO 4. Contenido de proteínas de chirimoyas almacenadas a 10°C

DÍA POSTCOSECHA	%PROT. 1	%PROT. 2	%PROT.3	% PROMEDIO
1	0.017	0.017	0.016	0.017
2	0.018	0.017	0.016	0.017
3	0.017	0.017	0.017	0.017
4	0.017	0.017	0.016	0.017
5	0.017	0.017	0.017	0.017
6	0.018	0.018	0.017	0.018
7	0.016	0.016	0.016	0.016
8	0.008	0.017	0.017	0.014
9	0.017	0.016	0.017	0.017
10	0.009	0.026	0.009	0.015
11	0.017	0.017	0.017	0.017
12	0.009	0.009	0.009	0.009
13	0.017	0.008	0.008	0.011
14	0.008	0.008	0.017	0.011
15	0.009	0.008	0.017	0.012
16	0.008	0.009	0.024	0.014
17	0.008	0.008	0.017	0.011
18	0.017	0.017	0.016	0.017
19	0.016	0.008	0.016	0.013

ANEXO 5. Contenido de proteína de chirimoyas almacenadas a 20°C.

DÍA POSTCOSECHA	% PROT. 1	% PROT. 2	%PROT. 3	% PROMEDIO
1	0.017	0.008	0.017	0.014
2	0.026	0.009	0.009	0.015
3	0.017	0.009	0.017	0.014
4	0.008	0.009	0.008	0.009
5	0.009	0.017	0.017	0.014
6	0.009	0.026	0.009	0.014
7	0.009	0.017	0.017	0.014
8	0.017	0.017	0.017	0.017
9	0.026	0.009	0.026	0.020
10	0.017	0.017	0.017	0.017
11	0.009	0.026	0.009	0.015
12	0.017	0.017	0.009	0.014

ANEXO 6. Contenido de proteína de chirimoyas almacenadas a 30°C.

DÍA POSTCOSECHA	% PROT.1	% PROT.2	% PROT.3	% PROMEDIO
1	0.017	0.009	0.017	0.014
2	0.008	0.009	0.009	0.009
3	0.017	0.017	0.017	0.017
4	0.009	0.008	0.008	0.008
5	0.008	0.017	0.017	0.014
6	0.017	0.008	0.009	0.011

ANEXO 7. Análisis de varianza para contenido de proteínas

	GL	SC	CM	F	Р
Temperatura	2	0.000013	0.000006	9.50	0.014
Error	6	0.000004	0.000001		
Total	8	0.000017			

ANEXO 8. Prueba tukey para contenido de proteínas

Dif. de temp.	Dif. de medías	Error estand. dif medías	95% CI	Т	Р
20 - 10	0.000215	0.00066	(-0.00183, 0.002260)	0.32	0.945
30 - 10	-0.002401	0.00066	(-0.00444,-0.000356)	-3.60	0.026
30 - 20	-0.002616	0.00066	(-0.00466,-0.000571)	-3.93	0.018

ANEXO 9. Contenido de grasa de chirimoyas almacenadas a 10°C.

DÍA POSTCOSECHA	% GRASA 1	% GRASA 2	% GRASA 3	% PROMEDIO
1	0.490	0.540	0.540	0.523
2	0.339	0.448	0.473	0.420
3	0.625	0.504	0.606	0.578
4	0.398	0.404	0.419	0.407
5	0.452	0.468	0.550	0.490
6	0.425	0.545	0.467	0.479
7	0.350	0.340	0.353	0.348

8	0.460	0.449	0.425	0.444
9	0.393	0.452	0.565	0.470
10	0.520	0.544	0.635	0.566
11	0.687	0.628	0.650	0.655
12	0.678	0.600	0.657	0.645
13	0.215	0.251	0.233	0.233
14	0.265	0.296	0.281	0.281
15	0.245	0.181	0.214	0.213
16	0.182	0.199	0.214	0.198
17	0.265	0.297	0.316	0.293
18	0.569	0.622	0.508	0.566
19	0.413	0.337	0.457	0.402

ANEXO 10. Contenido de grasa de chirimoyas almacenadas a 20°C.

DÍA POSTCOSECHA	%GRASA 1	%GRASA 2	%GRASA 3	% PROMEDIO
1	0.737	0.739	0.751	0.742
2	0.607	0.626	0.561	0.598
3	0.615	0.511	0.543	0.556
4	0.481	0.473	0.465	0.473
5	0.331	0.319	0.322	0.324
6	0.457	0.664	0.628	0.583
7	0.491	0.530	0.480	0.501
8	0.452	0.424	0.537	0.471
9	0.579	0.604	0.556	0.579
10	0.593	0.612	0.679	0.628
11	0.517	0.508	0.482	0.502
12	0.609	0.582	0.594	0.595

ANEXO 11. Contenido de grasa de chirimoyas almacenadas a 30°C.

