UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA AMBIENTAL Y DE RECURSOS NATURALES

ESCUELA PROFESIONAL DE INGENIERÍA AMBIENTAL Y DE RECURSOS NATURALES

TESIS

"COMPORTAMIENTO DE LA ESCORRENTÍA SEGÚN PROYECCIONES CLIMÁTICAS EN LA INTERCUENCA ALTO HUALLAGA 2020 – 2059"

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO AMBIENTAL Y DE RECURSOS NATURALES

AUTORES:

ELIZABETH IRMA CHAVEZ AVILA

CARLA YOHANA BAZAN GARCIA

ASESOR:

MsC. ALEX WILLY PILCO NUÑEZ

Callao, 2022 PERÚ

UNIVERSIDAD NACIONAL DEL CALLAD

FACULTAD DE INGENIERIA AMBIENTAL Y DE RECURSOS NATURALES

(Resolución Nº 019-2021-CU del 20 de enero de 2021)

II CICLO TALLER DE TESIS

ANEXO 3

ACTA Nº 010-2022 DE SUSTENTACIÓN DE TESIS CON CICLO DE TESIS PARA LA OBTENCIÓN DEL TÍTULO PROFESIONAL DE INGENIERO AMBIENTAL Y DE RECURSOS NATURALES.

LIBRO 01 FOLIO No. 40 ACTA Nº010-2022 DE SUSTENTACIÓN DE TESIS CON CICLO DE TESIS PARA LA OBTENCIÓN DEL TÍTULO PROFESIONAL DE INGENIERO AMBIENTAL Y DE RECURSOS NATURALES.

A los 17 días del mes de julio del año 2022, siendo las 10:17 horas, se reunieron, en la sala meet: https://meet.google.com/pdz-iucr-pbo, el JURADO DE SUSTENTACION DE TESIS para la obtención del TÍTULO profesional de Ingeniero Ambiental y de Recursos Naturales de la Facultad de Ingeniería Ambiental y de Recursos Naturales, conformado por los siguientes docentes ordinarios de la Universidad Nacional del Callao:

Mg. Edgar Zárate Sarapura : Presidente

MsC María Antonieta Gutiérrez Díaz : Secretaria

Ing. Godofredo Teodoro León Ramírez : Vocal

Ms.C. Alex Willy Pilco Nuñez : Asesor

Se dio inicio al acto de sustentación de la tesis de las Bachilleres Carla Yohana Bazan Garcia y Elizabeth Irma Chavez Avila, quienes habiendo cumplido con los requisitos para optar el Título Profesional de Ingeniero Ambiental y de Recursos Naturales, sustentan la tesis titulada: "COMPORTAMIENTO DE LA ESCORRENTIA SEGÚN PROYECCIONES CLIMÁTICAS EN LA INTERCUENCA ALTO HUALLAGA 2020 - 2059", cumpliendo con la sustentación en acto público, de manera no presencial a través de la Plataforma Virtual, en cumplimiento de la declaración de emergencia adoptada por el Poder Ejecutivo para afrontar la pandemia del Covid19, a través del D.S. N° 044-2020-PCM y lo dispuesto en el DU N° 026-2020 y en concordancia con la Resolución del Consejo Directivo N°039-2020-SUNEDU-CD y la Resolución Viceministerial N° 085-2020-MINEDU, que aprueba las "Orientaciones para la continuidad del servicio educativo superior universitario":

Con el quórum reglamentario de ley, se dio inicio a la sustentación de conformidad con lo establecido por el Reglamento de Grados y Títulos vigente. Luego de la exposición, y la absolución de las preguntas formuladas por el Jurado y efectuadas las deliberaciones pertinentes, acordó: Dar por Aprobado con la escala de calificación cualitativa Muy Bueno y calificación cuantitativa 17, la presente Tesis, conforme a lo dispuesto en el Art. 27 del Reglamento de Grados y Títulos de la UNAC, aprobado por Resolución de Consejo Universitario Nº 099-2021-CU del 30 de junio de 2021.

Se dio por cerrada la Sesión a las 11:00 horas del día domingo 17 de julio del año en curso.

DEDICATORIA

Dedicamos la presente investigación a nuestros padres por su apoyo y orientación continua en este proceso para lograr nuestros objetivos y en todo lo que nos proponemos. De igual manera a nuestros hermanos por siempre estar dispuestos a escucharnos y ayudarnos en todo momento.

AGRADECIMIENTO

Agradezco a Dios por darnos vida, salud y fortaleza para seguir en nuestras metas.

A nuestro asesor MsC. Alex Pilco Nuñez por su orientación, consejo y aliento en este proceso de investigación.

Al Ing. Richard Solis y al Ing. Rodrigo Chavarry que gracias a sus aportes enriquecieron la investigación.

ÍNDICE

RESU	MEN	14
ABSTF	RACT	15
INTRO	DUCCIÓN	16
I. F	PLANTEAMIENTO DEL PROBLEMA	18
1.1.	Descripción de la realidad problemática	18
1.2.	Formulación del problema	20
1.2.1.	Problema general	20
1.2.2.	Problemas específicos	20
1.3.	Objetivos	20
1.3.1.	Objetivo general	20
1.3.2.	Objetivos específicos	20
1.4.	Limitantes de la investigación	21
1.4.1.	Teórica	21
1.4.2.	Temporal	21
1.4.3.	Espacial	21
II. I	MARCO TEÓRICO	22
2.1.	Antecedentes	22
2.1.1.	Internacionales	22
2.1.2.	Nacionales	24
2.2.	Bases teóricas	28
2.2.1.	Hidrología	28
2.2.2.	Ciclo hidrológico	28
2.2.3.	Cuenca hidrográfica	29
2.2.4.	Subcuenca hidrográfica	30
2.2.5.	Intercuenca	30
2.2.6.	Balance hidrológico	30
2.2.7.	Modelo hidrológico	31
2.2.8.	Herramienta para la evaluación del suelo y agua (SWAT)	31
2.2.9.	Indicadores estadísticos	32

2.2.10.	Modelo climático	.34
2.2.11.	Modelos de circulación global (MCG)	.34
2.2.12.	Escenario de emisiones	.36
2.2.13.	Método de downscaling	.36
2.2.14.	R y RStudio	.38
2.2.15.	Marco normativo	.39
2.3.	Conceptual	.39
2.3.1.	Proyecciones climáticas	.39
2.3.2.	Trayectorias de Concentración Representativa (RCP)	.40
2.3.3.	Temperatura máxima	.40
2.3.4.	Temperatura mínima	.41
2.3.5.	Precipitación	.41
2.3.6.	Escorrentía	.41
2.3.7.	Escorrentía superficial	.41
2.3.8.	Caudal	.41
2.4.	Definición de términos básicos	.41
2.4.1.	Mitigación y adaptación basada en cuencas hidrográficas	.41
2.4.2.	Cambio climático	.42
2.4.3.	Calibración de un modelo	.42
2.4.4.	Panel Intergubernamental sobre el cambio climático IPCC	.42
2.4.5.	Ensamble	.43
2.4.6.	Incertidumbre	.43
2.4.7.	Forzamiento radiativo	.43
2.4.8.	Clima	.44
	PISCO (Peruvian interpolated data of the SENAMHI's Climatological a	
2.4.10.	Estaciones	.44
2.4.11.	Variabilidad climática	.44
2.4.12.	Anomalía de caudal	.45
2.4.13.	NYSKIP	.45
2.4.14.	Validación de un modelo	.45
III. H	IIPÓTESIS Y VARIABLES	46

3.1.	Hipótesis	46
3.1.1.	Hipótesis general	46
3.1.2.	Hipótesis específicas	46
3.2.	Definición conceptual de variables	46
3.2.1.	Operacionalización de variables	47
IV. [DISEÑO METODOLÓGICO	49
4.1.	Tipo y diseño de investigación	49
4.1.1.	Tipo de investigación	49
4.1.2.	Diseño de investigación	49
4.1.3.	Enfoque	49
4.1.4.	Nivel de investigación	50
4.2.	Método de investigación	50
4.3.	Población y muestra	55
4.3.1.	Población	55
4.3.2.	Muestra	58
4.4.	Lugar de estudio y periodo desarrollado	58
4.5.	Técnicas e instrumentos para la recolección de la información	58
4.6.	Análisis y procesamiento de datos	58
4.6.1.	Análisis de datos	58
4.6.2.	Procesamiento de datos	71
V. F	RESULTADOS	72
5.1.	Resultado Descriptivos	72
5.1.1. mediar	Representar la intercuenca Alto Huallaga para el periodo de 1981 al 20 nte el modelo semidistribuido SWAT	
de cor informa	Proyectar caudales en la intercuenca Alto Huallaga según trayectori ncentración representativa 4.5 y 8.5 para el periodo 2020 al 2059, cación climática usando el método downscaling estadístico, a través o semidistribuido SWAT.	on del
concer	Estimar las anomalías de los caudales promedios según trayectorias atración representativa 4.5 y 8.5 en la intercuenca Alto Huallaga para 2020-2059	el