DÍA POSTCOSECHA	%GRASA 1	%GRASA 2	%GRASA 3	% PROMEDIO
1	0.976	0.740	0.737	0.817
2	0.963	0.839	0.703	0.835
3	0.765	0.758	0.752	0.758
4	0.710	0.687	0.721	0.706
5	0.735	0.849	0.702	0.762
6	0.746	0.741	0.759	0.749

ANEXO 12. Análisis de varianza para contenido de grasa

	GL	SC	СМ	F	Р
Temperatura	2	0.173315	0.086658	157.85	0.000
Error	6	0.003294	0.000549		
Total	8	0.176609			

ANEXO 13. Prueba tukey para contenido de grasa

Dif. de temp.	Dif. de medías	Error estand. dif medías	95% CI	Т	Р
20 - 10	0.1062	0.0191	(0.0475, 0.1649)	5.55	0.003
30 - 10	0.3327	0.0191	(0.2740, 0.3915)	17.39	0.000
30 - 20	0.2265	0.0191	(0.1678, 0.2852)	11.84	0.000

ANEXO 14. Contenido de humedad de chirimoyas almacenadas a 10°C.

DÍA POSTCOSECHA	%HUM. 1	%HUM. 2	%HUM. 3	% PROMEDIO
1	77.956	76.380	76.727	77.021
2	75.899	75.186	75.159	75.415
3	73.581	74.230	73.560	73.790
4	76.324	76.613	75.571	76.169
5	79.022	77.951	78.267	78.413
6	75.581	71.207	70.377	72.388
7	73.938	71.990	75.446	73.791
8	77.214	76.702	76.440	76.785
9	75.132	73.186	71.209	73.176
10	76.014	71.092	72.052	73.053
11	74.828	70.659	72.816	72.768
12	78.030	77.041	76.109	77.060
13	75.132	75.701	80.255	77.029
14	73.311	76.002	73.150	74.154
15	75.627	77.290	75.365	76.094
16	74.802	75.630	73.136	74.523
17	77.822	75.170	75.381	76.124
18	75.919	78.927	77.616	77.487
19	77.228	76.932	76.381	76.847

ANEXO 15. Contenido de humedad de chirimoyas almacenadas a 20°C.

DÍA POSTCOSECHA	%HUM. 1	%HUM. 2	%HUM. 3	% PROMEDIO
1	66.4120	69.1490	67.1349	67.5653
2	72.9227	73.2535	74.9162	73.6975
3	73.4032	75.3919	73.8031	74.1994
4	73.6810	72.0630	75.8750	73.8730
5	73.7427	77.3490	75.2120	75.4346
6	72.2730	79.4360	74.0360	75.2483
7	73.9700	75.5178	77.6400	75.7093
8	76.4342	76.6206	75.1691	76.0746
9	76.5250	75.0419	79.2967	76.9545
10	79.3300	75.3900	75.4600	76.7267
11	73.9700	81.0700	76.3100	77.1167
12	77.4600	72.4200	76.0720	75.3173

ANEXO 16. Contenido de humedad de chirimoyas almacenadas a 30°C.

DÍA POSTCOSECHA	% HUM. 1	% HUM. 2	% HUM. 3	% PROMEDIO
1	73.824	74.423	70.550	72.932
2	75.199	75.096	76.572	75.622
3	74.565	76.077	71.627	74.090
4	79.780	67.594	80.238	75.871
5	74.516	75.498	76.365	75.460
6	77.240	76.380	77.636	77.085

ANEXO 17. Análisis de varianza para contenido de humedad

	GL	SC	СМ	F	Р
Temperatura	2	0.3547	0.1774	0.30	0.754
Error	6	3.5869	0.5978		
Total	8	3.9416			

ANEXO 18. Contenido de ceniza de chirimoyas almacenadas a 10°C.

	I	I		
DÍA POSTCOSECHA	% CENIZAS 1	% CENIZAS 2	% CENIZAS 3	% PROMEDIO
1	0.795	0.780	0.765	0.780
2	0.529	0.632	0.632	0.598
3	0.338	0.445	0.418	0.400
4	0.401	0.524	0.486	0.471
5	0.544	0.601	0.526	0.557
6	0.632	0.650	0.601	0.627
7	0.698	0.796	0.761	0.752
8	0.614	0.658	0.697	0.656
9	0.508	0.453	0.538	0.500
10	0.564	0.626	0.596	0.595
11	0.574	0.577	0.520	0.557
12	0.523	0.426	0.668	0.539
13	0.352	0.375	0.321	0.350
14	0.651	0.546	0.477	0.558

15	0.848	0.963	0.816	0.876
16	0.839	0.735	0.821	0.798
17	0.540	0.600	0.630	0.590
18	0.549	0.598	0.560	0.569
19	0.527	0.458	0.478	0.488

ANEXO 19. Contenido de ceniza de chirimoyas almacenadas a 20°C

DÍA POSTCOSECHA	% CENIZAS 1	% CENIZAS 2	% CENIZAS 3	% PROMEDIO
1	0.567	0.819	0.372	0.586
2	0.936	0.659	0.952	0.849
3	0.372	0.475	0.161	0.336
4	0.121	0.158	0.253	0.177
5	0.925	0.850	0.696	0.824
6	0.496	0.458	0.359	0.438
7	0.453	0.390	0.347	0.397
8	0.474	0.604	0.569	0.549
9	0.701	0.893	0.649	0.748
10	0.523	0.509	0.613	0.548
11	0.535	0.736	0.639	0.637
12	0.706	0.598	0.699	0.668

ANEXO 20. Contenido de ceniza de chirimoyas almacenadas a 30ºC

DÍA POSTCOSECHA	% CENIZAS 1	% CENIZAS 2	% CENIZAS 3	% PROMEDIO
1	0.321	0.156	0.230	0.236
2	0.499	0.447	0.356	0.434
3	0.630	0.510	0.558	0.566
4	0.710	0.861	0.159	0.577
5	0.445	0.300	0.654	0.466
6	0.441	0.581	0.496	0.506

ANEXO 21. Análisis de varianza para contenido de cenizas

	GL	SC	СМ	F	Р
Temperatura	2	0.010625	0.005313	4.58	0.062
Error	6	0.006953	0.001159		
Total	8	0.017578			

ANEXO 22. Contenido de carbohidratos de chirimoyas almacenadas a 10°C

DÍA POSTCOSECHA	% CARB. 1	% CARB. 2	% CARB.3	% PROMEDIO
1	21.441	21.823	21.712	21.659
2	23.717	23.243	23.694	23.551
3	25.123	25.402	25.116	25.214
4	22.359	22.915	23.533	22.936

5	20.453	21.035	20.082	20.523
6	25.409	27.421	26.635	26.488
7	24.346	24.874	26.059	25.093
8	20.900	21.864	23.540	22.101
9	25.319	25.815	26.379	25.838
10	25.116	25.570	26.628	25.771
11	25.849	24.953	27.203	26.002
12	21.301	22.647	21.294	21.747
13	21.809	22.825	22.499	22.378
14	25.131	25.529	24.331	24.997
15	23.034	22.812	22.573	22.806
16	24.404	23.987	25.009	24.467
17	22.897	22.564	23.487	22.983
18	22.092	21.203	20.788	21.361
19	23.288	21.711	21.748	22.249

ANEXO 23. Contenido de carbohidratos de chirimoyas almacenadas a 20°C

DÍA POSTCOSECHA	% CARB.1	% CARB.2	% CARB.3	% PROMEDIO
1	25.696	26.873	26.260	26.276
2	23.992	25.105	24.416	24.504
3	23.122	24.013	23.283	23.473
4	23.110	24.526	24.684	24.107

5	24.262	23.409	23.207	23.626
6	24.489	23.083	23.460	23.677
7	23.880	25.009	24.482	24.457
8	22.650	23.667	22.589	22.969
9	21.489	22.712	20.895	21.699
10	22.158	21.650	22.432	22.080
11	22.260	21.300	21.630	21.730
12	23.076	24.007	23.135	23.406

ANEXO 24. Contenido de carbohidratos de chirimoyas almacenadas a 30°C

DÍA POSTCOSECHA	% CARB. 1	% CARB. 2	% CARB. 3	% PROMEDIO
1	22.472	23.240	22.923	22.878
2	23.178	22.960	23.070	23.069
3	24.708	23.911	25.047	24.555
4	22.593	23.094	22.085	22.591
5	22.640	23.761	23.116	23.172
6	21.803	22.102	22.113	22.006

ANEXO 25. Análisis de varianza para contenido de carbohidratos

	GL	SC	СМ	F	Р
Temperatura	2	0.5086	0.25431	6.05	0.036
Error	6	0.2523	0.04206		
Total	8	0.7610			

ANEXO 26. Prueba tukey para contenido de carbohidratos

Dif. de temp.	Dif. de medías	Error estand. dif medías	95% CI	Т	Р
20 – 10	-0.087	0.167	(-0.601, 0.427)	-0.52	0.864
30 – 10	-0.542	0.167	(-1.056, -0.028)	-3.24	0.041
30 – 20	-0.455	0.167	(-0.969, 0.059)	-2.72	0.078