5.2. Resultado Inferenciales122
5.2.1. La intercuenca Alto Huallaga es representada satisfactoriamente para el periodo de 1981 al 2016 mediante el modelo semidistribuido SWAT122
5.2.2. La información climática usando el método downscaling estadístico permite proyectar adecuadamente caudales en la intercuenca Alto Huallaga según trayectorias de concentración representativa 4.5 y 8.5 para el periodo 2020 al 2059, a través del modelo semidistribuido SWAT127
VI. DISCUSIÓN DE RESULTADOS129
6.1. Contrastación y demostración de la hipótesis con los resultados129
6.2. Contrastación de los resultados con otros estudios similares130
6.3. Responsabilidad ética de acuerdo a los reglamentos vigentes (el autor de la
investigación se responsabiliza por la información emitida en el informe)132
CONCLUSIONES134
RECOMENDACIONES135
REFERENCIAS BIBLIOGRÁFICAS137
ANEXOS147

ÍNDICE DE TABLAS

Tabla 1: Indicadores estadísticos para evaluar el rendimiento del modelo
hidrológico32
Tabla 2: Los 21 Modelos Climáticos Globales del CIMP5 35
Tabla 3: Operacionalización de variables 48
Tabla 4: Parámetros sensibles del modelo semidistribuido SWAT52
Tabla 5: Ubicación política de la intercuenca Alto Huallaga 56
Tabla 6: Coordenadas geográficas de las estaciones meteorológicas59
Tabla 7: Categorías de Anomalías de Caudales - AC (%)70
Tabla 8: Área de las subcuencas de la intercuenca Alto Huallaga74
Tabla 9: Clases de uso de suelos de la intercuenca Alto Huallaga75
Tabla 10: Clase de tipo de suelo de la intercuenca Alto Huallaga75
Tabla 11: Clasificación de pendientes de la intercuenca Alto Huallaga (%)76
Tabla 12: Estadísticos para el diagrama de boxplot en el periodo 2020 -2059
(RCP 4.5)
Tabla 13: Estadísticos para el diagrama de boxplot en el periodo 2020 -2059
(RCP 8.5)107
Tabla 14: Caudales histórico (Promedio de los caudales 1981 -2019)108
Tabla 15: Anomalías de caudales promedios (%) 109
Tabla 16: Clasificación de los promedios de las anomalías de los caudales
mensuales proyectados obtenidos 2020-2059 (RCP 4.5)112
Tabla 17: Clasificación de los promedios de las anomalías de los caudales
mensuales proyectados obtenidos 2020 -2059 (RCP 8.5)113
Tabla 18: Clasificación de los promedios de las anomalías de los caudales
mensuales proyectados obtenidos en el periodo 2020 -2059 (RCP 4.5)115
Tabla 19: Clasificación de los promedios de las anomalías de los caudales
mensuales proyectados obtenidos en el periodo 2020-2059 (RCP 8.5)116
Tabla 20: Valores de los parámetros sensibles del modelo SWAT122
Tabla 21: Valores de los indicadores estadísticos en el proceso de calibración
123
Tabla 22: Valores de los indicadores estadísticos en el proceso de validación
125

Tabla 23	Valor estadístico R ² en los caudales proyectado en RCP 4.5 y RCP 8.	5
	12	7
	ÍNDICE DE FIGURAS	
Figura 1:	Principales componentes del Ciclo hidrológico2	9
Figura 2:	Diagrama de flujo de las etapas de la investigación5	1
Figura 3:	Mapa de ubicación de la intercuenca Alto Huallaga5	7
Figura 4:	Mapa de estaciones de la intercuenca Alto Huallaga6	2
Figura 5:	Script para extraer datos de precipitación de PISCO6	3
Figura 6:	Script para extraer datos de temperatura de PISCO6	4
_	Script para extraer datos de caudales mensual de PISCO H y M GR2I	
Figura 8:	Script para extraer datos de los modelos de circulación Global (GCN	1)
	Mapa de subcuencas de la intercuenca Alto Huallaga7	
Figura 10): Mapa de uso de suelo de la intercuenca Alto Huallaga7	7
Figura 1	1: Mapa de tipo de suelo de la intercuenca Alto Huallaga7	8
Figura 12	2: Mapa de pendientes de la intercuenca Alto Huallaga7	9
Figura 13	3: Hidrograma de los caudales mensuales simulados en el ArcSWAT v	⁄S
caudales	mensuales históricos (1984 al 2016)8	0
Figura 1	4: Diagrama de dispersión de precipitación mensual bajo el escenari	io
RCP 4.5	(2020 -2059)8	2
Figura 1	5: Diagrama de dispersión de precipitación en la proyección RCP 8.	5
(2020 -20	959)8	4
Figura 16	6: Diagrama de dispersión de temperatura mínima 2020-2059 (RCP 4.5	5)
	8	5
Figura 1	7: Histograma del promedio de temperatura máxima 2020-2059 (RC	P
4.5)	8	7
Figura 18	8: Histograma del promedio de temperatura máxima en la proyecció	n
	y RCP 8.5 (2020 -2059)8	

Figura 19: Histograma del promedio de temperatura máxima en la proyección
RCP 8.5 (2020 -2059)89
Figura 20: Comparación entre temperatura máxima observada, proyectada RCP
4.5 y desescalada91
Figura 21: Comparación entre temperatura mínima observada, proyectada RCP
4.5 y desescalada92
Figura 22: Comparación entre temperatura máxima observada, proyectada RCP
8.5 y desescalada93
Figura 23: Comparación entre temperatura mínima observada, proyectada RCP
8.5 y desescalada94
Figura 24: Comparación entre precipitación observada, proyectada RCP 4.5 y
desescalada95
Figura 25: Comparación entre precipitación observada, proyectada RCP 8.5 y
desescalada96
Figura 26: Caudales promedios proyectados 2020-2039 (RCP 4.5)98
Figura 27: Caudales promedios proyectados 2020-2039 (RCP 8.5)99
Figura 28: Caudales promedios proyectados 2040-2059 (RCP 4.5)101
Figura 29: Caudales promedios proyectados 2040-2059 (RCP 8.5)102
Figura 30: Caudales promedios proyectados 2020-2059 (RCP 4.5)103
Figura 31: Caudales promedios proyectados 2020-2059 (RCP 8.5)104
Figura 32: Diagrama de boxplot para el caudal simulado a futuro en el periodo
2020-2059 (RCP 4.5 y RCP 8.5)105
Figura 33: Anomalías de los caudales promedios proyectados en los escenarios
RCP 4.5 y RCP 8.5 (2020-2039)110
Figura 34: Anomalías de los caudales promedios proyectados en los escenarios
RCP 4.5 y RCP 8.5 (2040-2059)111
Figura 35: Anomalías de los caudales promedios proyectados 2020-2059 en los
escenarios RCP 4.5 (Periodo húmedo)118
Figura 36: Anomalías de los caudales promedios proyectados 2020 – 2059 en
los escenarios RCP 8.5 (Periodo húmedo)119
Figura 37: Anomalías de los caudales promedios proyectados 2020 – 2059 en
los escenarios RCP 4.5 (Periodo seco)120

Figura 38: Anomalías de los caudales promedios proyectados 2020 – 2059 en
los escenarios RCP 8.5 (Periodo seco)121
Figura 39: Hidrograma de los caudales mensuales calibrados vs caudales
mensuales históricos (1984 al 2004)124
Figura 40: Hidrograma de los caudales mensuales validados vs caudales
mensuales históricos (2006 al 2016)126
Figura 41: Representación del R ² de los caudales observado y caudales en el
RCP 4.5128
Figura 42: Representación del R ² de los Caudales observado y Caudales en el
RCP 8.5128

RESUMEN

En las últimas décadas se han reportado eventos hidrometeorológicos extremos con mayor frecuencia en la intercuenca Alto Huallaga, asociado a un aumento global de la temperatura debido al cambio climático. Estos eventos han generado la interrogante de cómo el régimen hidrológico podría ser afectado por el cambio climático en un futuro; ante este posible suceso se justifica la necesidad de estudiar el comportamiento de la escorrentía superficial bajo proyecciones climáticas, en especial de aquellas trayectorias de concentración representativa como los RCP 4.5 y 8.5; con el fin de proponer medidas adecuadas para la sostenibilidad de esta intercuenca en el futuro. El trabajo de investigación tuvo como objetivo determinar el comportamiento de la escorrentía en la intercuenca Alto Huallaga para el periodo 2020-2059, según proyecciones climáticas; asimismo, tiene un diseño no experimental y de corte longitudinal, se utilizó el modelo semidistribuido conocido como Herramienta de Evaluación del Suelo y del Agua (SWAT, por sus siglas en inglés) para la representación de la intercuenca y posterior proyección de caudales para el periodo 2020-2059. Los resultados demuestran la utilidad del modelo semidistribuido SWAT para representar la intercuenca, con índices estadísticos como el NSE, PBIAS y R², cuyos valores fueron 0.69, -18.2 y 0.9, respectivamente. Asimismo, este modelo semidistribuido SWAT permitió proyectar caudales para el periodo 2020 - 2059, utilizando datos climáticos con el método downscaling estadístico. Finalmente, se determinó la existencia de anomalías de caudales proyectados en la cual la mayor y menor variación se dieron en el escenario RCP 8.5, con un aumento de 83.06% en el mes de diciembre para el periodo 2040-2059 y con una disminución de 5.61% para el mes de agosto en el periodo 2020-2039.