ANEXO 27. Valores de pH de chirimoyas almacenadas a 10°C

DÍA POSTCOSECHA	PH 1	PH 2	PH 3	PROMEDIO
1	5.59	5.57	5.56	5.57
2	5.36	5.35	5.36	5.36
3	5.71	5.73	5.72	5.72
4	5.29	5.27	5.27	5.28
5	5.39	5.38	5.37	5.38
6	5.65	5.63	5.62	5.63
7	5.18	5.17	5.16	5.17
8	5.05	5.07	5.06	5.06
9	5.29	5.32	5.30	5.30
10	5.34	5.33	5.32	5.33
11	5.34	5.33	5.33	5.33
12	5.30	5.34	5.32	5.32
13	5.14	5.16	5.15	5.15
14	5.36	5.35	5.34	5.35
15	5.44	5.43	5.42	5.43

16	5.23	5.22	5.24	5.23
17	5.27	5.26	5.25	5.26
18	5.46	5.47	5.45	5.46
19	5.16	5.14	5.15	5.15

ANEXO 28. Valores de pH de chirimoyas almacenadas a 20°C

DÍA POSTCOSECHA	PH 1	PH 2	PH 3	PROMEDIO
1	5.910	5.900	5.910	5.907
2	5.490	5.460	5.470	5.473
3	5.250	5.260	5.240	5.250
4	5.190	5.190	5.200	5.193
5	4.920	4.930	4.920	4.923
6	4.720	4.710	4.700	4.710
7	4.780	4.760	4.770	4.770
8	4.550	4.540	4.540	4.543
9	4.490	4.490	4.480	4.487
10	4.430	4.400	4.390	4.407
11	4.490	4.500	4.510	4.500
12	4.520	4.520	4.520	4.520

ANEXO 29. Valores de pH de chirimoyas almacenadas a 30°C

DÍA POSTCOSECHA	PH 1	PH 2	PH 3	PROMEDIO
1	5.120	5.110	5.100	5.110
2	4.700	4.610	4.620	4.643
3	4.440	4.430	4.430	4.433

4	4.570	4.580	4.560	4.570
5	4.750	4.750	4.760	4.753
6	4.530	4.550	4.540	4.540

ANEXO 30 Análisis de varianza para contenido de pH

	GL	SC	СМ	F	Р
Temperatura	2	0.763395	0.381697	377.96	0.000
Error	6	0.006059	0.001010		
Total	8	0.769454			

ANEXO 31. Prueba tukey para contenido de pH

Dif. de temp.	Dif. de medías	Error estand. dif medías	95% CI	Т	Р
20 - 10	-0.4813	0.0259	(-0.5610, -0.4017)	-18.55	0.000
30 - 10	-0.6967	0.0259	(-0.7763, -0.6170)	-26.85	0.000
30 - 20	-0.2153	0.0259	(-0.2950, -0.1357)	-8.30	0.000

ANEXO 32. Contenido de ácido málico de chirimoyas almacenadas a 10ºC

DÍA POSTCOSECHA	% AC. MALICO 1	% AC. MALICO 2	% AC. MALICO 3	% PROMEDIO
1	14.737	14.737	13.100	14.191
2	6.550	6.550	6.550	6.550
3	13.100	13.100	11.462	12.554

4	14.737	13.100	11.462	13.100
5	16.375	18.012	18.012	17.466
6	9.825	9.825	8.187	9.279
7	8.187	6.550	4.912	6.550
8	13.100	11.462	9.825	11.462
9	6.550	6.550	4.912	6.004
10	9.825	8.187	8.187	8.733
11	9.825	8.187	8.187	8.733
12	9.825	9.006	10.643	9.825
13	4.912	6.550	6.550	6.004
14	8.187	9.825	11.462	9.825
15	16.375	11.462	14.737	14.191
16	6.550	9.825	9.825	8.733
17	8.187	6.550	6.550	7.096
18	4.912	6.550	8.187	6.550
19	6.550	4.912	5.731	5.731

ANEXO 33. Contenido de ácido málico de chirimoyas almacenadas a 20ºC

DÍA POSTCOSECHA	% AC. MALICO 1	% AC. MALICO 2	% AC. MALICO 3	% PROMEDIO
1	6.551	6.549	6.550	6.550
2	5.454	5.452	5.453	5.453
3	9.497	9.498	9.497	9.497
4	9.498	9.497	9.497	9.497

5	23.416	23.416	23.416	23.416
6	24.564	24.562	24.561	24.562
7	22.923	22.924	22.925	22.924
8	19.650	19.649	19.648	19.649
9	28.328	28.329	28.327	28.328
10	21.776	21.781	21.777	21.778
11	36.515	36.514	36.516	36.515
12	42.574	42.576	42.575	42.575

ANEXO 34. Contenido de ácido málico de chirimoyas almacenadas a 30ºC

DÍA POSTCOSECHA	% AC. MALICO 1	% AC. MALICO 2	% AC. MALICO 3	% PROMEDIO
1	12.832	12.821	12.810	12.821
2	11.460	11.462	11.464	11.462
3	19.094	19.095	19.090	19.093
4	12.544	12.542	12.543	12.543
5	14.198	14.197	14.196	14.197
6	14.737	14.736	14.738	14.737

ANEXO 35. Análisis de varianza para contenido de ácido málico

	GL	SC	СМ	F	Р
Temperatura	2	197.534	98.7669	3252.24	0.000
Error	6	0.182	0.0304		
Total	8	197.716			

ANEXO 36. Prueba tukey para contenido de ácido málico

Dif. de temp.	Dif. de medías	Error estand. dif medías	95% CI	Т	Р
20 - 10	11.412	0.142	(10.975, 11.848)	80.20	0.000
30 - 10	4.658	0.142	(4.222, 5.095)	32.74	0.000
30 - 20	-6.753	0.142	(-7.190, -6.317)	-47.46	0.000

ANEXO 37. Contenido de SS (ºBrix) en chirimoyas almacenadas a 10ºC

DÍA POSTCOSECHA	BRIX 1	BRIX 2	BRIX 3	PROMEDIO
1	9.50	9.50	9.50	9.50
2	10.20	10.20	10.40	10.27
3	13.00	13.10	13.10	13.07
4	14.30	14.30	14.30	14.30
5	13.20	13.10	13.10	13.13
6	17.00	17.10	16.90	17.00
7	15.10	15.10	15.00	15.07
8	14.80	15.00	15.00	14.93
9	18.90	19.00	19.00	18.97
10	19.80	19.70	19.70	19.73
11	21.30	21.20	21.30	21.27
12	21.20	21.20	21.20	21.20
13	21.40	21.40	21.30	21.37
14	21.40	21.40	21.40	21.40
15	22.60	22.50	22.60	22.57
16	21.20	21.20	21.20	21.20
17	23.50	23.50	23.50	23.50
18	21.40	21.50	21.50	21.47
19	23.40	23.30	23.30	23.33

ANEXO 38. Contenido de SS (ºBrix) en chirimoyas almacenadas a 20ºC

DÍA POSTCOSECHA	BRIX 1	BRIX 2	BRIX 3	PROMEDIO
1	10.700	10.500	10.600	10.600
2	11.000	11.800	11.900	11.567
3	14.900	15.000	15.000	14.967
4	20.900	20.900	21.200	21.000
5	20.900	20.700	20.800	20.800
6	20.400	20.300	20.200	20.300
7	25.000	23.500	23.500	24.000
8	26.900	26.800	26.900	26.867
9	21.400	21.300	21.300	21.333
10	23.400	23.500	23.500	23.467
11	25.200	25.300	25.200	25.233
12	25.000	24.700	24.800	24.833

ANEXO 39. Contenido de SS (ºBrix) en chirimoyas almacenadas a 30ºC

DÍA POSTCOSECHA	BRIX 1	BRIX 2	BRIX 3	PROMEDIO
1	11.230	11.150	11.220	11.200
2	18.940	18.900	18.860	18.900
3	21.510	21.490	21.500	21.500
4	25.790	25.900	25.910	25.867
5	25.200	25.800	25.700	25.567
6	26.100	26.400	26.500	26.333

ANEXO 40. Análisis de varianza para contenido de SS (ºBrix)

	GL	SC	СМ	F	Р
Temperatura	2	15.3885	7.6942	66.26	0.000
Error	6	0.6967	0.1161		
Total	8	16.0852			

ANEXO 41. Prueba tukey para contenido de solidos solubles (ºBrix)

Dif. de temp.	Dif. de medías	Error estand. dif medías	95% CI	Т	Р
20 - 10	2.017	0.278	(1.163, 2.871)	7.25	0.001
30 - 10	3.163	0.278	(2.309, 4.017)	11.37	0.000
30 - 20	1.147	0.278	(0.293, 2.001)	4.12	0.015

ANEXO 42. Valores de textura de chirimoyas almacenadas a 10°C

DÍA	PISTON		TEXTURA (N	1)	PROMEDIO
POSTCOSECHA	(MM)	TXT 1	TXT 2	TXT 3	(N)
1	11	-	-	-	≥284.78
2	11	-	-	-	≥284.78
3	11	-	-	-	≥284.78
4	11	-	-	-	≥284.78
5	11	-	-	-	≥284.78
6	11	-	-	-	≥284.78
7	11	-	-	-	≥284.78
8	11	-	-	-	≥284.78
9	11	-	-	-	≥284.78
10	11	-	-	-	≥284.78

11	11	-	-	-	≥284.78
12	11	-	-	-	≥284.78
13	11	99.674	125.186	114.151	113.004
14	11	66.450	88.995	94.928	83.457
15	11	83.655	82.077	43.014	69.582
16	11	60.517	45.091	47.072	50.893
17	11	32.631	61.703	52.210	48.848
18	8	12.709	9.791	11.088	11.196
19	8	4.707	8.368	3.295	5.457

[&]quot;-": No se pudo penetrar la fruta, por extrema rigidez.