Palabras claves: subcuenca, intercuenca, cuenca, precipitación, escorrentía, cambio climático.

ABSTRACT

Climate change is expected to alter the values of temperature and precipitation at a global level and this will have effects on the hydrological cycles of the hydrographic basin, under this scenario the Huallaga River had increases in its flows causing negative social and economic impacts, for This requires knowing the hydrological behavior of the hydrographic basin under climate change scenarios.

The objective of the research is to estimate the behavior of runoff in the Alto Huallaga interbasin 2020 - 2099, according to climate projections. SWAT hydrological model was used to represent the hydrographic basin, which entered meteorological and cartographic information (land use, soil type and digital elevation model), then the SWAT model was calibrated and validated with the information on historical flows. (1981 - 2016). Then, the climatic information under the RCP 4.5 and RCP 8.5 scenarios (1981 - 2099) was scaled down with the dowscaling method, to enter this information into the calibrated SWAT model and obtain the projected flows for the period 2020 - 2099. The results in the calibration and validation of the SWAT model, a statistical index equal to NSE 0.69 and NSE 0.74, respectively, was obtained; the SWAT model being satisfactory, also in the flows projected for the period 2020 – 2059, in scenarios RCP 4.5 and RCP 8.5, a higher flow of 4722 m³/s and 4820 m³/s respectively was obtained in the month of December, in the same way the As a result of the flow anomalies according to the RCP 4.5 and RCP 8.5 scenarios for the wet period, the greatest variation occurs in the month of December with 83.93% and 86.68% respectively, having a behavior "very above normal" in the Alto interbasin Huallaga. It is concluded that SWAT model is an alternative tool to make flow projections under future climate change scenarios in a hydrographic basin.

Concluding that SWAT model allows the representation of the Alto Huallaga interbasin, the flow projection 2020 - 2059 was estimated with the climatic information descaled by the downscaling method and the flow anomalies are represented by means of a mathematical analysis.

Keywords: flow, runoff, climate projections, projected flows, flow anomalies, climate projections.

INTRODUCCIÓN

El Panel Intergubernamental de expertos sobre el Cambio Climático (IPCC, por sus siglas en inglés), señala que uno de los principales problemas a nivel mundial es el cambio climático, el cual viene causando efectos colaterales en distintos ecosistemas debido al incremento de la temperatura global. En el Perú, la intercuenca Alto Huallaga es uno de los sistemas hidrológicos más importantes de país, que tiene diversos ecosistemas que proveen bienes y servicios para el desarrollo social, económico, ambiental y cultural de la población. Sin embargo, las poblaciones aledañas al río Huallaga en las provincias de los departamentos Huánuco, La libertad, Pasco y San Martín fueron afectadas por inundaciones causadas por desbordes del río Huallaga (TV Perú Noticias, 2018 y Andina, 2019; Horas Edición Central, 2020). Estas inundaciones sucedieron por el incremento del caudal del río Huallaga, causado por las intensas precipitaciones, que estarían asociadas a cambios drásticos del clima, que amenazarían la regulación hídrica en esta zona.

Según la Autoridad Nacional del Agua [ANA] (2015), menciona, que en la intercuenca Alto Huallaga se han identificado zonas vulnerables ante la crecida de los ríos y quebradas, registrándose 12 puntos críticos en el año 2016, 18 puntos críticos en el año 2017, 10 puntos críticos en el año 2018, 37 puntos críticos en el año 2019, 51 puntos críticos en el año 2020, 42 puntos críticos en el año 2021. En este sentido, se determinó el comportamiento de la escorrentía según proyecciones climáticas en los escenarios RCP 4.5 y RCP 8.5, en la intercuenca Alto Huallaga en el periodo 2020-2059.

Según Gassman et al. (2014), los modelos de simulación hidrológica son ampliamente utilizados para abordar diversos problemas de recursos hídricos en todo el mundo, incluidos el cambio climático futuro en el caudal. Esta conexión entre los escenarios de cambio climático y los modelos hidrológicos ha originado en las últimas décadas numerosos estudios científicos. A escala global, se identifica las consecuencias negativas del cambio climático sobre los principales elementos del balance hídrico como son la reducción de la humedad del suelo.

de la escorrentía superficial, hipodérmica, subterránea, etc., existiendo notorias diferencias en la magnitud de dichos cambios según la región estudiada (Green et al., 2011; Klove et al., 2014; Senent et al., 2017). El modelo Soil and Water Assessment Tool (SWAT), se ha convertido en uno de los modelos a escala de cuencas fluviales y cuencas hidrográficas más utilizados en todo el mundo (Gassman et al., 2007; Williams et al., 2008; Arnold et al., 2012b), su objetivo principal es predecir la producción de agua y sedimentos en cuencas hidrográficas (Jodar et al., 2018).

La información obtenida del modelo semidistribuido SWAT ayudará en la toma de decisiones asociados a la conservación, sostenibilidad, medidas preventivas y mitigación a los gobiernos regionales y locales, de igual manera dará soporte al cumplimiento de las líneas de acción del quinto eje de la Política Nacional del Ambiente: Adaptación al cambio climático y eventos extremos en el Plan y Estrategia Nacional de Recursos Hídricos a cargo de la Autoridad Nacional de Agua, promoviendo estudios sobre el balance hídrico en escenarios de cambio climático teniendo en cuenta las tendencias de cambio regionales y globales en el territorio. Asimismo, difundiendo conocimientos sobre cambio climático, mecanismos de adaptación y gestión de riesgos para la sensibilización de los actores involucrados en la gestión integrada de los recursos hídricos (D.S. 013-2015-MINAGRI, 2015). Con el fin de evitar problemas a futuros a la población aledaña al río Huallaga.

I. PLANTEAMIENTO DEL PROBLEMA

1.1. Descripción de la realidad problemática

La alteración en la frecuencia de la escorrentía superficial en diferentes cuencas trae como consecuencia inundaciones y sequías. La Organización Meteorológica Mundial (OMM) presentó el Informe "2021 State of climate services Water", presentando un análisis sobre los fenómenos y desastres asociados a las inundaciones y sequías. De acuerdo con el Informe, este tipo de amenazas y desastres han aumentado considerablemente en los últimos 20 años a nivel mundial. Las inundaciones constituyeron el 44% de las causas de desastres entre 2000 y 2019, afectó a 1600 millones de personas (World Meteorological Organization [OMM], 2021).

El estudio de Tyndall Center de Inglaterra citado por el Ministerio del Ambiente (Ministerio del Ambiente del Perú [MINAM], 2015), menciona que el Perú es el tercer país más vulnerable al cambio climático. Según datos obtenidos de las zonas con peligro potencial de inundación elaborado por la Comisión Multisectorial de Reducción de Riesgos en el Desarrollo, en el Perú, se han detectado principales eventos de inundaciones en los años 2006 y 2009 por desborde de río Huallaga, en la provincia de San Martín, Mariscal Cáceres, Bellavista, Picota y Tocache. En el año 2008 se registraron precipitaciones pluviales a lo largo del territorio nacional (Autoridad Nacional del Agua [ANA], 2015). Asimismo, en los años 2018, 2019 y 2020, poblaciones aledañas al río Huallaga en las provincias de los departamentos Huánuco, La libertad, Pasco y San Martín se han visto afectados por inundaciones causadas por desbordes del río Huallaga, afectando a viviendas, áreas de cultivos e infraestructuras (TV Perú Noticias, 2018; Andina, 2019 y Horas Edición Central, 2020).

Por otro lado, el Panel Intergubernamental de expertos sobre el Cambio Climático (IPCC, 2018) menciona que los riesgos relacionados con el clima para los sistemas naturales y humanos son mayores con un calentamiento global, asimismo, el cambio climático influye en el ciclo hidrológico a nivel global y regional, percibido principalmente por la alteración en las frecuencias de las

precipitaciones, el retroceso de los glaciares (Vuille, 2013), evapotranspiración, infiltración, y la escorrentía superficial (Joo et al., 2017).