ANEXO 43. Valores de textura de chirimoyas almacenadas a 20°C

DÍA	PISTON	STON TEXTURA (N)			PROMEDIO
POSTCOSECHA	(MM)	TXT 1	TXT 2	TXT 3	(N)
1	11	284.780	284.780	284.780	≥284.78
2	11	284.780	284.780	284.780	≥284.78
3	11	284.780	284.780	284.780	≥284.78
4	8	5.084	3.138	3.766	3.996
5	8	3.766	3.138	3.766	3.557
6	8	3.138	3.766	3.452	3.452
7	8	3.138	3.138	3.452	3.243
8	8	3.766	3.138	3.138	3.347
9	8	3.138	3.138	3.138	≤3.138
10	8	3.138	3.138	3.138	≤3.138
11	8	3.138	3.138	3.138	≤3.138
12	8	3.138	3.138	3.138	≤3.138

[&]quot;-": No se pudo penetrar la fruta, por extrema rigidez.

ANEXO 44. Valores de textura de chirimoyas almacenadas a 30°C

DÍA	PISTON	TE	EXTURA (PROMEDIO	
POSTCOSECHA	(MM)	TXT 1	TXT 2	TXT 3	(N)
1	11	284.780	284.780	284.780	≥284.78
2	8	23.745	21.548	23.850	23.048
3	8	13.494	9.289	8.159	10.314
4	8	3.138	3.138	3.138	≤3.138
5	8	3.138	3.138	3.138	≤3.138
6	8	3.138	3.138	3.138	≤3.138

[&]quot;-": No se pudo penetrar la fruta, por extrema rigidez.

ANEXO 45. Coordenadas L*, a* y b*; de unidades almacenadas a 10°C obtenidas por toma de imágenes

	L*	63.293		L*	55.171
DÍA 1			DÍA 11		
	a*	-15.296	DIA 11	a*	-7.57
	b*	47.632		b*	46.29
	L*	60.549		L*	52.448
DÍA 2	a*	-13.942	DÍA 12	a*	-5.566
	b*	51.562		b*	47.638
	L*	60.749		L*	50.205
DÍA 3	a*	-13.04	DÍA 13	a*	-6.379
	b*	54.92		b*	38.179
	L*	60.611		L*	53.154
DÍA 4	a*	-13.671	DÍA 14	a*	-3.747
	b*	52.848		b*	41.324
DÍA 5	L*	56.533	DÍA 15	L*	46.923
DIA 3	a*	-12.874	DIA 13	a*	2.866

	b*	52.714		b*	34.537
	L*	61.002		L*	47.343
DÍA 6	a*	-13.586	DÍA 16	a*	2.993
	b*	52.074		b*	33.469
	L*	60.775		L*	54.315
DÍA 7	a*	-14.723	DÍA 17	a*	1.959
	b*	50.528		b*	35.322
	L*	55.358		L*	50.197
DÍA 8	a*	-10.904	DÍA 18	a*	3.411
	b*	52.996		b*	29.495
	L*	56.15		L*	47.851
DÍA 9	a*	-10.515	DÍA 19	a*	1.515
	b*	46.38		b*	36.149
	L*	58.644			
DÍA 10	a*	-9.779			
	b*	49.649			

ANEXO 46. Coordenadas L*, a* y b*; de unidades almacenadas a 20°C obtenidas por toma de imágenes

	L*	61.016		L*	51.379
DÍA 1	a*	-19.681	DÍA 7	a*	-13.001
	b*	50.161		46.126	
	L*	56.579		L*	50.025
DÍA 2	a*	-18.801	DÍA 8	a*	-9.566
	b*	48.643		a	43.07
	L*	52.863		L*	51.694
DÍA 3	a*	-15.678	DÍA 9	a*	-9.077
	b*	47.601		b*	42.249
DÍA 4	L*	54.361	DÍA 10	L*	63.755

	a*	-18.249		a*	-6.795
	b*	48.689		b*	43.256
	L	53.547		L	51.516
DÍA 5	а	-16.231	DÍA 11	а	-2.141
	b	47.909		b	41.391
	L 54.316		L	51.537	
DÍA 6	а	-16.275	DÍA 12	а	-2.244
	b	47.93		b	45.542

ANEXO 47. Coordenadas L*, a* y b*; de unidades almacenadas a 30°C obtenidas por toma de imágenes.