Es de gran importancia evaluar la influencia del cambio climático sobre el incremento o aumento de volumen de agua en los recursos hídricos a nivel regional. La intercuenca Alto Huallaga presenta un elevado grado de vulnerabilidad ante el cambio climático debido a que no cuenta con la infraestructura hidráulica suficientes (Autoridad Nacional del Agua [ANA], (2015). Una de las herramientas que ofrece una confiabilidad para la toma de decisiones son los modelos hidrológicos que permite la representación de una intercuenca y cuenca hidrográfica para analizar los caudales bajo distintos escenarios climáticos.

El Panel Intergubernamental de Expertos sobre el Cambio Climático (IPCC), ha visto un avance importante en las proyecciones del cambio climático, ello puede evidenciarse a través del aumento de las simulaciones disponibles de una variedad más amplia de modelos. La información obtenida por estos modelos y la información adicional obtenida por observación, proporcionan una base cuantitativa para la estimación de las probabilidades de muchos aspectos del cambio climático futuro. Los avances alcanzados en la modelización del cambio climático permiten ofrecer ahora mejores estimaciones y márgenes de incertidumbre aceptables, evaluados como probables del calentamiento proyectado para diferentes escenarios de emisiones (Panel Intergubernamental de Expertos sobre el Cambio Climático [IPCC], 2007).

Para establecer el efecto del cambio climático en la variación del comportamiento de la escorrentía de la intercuenca del Alto Huallaga, se deben utilizar herramientas que representen adecuadamente los procesos hidrológicos en una unidad hidrográfica y permitan la incorporación de las proyecciones de cambio climático. El modelo hidrológico SWAT se caracteriza por su versatilidad y capacidad de representar los procesos hidrológicos de una cuenca hidrográfica, permitiendo mejorar el análisis entorno a la variabilidad hídrica asociado al cambio de escorrentía, tal y como se reportan en varios estudios (Arnold et al., 2012).

1.2. Formulación del problema

1.2.1. Problema general

¿Cuál será el comportamiento de la escorrentía en la intercuenca Alto Huallaga en el periodo 2020 - 2059, según proyecciones climáticas?

1.2.2. Problemas específicos

¿De qué manera se representa la intercuenca Alto Huallaga para el periodo de 1981 al 2016 mediante el modelo semidistribuido SWAT?

¿De qué manera se proyectará los caudales en la intercuenca Alto Huallaga según trayectorias de concentración representativa 4.5 y 8.5 para el periodo 2020 al 2059, con información climática usando el método downscaling estadístico, a través del modelo semidistribuido SWAT.?

¿Cuál será el comportamiento de las anomalías de los caudales promedios según trayectorias de concentración representativa 4.5 y 8.5 en la intercuenca Alto Huallaga para el periodo 2020 - 2059?

1.3. Objetivos

1.3.1. Objetivo general

Predecir el comportamiento de la escorrentía en la intercuenca Alto Huallaga en el periodo 2020 -2059, según proyecciones climáticas.

1.3.2. Objetivos específicos

O1: Representar la intercuenca Alto Huallaga para el periodo de 1981 al 2016 mediante el modelo semidistribuido SWAT.

O2: Proyectar caudales en la intercuenca Alto Huallaga según trayectorias de concentración representativa 4.5 y 8.5 para el periodo 2020 al 2059, con información climática usando el método downscaling estadístico, a través del modelo semidistribuido SWAT.

O3: Estimar las anomalías de los caudales promedios según trayectorias de concentración representativa 4.5 y 8.5 en la intercuenca Alto Huallaga para el periodo 2020-2059.

1.4. Limitantes de la investigación

1.4.1. Teórica

La presente investigación se basó teóricamente en el modelo semidistribuido SWAT, trayectorias de concentración representativa de escenarios de 4.5 y 8.5, que involucra el cambio climático.

1.4.2. Temporal

La investigación del comportamiento de la escorrentía bajo las proyecciones climáticas se realizó para un periodo 2020-2059, correspondiendo como inicio de este periodo, el mes de abril de 2020, se cuentan con datos de caudales observados, proporcionados por la plataforma del Servicio Nacional de Meteorología e Hidrología (SENAMHI) a partir del mes de enero de 1981 hasta marzo de 2020.

1.4.3. Espacial

La investigación se realizó en la intercuenca Alto Huallaga ubicada en los departamentos de San Martín, La Libertad, Pasco y Huánuco. La investigación se empleó en el modelo hidrológico SWAT, se requirió datos meteorológicos y cartográficos empleando fuentes secundarias obtenidas de las plataformas digitales como SENAMHI, FAO, land viewer y la instalación de satélites de Alaska.

II. MARCO TEÓRICO

2.1. Antecedentes

Los antecedentes en una investigación, representan estudios preliminares que permiten validar la presente investigación.

2.1.1. Internacionales

Carvajal (2017) en su investigación titulada "Dinámica hídrica bajo condiciones climáticas cambiantes en la subcuenca del río Tempisquito, cuenca del Tempisque, Guanacaste, Costa Rica", tuvo como objetivo analizar el comportamiento del recurso hídrico a nivel de zonas de vida de Holdridge actuales y futuras potenciales en la subcuenca del río Tempisquito bajo escenarios de cambio climático; a partir del modelo hidrológico SWAT, la calibración del modelo es realizada con el programa SWAT-CUP. Se calcularon las anomalías de precipitación y temperatura de dos escenarios de emisiones RCP 4.5 y RCP 8.5 según cinco MCG (Modelos de Cambio Climáticos) al año 2070. En todas las simulaciones se proyectan mayores temperaturas y precipitaciones en el futuro, a excepción de dos modelos de los RCP 4.5 y 8.5, donde se proyecta una disminución en la precipitación. En casi todos los escenarios y modelos se dio un aumento de caudal. El aporte de la investigación ha brindado un alcance mayor sobre qué tipos de modelos de circulación es más conveniente utilizar, ya que con mayor reducción de escala representaría mejor las anomalías climáticas locales.

Jodar et al. (2018), en su investigación titulada "Evaluación del impacto del cambio climático sobre una cuenca hidrológica en régimen natural (SE, España) usando un modelo SWAT", tuvo como objetivo analizar el impacto del cambio climático sobre los recursos hídricos de la cuenca alta del río Taibilla. Se ha implementado el modelo Soil and Water Assessment Tool (SWAT) calibrado con el algoritmo SUFI-2 en el periodo con caudales observados (1996-2012). Las proyecciones climáticas se hicieron bajo los escenarios de emisión RCP4.5 y RCP8.5 de precipitación y temperatura mediante modelos climáticos globales

(GCMs) (periodo 2010-2050). Las respuestas hidrológicas ante las proyecciones de cambio climático muestran que se dará una reducción de la precipitación media y un aumento de la temperatura para los escenarios RCP4.5 y RCP8.5. Por su parte, la escorrentía superficial disminuirá un 10% en el RCP4.5 y un 19% en el RCP8.5. La investigación anterior ha proporcionado una validez al uso del modelo hidrológico SWAT, así mismo brinda la confiabilidad para hacer uso de los escenarios de emisión 4.5 y 8.5.

Silva y Tobón (2019) en su tesis titulada "Evaluación de impactos ecohidrológicos del cambio climático en una cuenca de la región central de Venezuela", tuvo como objetivo estimar, posibles impactos del cambio climático sobre variables ecohidrológicas en la cuenca media del río Pao (estado Cojedes, región central de Venezuela). Se empleó el modelo SWAT con información de clima histórico (1976-1992) y 50 años a futuro (2026-2042); en los escenarios de cambio climático RCP4.5 y RCP8.5. La información climática futura se estimó mediante los modelos climáticos globales Mohc-Hadgem2-CC y Mohc-Hadgem2-ES. Los resultados obtenidos mostraron incrementos en la temperatura en los escenarios RCP4.5 y RCP8.5. Consecuentemente, el rendimiento de agua, escorrentía superficial y la precipitación excedente disminuyeron en todos los escenarios. Se concluye que, dada la posible disminución de la precipitación, y del incremento de la temperatura y ETP, puede esperarse que estos flujos disminuyan por efecto del cambio climático. Lo relevante de la investigación ha brindado una validación del uso del Modelo SWAT y un panorama más claro de la importancia del uso de varios modelos climáticos.

Sánchez (2021), en su investigación titulada "Modelo hidrológico de la parte alta de la cuenca Cahabón para establecer la oferta hídrica considerando el efecto del cambio climático para el periodo de referencia (1981-2000) y un futuro próximo (2020-2100) utilizando los escenarios AR5 del IPCC", tuvo como objetivo elaborar un modelo hidrológico de la parte alta de la cuenca Cahabón, para establecer la oferta hídrica, según el efecto del cambio climático, para el periodo de referencia (1981-2000) y un futuro próximo (2020-2100), a través de la utilización de la información de los escenarios AR5 del IPCC. Mediante el

SWAT se realizó la calibración y validación del modelo, con lo cual se determinó que los resultados corresponden al caudal de respuesta de la cuenca. Se concluyó que los potenciales impactos del cambio climático, en la disponibilidad de los recursos hídricos por la reducción en los caudales en la parte alta de la cuenca Cahabón, serán económicos y ambientales. Lo relevante de esta investigación ha sido observar que se puede tener una limitante con respecto a los modelos climáticos ya que estos no incluyen en sus proyecciones fenómenos como El Niño y La Niña, se deben prever los mismos, para evitar consecuencias desastrosas.

Baptista y Pillco (2021), en su tesis titulada "Predicción de caudales bajo el impacto del cambio climático en condiciones de información limitada en la micro cuenca del Río Azanaque, Oruro", tuvo como objetivo estudiar y predecir el aporte de caudales en la microcuenca del río Azanaque perteneciente a la cuenca del lago Poopó (Oruro), en el contexto de impacto de cambio climático y en condiciones de poca información hidroclimática. Se hizo uso del modelo hidrológico SWAT para modelar la cuenca, al mismo tiempo con el empleo de variables climáticas y los escenarios del cambio climático se pudo conocer las alteraciones que sufrirá cada variable en el futuro. Posteriormente con ambos resultados se realizó un nuevo modelamiento de la cuenca y de esta forma se obtuvieron los caudales bajo el impacto del cambio climático. Se obtuvo para los caudales medios, una reducción del volumen de los caudales para los periodos 1990-2010 y 2012-2032. El trabajo preliminar permitió validar nuevamente el modelo hidrológico SWAT, asimismo brindó una explicación sobre la importancia de considerar otros parámetros como lo es la radiación solar en la zona, y como podría variar los resultados considerando ello.

2.1.2. Nacionales

Valladares (2017), en su investigación titulada "Respuesta hidrológica de la cuenca del río Santa en condiciones de cambio climático", tuvo como objetivo conocer el impacto del cambio climático en la respuesta hidrológica de la cuenca del río Santa para el periodo (2050 – 2059) usando el escenario de trayectoria de concentración representativa 4.5. El modelo hidrológico SWAT fue calibrado

para simular caudales en la zona de estudio, obteniéndose valores de NS, PBIAS, RSR y R2 de 0.89, 8.26, 0.34 y 0.92 respectivamente, posteriormente se realizó la calibración de los sedimentos, alcanzado valores de NS, PBIAS, RSR y R2 equivalentes a 0.64, -7.42, 0.6 y 0.66 respectivamente. Los resultados obtenidos para la disponibilidad hídrica al 50% de persistencia indican un incremento de +18% durante el periodo húmedo y +7% durante el periodo seco; la disponibilidad hídrica al 75% de persistencia incrementa un +10% durante el en periodo húmedo y +2% durante el periodo seco; la oferta hídrica al 90% de ocurrencia muestra +6% en periodo húmedo y -5% en periodo seco. A nivel mensual enero se proyecta como el mes que experimenta una mayor variación del caudal medio, con un incremento del 38% mientras que mayo y septiembre indican reducciones de -6% y -5% respectivamente. Finalmente, el decenio futuro (2050 - 2059) proyecta un +19% de agua, así como un +9.25% de sedimentos respecto al decenio observado en la estación Condorcerro. La relevancia de esta investigación fue que el modelo hidrológico SWAT que permitió proyectar bajo escenarios de cambio climático en una cuenca hidrográfica.

León et. al (2019), en su investigación titulada "Modelación de la disponibilidad hídrica del río Piura, considerando la incidencia del cambio climático", tuvo como objetivo evaluar los impactos del cambio climático en la oferta hídrica superficial en la subcuenca media y alta del río Piura, con el modelo hidrológico Soil and Water Assessment Tool (SWAT) a mediados del siglo XXI. Se empleó el modelo SWAT fue calibrado y validado para un periodo de 23 años (1986 - 2008) utilizando datos de clima diarios en seis ubicaciones, y caudales mensuales en la subcuenca media y alta del río Piura. Para las evaluaciones a futuro, se adoptaron los datos climáticos HADGEM2-ES y CSI-RO-Mk3-6-0, de los modelos climáticos globales (MCG), Coupled Model Intercomparison Project Phase 5 (CMIP5), en los escenarios RCP4.5 y RCP8.5. Los datos sesgados futuros (2025-2054) se corrigieron utilizando los datos del clima del período de referencia, y se redujeron de escala con el generador de clima MarkSim. Se concluye que la temperatura y precipitación en los escenarios de cambio climático proyectan un aumento promedio de + 2,9°C y 39,3%, respectivamente,

respecto del periodo observado. La evapotranspiración futura mostró una tendencia general a disminuir, con un ligero aumento en el lado noroccidental de la cuenca. En particular, la tendencia promedio de la escorrentía mensual al 2050, en los cuatro escenarios, indica para los meses entre octubre a abril un aumento de + 71,8%, aprox. 55,9 m³/s; con el mayor incremento en noviembre. Por otro lado, entre los meses de mayo a septiembre, se tiene una disminución de - 66,1%, aprox. 12 m³/s, con el mayor descenso en julio. El trabajo preliminar permitió mostrar la eficacia del modelo hidrológico SWAT en la representación de las cuencas en lugares que no cuentan con muchas estaciones hidrológicas.

Torreblanca (2020), en su investigación titulada "Predicción de la hidrología en la cuenca del río Cancusane hasta su almacenamiento en la represa El Frayle" hasta el año 2050", tuvo como objetivo predecir hidrológica de la cuenca del río Cancusane hasta su almacenamiento en la represa "El FRAYLE" (2020 - 2050), para poder determinar las proyecciones futuras de los caudales que circularán por la estación de control de la represa El FRAYLE, se utilizó el modelo hidrológico semi distribuido SWAT (Soil and Water Assessment Tool) en la extensión ArcSWAT del software ArcGIS, para lo cual se realizó una crítica de los datos climatológico necesarios para la simulación de este modelo, por medio del método del vector Regional, teniendo como año de inicio del modelo 1981 y final 2015 en su primera corrida. Se concluye posteriormente el modelo fue calibrado desde el mismo año de inicio, 1981 hasta el año 2015, obteniendo valores de 0.92 en el indicador de ajuste r. 0.84 en el indicador de ajuste R2, 0.95 en el indicador de ajuste D, 0.83 en el indicador de ajuste NSE, 0.41 en el indicador de ajuste RSR y -5.8 en el indicador de ajuste PBIAS; con el modelo ya calibrado se procedió a validar su carácter predictivo en los años 2016, 2017 y 2018. Los caudales generados fueron nuevamente comparados con los caudales obtenidos de la estación de control de la represa El Frayle. La distribución de los caudales futuros proyectados para el periodo 2020-2050, muestran una reducción del 32% aproximado con respecto al periodo 1981-2019, este resultado sin contar la ocurrencia del fenómeno del niño o de la niña. El trabajo permitió comprobar la alta correlación estadística de los registros de las estaciones virtuales extraídas con respecto al registro de las estaciones meteorológicas del SENAMHI, lo cual nos refiere una alta confiabilidad de registro de datos.

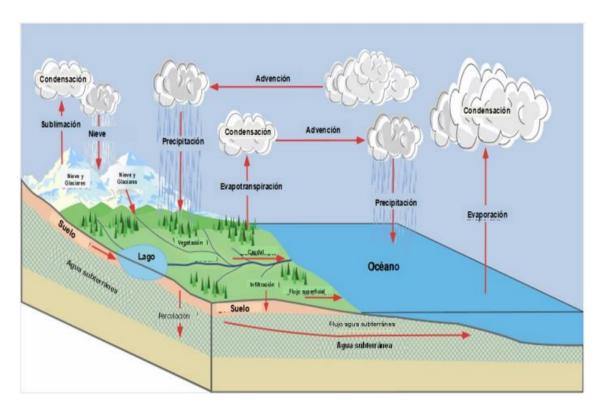
Del Aguila (2021), en su investigación denominada "Modelamiento de proceso hidrológicos en cuencas de la sierra central del Perú", tuvo como objetivo modelar los procesos hidrológicos en las cuencas Anya y Mchique. pertenecientes a la cuenca del río Mantaro, Junín. Se utilizaron dos modelos para la generación de la escorrentía, el modelo empírico mensual Lutz Scholtz (LS) y el modelo semidistribuido diario SWAT. En base a la ecuación de balance hídrico y desempeño de ambos modelos, se planteó una modificación al modelo Lutz Scholtz para el cálculo de la Precipitación Efectiva mensual, utilizándose la metodología de la curva número con herramientas de los programas ArcGis y HecGeoHms 10.4. Se concluye que los indicadores de desempeño fueron buenos con los tres modelos probados, verificando que los estadísticos mejoraron con los modelos SWAT y LSM; en la cuenca Mchique se obtuvo un 66.7% de indicadores aprobatorios en todos los modelos probados. Asimismo, se estudió el efecto espacio temporal del cambio climático en el escurrimiento de las cuencas a través de cinco modelos climáticos globales (Acces, bcc_csm1, BNU_ESM, CMCC_CM y GISS_E2) y dos escenarios de emisiones (RCP 4.5 y RCP 8.5). La simulación se realizó con SWAT para el período 2070-2100. Los resultados sugieren que habría un incremento de caudales en comparación con el período base 1980-2010 en ambas cuencas; en promedio el caudal en Anya aumentaría en 29.4% y 34.1% y en Mchique 5.4% y 10.8% en RCP 4.5 y RCP 8.5 respectivamente. El trabajo de investigación validó el modelo hidrológico SWAT y permitió realizar el modelamiento en una unidad hidrográfica, asimismo, proporciona confiabilidad para la aplicación de modelos climáticos globales.