	L*	73.380		L*	79.256
DÍA 1	a*	-21.300	DÍA 4	a*	-14.359
	b*	52.002		b*	42.231
	L*	74.071		L*	71.007
DÍA 2	a*	-19.424	DÍA 5	a*	-11.789
	b*	51.063		b*	43.712
DÍA 3	L*	74.583		L*	66.592
	a*	-16.322	DÍA 6	a*	-5.271
	b*	46.092		b*	34.620

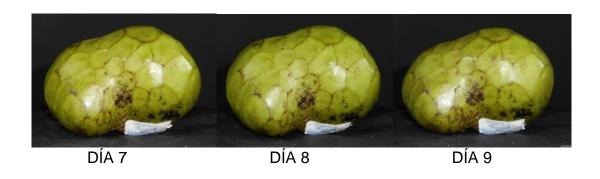
ANEXO 48. Valores de producción de CO₂, de chirimoya almacenada a 10°C

Día postcosecha	Peso (g) chirimoya	μgCO ₂ / g.H	gCO ₂ / kg. H	mgCO ₂ / kg. H
1	520	16.1592	0.0162	16.1592
2	520	7.3451	0.0073	7.3451
3	515	10.3830	0.0104	10.3830
4	515	7.4164	0.0074	7.4164
5	515	4.4498	0.0044	4.4498
6	510	25.4630	0.0255	25.4630
7	510	10.4847	0.0105	10.4847
8	510	7.1895	0.0072	7.1895
9	510	39.6158	0.0396	39.6158
10	505	34.7910	0.0348	34.7910
11	505	13.6139	0.0136	13.6139
12	505	28.7404	0.0287	28.7404

ANEXO 49. Valores de producción de CO₂, de chirimoya almacenada a 20°C

Día postcosecha	peso (g) chirimoya	ugCO ₂ / g.H	gCO ₂ / kg. H	mg CO ₂ / kg. H
1	477.07	10.4806	0.01048	10.4806
2	474.83	45.6304	0.04563	45.6304
3	471.87	17.6602	0.01766	17.6602

4	469.38	21.3047	0.02130	21.3047
5	466.87	57.1180	0.05712	57.1180
6	463.57	23.5606	0.02356	23.5606
7	458.75	10.8992	0.01090	10.8992
8	453.37	12.8666	0.01287	12.8666
9	448.09	14.8780	0.01488	14.8780


ANEXO 50. Valores de producción de CO₂, de chirimoya almacenada a 30°C

Día postcosecha	peso (g) chirimoya	ugCO ₂ / g.H	gCO ₂ / kg. H	mg CO ₂ / kg.H
1	498.06	10.0390	0.010039	10.0390
2	495.12	30.2957	0.030296	30.2957
3	489.54	3.4046	0.003405	3.4046
4	482	1.7289	0.001729	1.7289
5	476.57	27.9777	0.027978	27.9777
6	470.06	6.9337	0.006934	6.9337

ANEXO 51. Ejemplar N° 1, evaluación de color de chirimoyas almacenadas a 10°C por el método de toma de imágenes

DÍA 19

ANEXO 52. Ejemplar N° 2, evaluación de color de chirimoyas almacenadas a 10°C por el método de toma de imágenes



DÍA 10 DÍA 11 DÍA 12

DÍA 16 DÍA 17 DÍA 18



DÍA 19

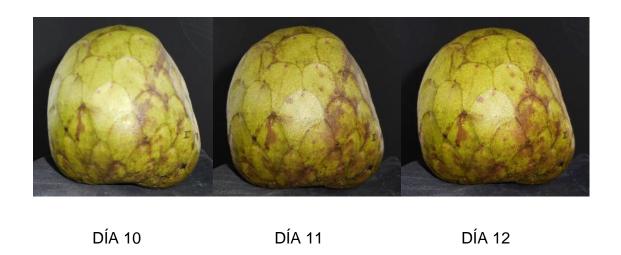
ANEXO 53. Ejemplar N° 3, evaluación de color de chirimoyas almacenadas a 10°C por el método de toma de imágenes

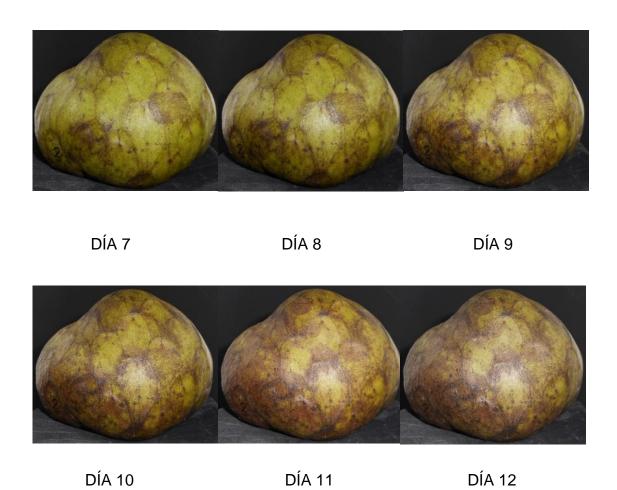
DÍA 10 DÍA 11 DÍA 12

DÍA 13 DÍA 14 DÍA 15

DÍA 16 DÍA 17 DÍA 18

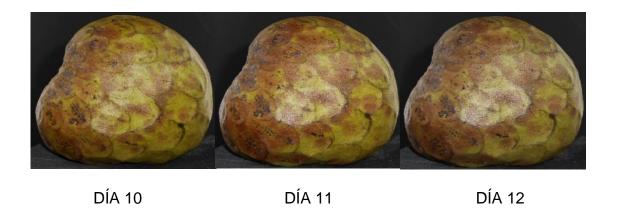
DÍA 19


ANEXO 54. Ejemplar N° 1, evaluación de color de chirimoyas almacenadas a 20°C por el método de toma de imágenes


DÍA 7 DÍA 8 DÍA 9

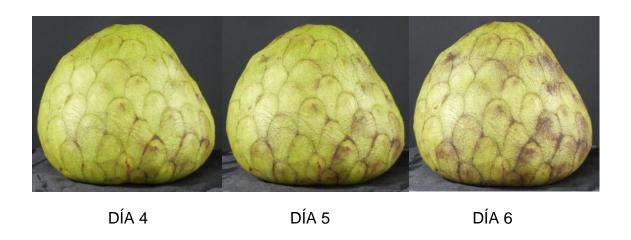
ANEXO 55. Ejemplar N° 2, evaluación de color de chirimoyas almacenadas a 20°C por el método de toma de imágenes

ANEXO 56. Ejemplar N° 3, evaluación de color de chirimoyas almacenadas a 20°C por el método de toma de imágenes

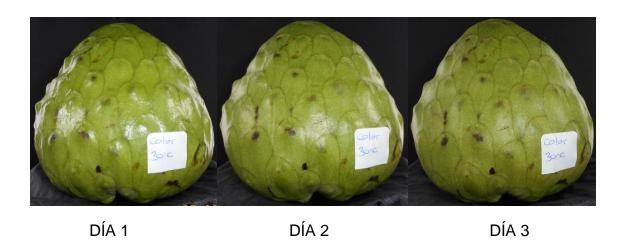


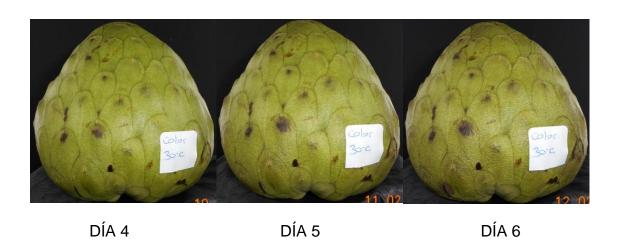
DÍA 4 DÍA 5 DÍA 6

DÍA 7 DÍA 8 DÍA 9



ANEXO 57. Ejemplar N° 1, evaluación de color de chirimoyas almacenadas a 30°C por el método de toma de imágenes




ANEXO 58. Ejemplar N° 2, evaluación de color de chirimoyas almacenadas a 30°C por el método de toma de imágenes

ANEXO 59. Ejemplar N° 3, evaluación de color de chirimoyas almacenadas a 30°C por el método de toma de imágenes

ANEXO 60. Matriz de consistencia

PROBLEMA	OD IETIVO CENEDAL	HIPÓTESIS	VARIABLE	DIMENSIONES	INDICADORES	MÉTODO
GENERAL	OBJETIVO GENERAL	GENERAL	DEPENDIENTE	DIMENSIONES	INDICADORES	MÉTODO
¿Cuáles serán		Si se identifican		Componentes	CONTENIDO DE	
los cambios en	Determinar la influencia	los cambios	Composición	Componentes		
las	de la temperatura sobre	físicos, químicos	químico –	nutricionales	COMPUESTOS	0 – 100%
características	las características	·	proximal	presentes en la	NUTRICIONALES	
		y fisiológicos en	proximal	pulpa de chirimoya	EXPRESADO EN %	
físicas y	físicas y químicas de la	la chirimoya a				
químicas que	chirimoya (<i>Annona</i>	diferentes				
presentará la	cherimola Miller)	temperaturas de				
chirimoya	variedad Cumbe durante	almacenamiento	Parámetros	Atributos externos	CARACTERISTICAS	Gramos /
(Annona	su maduración	entonces se	físicos y	e internos de la	FISICAS Y	100 g. de
,	postcosecha.		químicos.	chirimoya	QUIMICAS	chirimoya
cherimola Miller)	postocoona	establecerán las	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	EXPRESADO EN	,
variedad		mejores				

Cumbe, si se	condiciones de			SUS UNIDADES	
almacena a	conservación			RESPECTIVAS.	
diferentes	para alargar su				
temperaturas en	vida útil		Producción de CO ₂		ml CO ₂
		Tasa de	de la chirimoya	CONCENTRACIÓN	/Kg. de
su etapa	postcosecha	roopirooión	duranta au	DE CO ₂	obirim ovo
postcosecha?		respiración	durante su	DE CO2	chirimoya
			maduración		x hora