Traverso et. al (2022), en su estudio titulado "Monitoreo hidrológico en el tiempo cuasi real en la vertiente del Pacífico empleando el modelo hidrológico SWAT", tuvo como objetivo establecer el conocimiento de la información hidrológica muy cercana a la realidad en la vertiente del Pacífico peruano. Este estudio se ha centrado en emplear el modelo semidistribuido SWAT ("Soil and Water Assessment Tools") en la vertiente del Pacífico peruano y llevarlo a un sistema operativo de monitoreo hidrológico de tiempo cuasi-continuo; durante su

desarrollo el modelo fue calibrado y validado empleando información registrada de caudales del periodo 1981 – 2020, evaluándose en dos etapas 1. desarrollo y parametrización del modelo semidistribuido SWAT, empleando información física y climática 2. Evaluación de la sensibilidad de parámetros del modelo hidrológico, 3. Regionalización hidrológica, y 4. Calibración y validación del modelado hidrológico con el objetivo de determinar parámetros y sus valores óptimos y 2) Realizar la validación del modelado hidrológico, evaluando la capacidad predictiva de los parámetros encontrados en el proceso de calibración; se ha encontrado eficiencias diarias de NSE próximas a 0.5 a 0.75. Posteriormente finalizado los pasos de parametrización, calibración y validación hidrológica, se ha realizado el proceso de operativización del modelo, esto mediante la actualización diaria de los datos climáticos disponibles (precipitaciones y temperaturas) del producto PISCO, agregándolos al modelamiento de manera automática, seguidamente realizando la ejecución diaria del modelo hidrológico. Se concluye finalmente obteniendo las salidas de los caudales en toda la vertiente del Pacifico peruano a un nivel de subcuencas. La presente investigación, validó el modelo semidistribuido SWAT para la simulación en una cuenca hidrográfica.

2.2. Bases teóricas

2.2.1. Hidrología


La hidrología es la ciencia natural que estudia el agua, su origen, circulación y distribución en la superficie terrestre, sus propiedades químicas y físicas y su relación con el medio ambiente, incluidos los seres vivos. (Villón, 2004)

2.2.2. Ciclo hidrológico

El ciclo hidrológico es el tema central de la hidrología, es un punto útil desde el cual comienza el estudio de la hidrología. El ciclo comprende una serie de procesos continuos e interdependientes de movimiento y transferencia de agua en la tierra, océano, cuerpos de agua y atmósfera. El ciclo no tiene principio ni fin y se puede definir como el conjunto de trayectorias que describe el agua en la naturaleza, con independencia del estado en que se encuentre. De hecho, la

hidrología abarca el estudio de cada uno de los componentes que constituyen el ciclo hidrológico de manera global y separada. El ciclo hidrológico permite definir entradas y salidas en la cuenca, de manera que puede determinarse un balance (Del Aguila, 2021).

Figura 1
Principales componentes del Ciclo hidrológico

Nota. Tomado de Ordoñes (2011).

2.2.3. Cuenca hidrográfica

Es un espacio definido por la naturaleza, con base en la divisoria de las aguas y la escorrentía superficial. En la práctica, las zonas más altas y los cerros que circundan un río definen la cuenca hidrográfica; allí se ubican los recursos naturales, las ciudades, las actividades humanas, la infraestructura y servicios de las poblaciones (Guevara, 2015).

2.2.4. Subcuenca hidrográfica

Las cuencas hidrográficas están estructuradas jerárquicamente, ya que pueden subdividirse en subcuencas, delimitadas también por una línea imaginaria generada por las partes más altas de las montañas y/o cerros que divide a las cuencas adyacentes y distribuye el escurrimiento originado por la precipitación que en cada sistema de corrientes fluye hacia el punto de salida de la cuenca y donde se concentran los escurrimientos que desembocan en el curso principal del río. Al interior de cada subcuenca se ubican las microcuencas, cuyos límites pueden incluir o no límites administrativos, como los de un ejido o un municipio (López y Patrón, 2013).

2.2.5. Intercuenca

Es un área que recibe drenaje de otras unidades aguas arriba. En función del criterio del área drenada, se hace la distinción entre río principal y tributario (Núñez, 2011).

2.2.6. Balance hidrológico

Fattorelli y Fernandez (2011), mencionan que el balance hidrológico relaciona las variables que intervienen en el ciclo hidrológico: precipitación, evapotranspiración, escurrimiento superficial, almacenamiento superficial y subterráneo, y flujo de agua subterránea. Gutiérrez (2014), menciona que el conocimiento de la distribución, movimiento, cantidad, permanencia, variación y transporte del agua en los distintos lugares donde pueden concentrarse, sirve para el conocimiento de su balance ya que este debe estar basado en el proceso global que gobierna el ciclo hidrológico.

Las cantidades de agua involucradas en uno o varios de los procesos del ciclo hidrológico, usualmente pueden evaluarse mediante la siguiente ecuación diferencial:

$$I - Q = \frac{dS}{dt}$$

donde:

I : Aporte o afluente por unidad de tiempo.

Q: Descarga o efluente por unidad de tiempo.

 $\frac{dS}{dt}$: Cambio de almacenaje por unidad de tiempo.

Esta ecuación permite plantear el balance hidrológico (Gutiérrez, 2014).

2.2.7. Modelo hidrológico

Es la representación simplificada de los procesos hidrológicos en una cuenca e intercuenca (Sánchez, 2021). Los modelos hidrológicos se clasifican de la siguiente manera:

a. Modelos Agregados

Sánchez (2021), señala que el modelo agregado es empleado para cuencas e intercuencas que presentan características homogéneas del suelo y pendiente.

b. Modelos Semidistribuido

Sánchez (2021), señala que el modelo semidistribuido es empleado para unidades hidrográfica que presentan características heterogéneas del suelo y pendiente, se divide en unidades de respuestas hidrológicas (HRU, por sus siglas en inglés) siendo áreas homogéneas.

2.2.8. Herramienta para la evaluación del suelo y agua (SWAT)

SWAT es un modelo semidistribuido desarrollado por el Dr. Jeff Arnold para el Departamento de Agricultura de los Estados Unidos (USDA, por su sigla en inglés). Asimismo, el modelo SWAT es empleado para predecir el impacto del uso de suelo y el cambio climático (Sánchez, 2021).

Según León (2017), el modelo SWAT la fase terrestre del ciclo hidrológico se simula mediante la siguiente ecuación:

$$SW_t = SW_0 + \sum_{t=1}^{t} (R_{day} - Q_{surt} - E_a - w_{seep} - Q_{qw})$$

donde:

 SW_t : Contenido final de agua en el suelo (mm H_2O)

 SW_0 : Contenido de agua inicial del suelo en el día (mm H_2O)

 R_{day} : Cantidad de precipitación en el día (mm H₂O)

t: Tiempo (días)

 Q_{surt} : Cantidad de escorrentía superficial en un día (mm H₂O)

 w_{seep} : Cantidad de agua que se infiltra en el perfil de suelo en un día (mm

 H_2O)

 E_a : Cantidad de evapotranspiración en un día (mm H_2O)

 Q_{aw} : Cantidad de flujo de retorno en un día (mm H₂O)

2.2.9. Indicadores estadísticos

Los indicadores estadísticos permiten evaluar el rendimiento del modelo hidrológico a escala de cuenca e intercuenca, de acuerdo a la Tabla 1.

 Tabla 1

 Indicadores estadísticos para evaluar el rendimiento del modelo hidrológico

Indicadores estadísticos	Insatisfactorio	Satisfactorio	Bueno	Muy bueno
NSE	NSE≤0.5	0.50 <nse≤0.65< td=""><td>0.65<nse≤0.75< td=""><td>0.75<nse≤1< td=""></nse≤1<></td></nse≤0.75<></td></nse≤0.65<>	0.65 <nse≤0.75< td=""><td>0.75<nse≤1< td=""></nse≤1<></td></nse≤0.75<>	0.75 <nse≤1< td=""></nse≤1<>
PBIAS	PBIAS≥±25	±15 <pbias≤ td="" ±25<=""><td>±10<pbias≤ td="" ±15<=""><td>PBIAS≤±10</td></pbias≤></td></pbias≤>	±10 <pbias≤ td="" ±15<=""><td>PBIAS≤±10</td></pbias≤>	PBIAS≤±10
R^2	<i>R</i> ² ≤0.5	$0.5 < R^2 \le 0.65$	$0.65 < R^2 \le 0.75$	0.75< <i>R</i> ² ≤ 1

Nota. Tomado de Calizaya et al. (2020). Donde NSE: coeficiente de eficiencia, PBIAS: porcentaje de sesgo y R²: coeficiente de determinación.

Los indicadores estadísticos se detallan de acuerdo a lo siguiente:

a. Coeficiente de eficiencia Nash - Sutcliffe (NSE)

Determina el valor de la varianza residual comparado con la varianza de los datos observados, si el valor se acerca más a 1, el modelo es más preciso (Sánchez, 2021). Se representa por la siguiente ecuación:

$$E = 1 - \frac{\sum_{i=1}^{n} (Q_{sim i} - Q_i)^2}{\sum_{i=1}^{n} (Q_1 - \underline{Q})^2}$$

donde:

 $Q_{sim i}$: Caudal simulado en el tiempo i.

 Q_i : Caudal observado en el tiempo i.

Q: Promedio de caudales observados.

b. Porcentaje de sesgo (PBIAS)

Mide la tendencia promedia de los datos simulados con los datos observados (Sánchez, 2021). Se representa por la siguiente ecuación:

$$PBIAS = 100 * \sum_{i=1}^{N} \frac{(Q_{oi} - Q_{si})}{(Q_{oi})}$$

donde:

N: Número de datos

 Q_{si} : Caudal simulado en el tiempo i (m³/s)

 Q_{oi} : Caudal observado en el tiempo i (m³/s)

c. Coeficiente de determinación (R^2)

Mide el grado de correlación entre los datos observados y los datos simulados (Sánchez, 2021). Se representa por la siguiente ecuación:

$$R^{2} = \frac{\left[\sum_{i=1}^{N} (Q_{oi} - Q_{op})(Q_{si} - Q_{sp})\right]^{2}}{\sum_{i=1}^{N} (Q_{oi} - Q_{op})^{2} * \sum_{i=1}^{N} (Q_{si} - Q_{sp})^{2}}$$

donde:

N: Número de datos

 Q_{si} : Caudal simulado en el tiempo i (m³/s)

 Q_{oi} : Caudal observado en el tiempo i (m³/s)

 Q_{op} : Promedio del caudal observado (m³/s)

 Q_{sp} : Promedio del caudal simulado (m³/s)

2.2.10. Modelo climático

Representación numérica del sistema climático basada en las propiedades físicas, químicas y biológicas de sus componentes, en sus interacciones y en sus procesos de retroalimentación, y que recoge todas o algunas de sus propiedades conocidas. El sistema climático se puede representar mediante modelos de diverso grado de complejidad; en otras palabras, para cada componente o conjunto de componentes es posible identificar un espectro o jerarquía de modelos que difieren en aspectos tales como el número de dimensiones espaciales, el grado en que aparecen representados explícitamente los procesos físicos, químicos o biológicos, o el grado de utilización de parametrizaciones empíricas. Se está evolucionando hacia modelos más complejos que incorporan química y biologías interactivas. Los modelos climáticos se utilizan como herramienta de investigación para estudiar y simular el clima y para fines operativos, en particular predicciones climáticas mensuales, estacionales e interanuales (Panel Intergubernamental de Expertos sobre el Cambio Climático [IPCC], 2018).

2.2.11. Modelos de circulación global (MCG)

Estos modelos en la actualidad se encuentran disponibles para simular la respuesta del sistema climático global al aumento de las concentraciones de gases de efecto invernadero. Los MCG también evalúan el cambio climático y lo cuantifican además de proyectar los cambios futuros a escalas regionales y subregionales (Munévar et al., 2020).

Según Ramos (2014), los Modelos Climáticos Globales (MCG) son herramientas que sirven para determinar, comprender y visibilizar el comportamiento climático en diferentes escalas temporales. Estas herramientas permiten conocer el grado, se perciben los cambios climáticos; ya sean por la variabilidad natural, actividad humana o por la combinación de estos dos. En la Tabla 2 se muestran los 21 modelos climáticos más actuales.

Tabla 2Los 21 Modelos Climáticos Globales del CIMP5

Modelos	Organización
ACCESS1.0	Organización de Investigación Científica e Industrial del Commonwealth de Australia
BNU-ESM	Universidad Normal de Beijing de China
CCSM4	Centro Nacional de Investigación Atmosférica de EE. UU.
CESM1-BGC	Centro Nacional de Investigación Atmosférica de EE. UU.
CNRM-CM5	Formación Avanzada en Computación Científica de Francia
CSIRO-Mk3.6	Organización de Investigación Científica e Industrial del Commonwealth de Australia
CanESM2	Centro Canadiense de Análisis y Modelización del Clima de Canadá
GFDL-CM3	Laboratorio de dinámica de fluidos geofísica de EE.UU.
GFDL-ESM2G	Laboratorio de dinámica de fluidos geofísica de EE.UU.
GFDL-ESM2M	Laboratorio de dinámica de fluidos geofísica de EE.UU.
IPSL-CM5A- LR	Instituto Pierre Simon Laplace de Francia
IPSL-CM5A- MR	Instituto Pierre Simon Laplace de Francia
MIROC-ESM CHEM	Instituto de Investigación Atmosférica y Oceánica (Universidad de Tokio) de Japón
MIROC-ESM	Instituto de Investigación Atmosférica y Oceánica (Universidad de Tokio) de Japón
MIROC5	Instituto de Investigación Atmosférica y Oceánica (Universidad de Tokio) de Japón
MPI-ESM-LR	Instituto de Investigación Atmosférica y Oceánica (Universidad de Tokio) de Japón
MPI-ESM-MR	Instituto Max Planck de Meteorología de Alemania

MRI-CGCM3	Meteorological Research Institute
NorESM1-M	Instituto de Investigaciones Meteorológicas de Japón
bcc-csm1-1	Centro Bjerknes para la Investigación del Clima, Instituto Meteorológico de Noruega
inmcm4	Academia de Ciencias de Rusia, Instituto de Matemáticas Numéricas de Rusia

Nota. La tabla muestra los 21 Modelos Climáticos Globales que tiene el CIMP5 con sus respectivas organizaciones.

2.2.12. Escenario de emisiones

El IPCC (2018) lo define como la representación plausible de la evolución futura de las emisiones de sustancias que podrían ser radiativamente activas (p. ej., gases de efecto invernadero, aerosoles), basada en un conjunto coherente de supuestos sobre las fuerzas que las impulsan (p. ej., el desarrollo demográfico y socioeconómico y la evolución tecnológica) y las principales relaciones entre ellos. Los escenarios de concentraciones, obtenidos a partir de los escenarios de emisión, se introducen en un modelo climático para obtener proyecciones climáticas.

2.2.13. Método de downscaling

Los Modelo de Circulación Global a pesar de ser herramientas valiosas de predicción del clima en el futuro, no pueden predecir las diferencias de la variabilidad climática, debido a que sus resoluciones espaciales oscilan de 100 a 500 km, por lo que, si se desea utilizar esta variable como dato de entrada para un modelo de impacto, no se obtendrían resultados veraces (Munévar y Saavedra, 2020). El IPCC (2018), menciona que el método consistente en extraer información de escalas local a regional (de hasta 100 km) de modelos o análisis de datos a mayor escala. Existen dos métodos principales: dinámico y empírico/estadístico. El método dinámico está basado en los resultados de modelos climáticos regionales, de modelos globales con resolución espacial variable o de modelos globales de alta resolución. Los métodos empíricos/estadísticos están basados en observaciones y desarrollan relaciones

estadísticas que vinculan las variables atmosféricas de gran escala con las variables climáticas de escala local/regional. En todos los casos, la calidad del modelo utilizado sigue siendo una importante limitación en la calidad de la información a escalas reducidas. Los dos métodos pueden combinarse, por ejemplo, mediante la aplicación de la reducción de escala con el método empírico/estadístico a los resultados de un modelo climático regional, que procura una reducción de escala dinámica de un modelo climático global.

Son conocidos dos métodos de downscaling hasta el momento, el método de reducción de escala dinámica y el método de reducción de escala estadística o empírica.

a) Método Downscaling estadístico

El downscaling estadístico es considerada una de las técnicas más empleada en la reducción de escala de los resultados de los modelos climáticos globales, puede derivar dicha información climática de una escala gruesa a una fina o de una escala mensual o anual a una escala diaria. Esta técnica se caracteriza por establecer relaciones empíricas entre campos de baja resolución llamados predictores y las variables de superficie. Existen diversas maneras de desarrollar el método downscaling estadístico, sin embargo, es importante saber o notar que este modelo implícitamente asume que cualquier relación obtenida se mantendrá en el futuro (Palomino, 2016). Asimismo, Fiseha et al. (2012) mencionan que el método downscaling estadístico se basa en el desarrollo de relaciones cuantitativas de variables locales de superficie (predictandos) y variables atmosféricas a gran escala (predictores).

A pesar de que ambos modelos han sido usados ampliamente, tiene limitaciones en datos que no pueden ser verificados en el contexto de cambio climático, representando así, incertidumbre manifestada en las simulaciones finales del clima (Munévar y Saavedra, 2020). Astorayme (2017), clasifica a los métodos de regionalización (downscaling) estadísticos, como de transformación paramétrica y de transformación no paramétrica. Los métodos de downscaling estadístico de transformación no paramétrica, los cuales emplean como

funciones de transferencia distribuciones teóricas de probabilidad, son denominados también Mapeo de Cuantiles (QM por sus siglas en inglés) y se ha demostrado que tienen ventaja sobre los métodos de transformación paramétrica.

b) Método de Mapeo de Cuantiles

Los algoritmos de corrección de sesgo del método QM se utilizan comúnmente para modificar el sesgo entre los datos de observación y los datos de salida del modelo climático (Lee y Singh, 2018). El concepto básico del método QM es utilizar la misma función de probabilidad acumulada para los conjuntos de datos simulados y observados. La ecuación general del método QM se puede definir de la siguiente manera según (Sunghun et al., 2021):

$$\widehat{X_{m,p}}(t) = F_{o,h}^{-1} \{ F_{m,h} [X_{m,h}(t)] \}$$

donde:

 $\widehat{X_{m,p}}(t)$: Datos del modelo simulados en el momento t del período proyectado.

 $F_{m,h}$: CDF de los datos sin procesar del modelo RCM.

 $F_{o,h}^{-1}$: CDF inversa de los datos observados.

2.2.14. R y RStudio

Según Komperda (2017), señala que el R y el RStudio proporcionan herramientas integrales para visualizar y analizar los datos cuantitativos. El lenguaje de programación R posee amplios paquetes, el cual tiene las siguientes funciones:

- Fácil agregación de series temporales multivariadas en escalas temporales personalizadas.
- Comparación de resúmenes estadísticos entre diferentes conjuntos de datos en escalas temporales múltiples.
- Comparación de las relaciones entre variables y/o diferentes conjuntos de datos en escalas temporales múltiples
- Transformación de series temporales en escalas personalizadas.

2.2.15. Marco normativo

El MINAM, en el año 2018 emitió la Ley N° 30754 "Ley Marco sobre Cambio Climático", ley que tiene por objeto establecer los principios, enfoques y disposiciones generales para coordinar, articular, diseñar, ejecutar, reportar, monitorear, evaluar y difundir las políticas públicas para la gestión integral, participativa y transparente de las medidas de adaptación y mitigación al cambio climático, a fin de reducir la vulnerabilidad del país al cambio climático, aprovechar las oportunidades del crecimiento bajo en carbono y cumplir con los compromisos internacionales asumidos por el Estado ante la Convención Marco de las Naciones Unidas sobre Cambio Climático.

El Gobierno Nacional, en el año 2011 emitió la Ley N° 29664 "Ley que crea el Sistema Nacional de Gestión del Riesgo de Desastres", ley que tiene por objetivo establecer los principios, lineamientos de política, componentes, procesos e instrumentos de la gestión del riesgo de desastres, para identificar y reducir los riesgos asociados a los peligros o minimizar sus efectos, así como evitar la generación de nuevos riesgos, preparación y atención antes situaciones de desastres. La gestión de riesgo de desastres, está basada en la investigación y registros de informaciones, el cual orienta a las políticas, estrategias y acciones en todos los niveles de gobierno y la sociedad con la finalidad de proteger la vida de la población y patrimonio de las personas y del estado.

2.3. Conceptual

2.3.1. Proyecciones climáticas

Son respuestas simuladas del sistema climático a diversos escenarios de emisiones o trayectorias de concentraciones representativas (RCP, por sus siglas en ingles) de gases de efecto invernadero y aerosoles, frecuentemente basadas en simulaciones mediante modelos climáticos. Las proyecciones climáticas se diferencian de las predicciones climáticas por su dependencia del escenario de emisiones, concentraciones y forzamiento radiativo utilizado, basado en supuestos relativos, por ejemplo, a un devenir socioeconómico y tecnológico que puede o no materializarse (IPCC, 2018). Las proyecciones climáticas sirven a menudo como materia prima para la creación de escenarios

climáticos, pero éstos suelen requerir información adicional, como datos sobre el clima observado en la actualidad (Servicio Nacional de Meteorología e Hidrología [SENAMHI], 2022).

El IPCC (2018), permite definir de manera concisa a las proyecciones climáticas como respuestas simuladas del sistema climático las cuales se hacen a través de la Trayectoria de Concentración Representativa (RCP) siendo esto un elemento medible y observable.

2.3.2. Trayectorias de Concentración Representativa (RCP)

Son escenarios de emisiones de gases de efecto invernadero, los cuales tienen RCP 4.5 y RCP 8.5, donde cada una incluye temperatura máxima diaria, temperatura diaria y precipitación para los períodos de 1950 a 2099 (NASA, 2021). Según el IPCC (2018), se definen como escenarios que incorporan series temporales de emisiones y concentraciones de la gama completa de gases de efecto invernadero (GEI), aerosoles y gases químicamente activos, así como el uso de la tierra y la cubierta terrestre. La palabra representativa significa que cada RCP ofrece uno de los muchos escenarios posibles que conducirían a las características específicas de forzamiento radiativo. Las Trayectorias de Concentración Representativa se clasifican de la siguiente manera:

RCP 4.5: Trayectorias de estabilización intermedia en la cual el forzamiento radiativo se limita a aproximadamente 4.5 W/m² en el año 2100 (la correspondiente trayectoria de concentración ampliada mantiene concentraciones constantes después del año 2150).

RCP 8.5: Trayectoria alta que alcanza valores superiores a 8.5 W/m² en el año 2100 (la correspondiente trayectoria de concentración ampliada mantiene emisiones constantes después del año 2100 hasta el año 2150 y concentraciones constantes después del año 2250).

2.3.3. Temperatura máxima

Es la temperatura más alta registrada durante el día, en general se registra después de mediodía (SENAMHI, 2022).

2.3.4. Temperatura mínima

Es la temperatura más baja registrada durante la noche y madrugada del día (SENAMHI, 2022).

2.3.5. Precipitación

Es cualquier forma de hidrometeoro que cae del cielo y llega a la superficie terrestre, líquida o sólida como lluvia, nieve, granizo, etc. (SENAMHI, 2022).

2.3.6. Escorrentía

Es una corriente de agua que circula en la superficie o subterránea en una cuenca hidrográfica, que proviene de la precipitación (Lario y Bardaji, 2017). Asimismo, Pazos y Arias (2019), mencionan que la escorrentía es el agua que proviene de la lluvia o de los deshielos formando parte de la corriente de agua en una cuenca, se clasifican en escorrentía superficial, escorrentía subsuperficial y escorrentía subterránea.

2.3.7. Escorrentía superficial

Según Araque et al. (2019) menciona que la escorrentía superficial es parte de la precipitación que no se infiltra y que forma parte de la red de drenaje recorriendo por la superficie del terreno por gravedad

2.3.8. Caudal

Volumen de agua que fluye a través de una sección transversal de un río o canal en una unidad de tiempo (régimen temporal) (SENAMHI, 2022). Asimismo, según Araque et al. (2019), indica que el caudal es la cantidad de agua que circula a través de un cauce natural en una cuenca hidrográfica.

2.4. Definición de términos básicos

2.4.1. Mitigación y adaptación basada en cuencas hidrográficas

Protege, restaura y gestiona sosteniblemente el ciclo hidrológico y los sistemas hídricos existentes en las cuencas hidrográficas del Pacífico, Atlántico y Titicaca, a través de una gestión y ordenamiento del territorio que prevea su vulnerabilidad ante los efectos del cambio climático, y que garantice el derecho al agua (Ley N°30754, 2018).

2.4.2. Cambio climático

Cambio del clima atribuido directa o indirectamente a la actividad humana que produce una variación en la composición de la atmósfera global y que se suma a la variabilidad natural del clima observada durante períodos de tiempos comparables (Ley N°30754, 2018).

2.4.3. Calibración de un modelo

Proceso por el cual los parámetros de un modelo se ajustan para obtener concordancia entre los resultados generados por el modelo y los valores medidos de las variables (Organización Meteorológica Mundial [OMM], 2012).

2.4.4. Panel Intergubernamental sobre el cambio climático IPCC

El Panel Intergubernamental sobre el Cambio Climático (IPCC) es el organismo de las Naciones Unidas para evaluar la ciencia relacionada con el cambio climático creado en 1988 por la Organización Meteorológica Mundial (OMM) y el Programa de las Naciones Unidas para el Medio Ambiente (PNUMA), está conformado por los gobiernos que forman parte de las Naciones Unidas o la OMM, actualmente lo conforman 195 miembros, y tiene como objetivo proporcionar a los gobiernos de todos los niveles información científica que puedan utilizar para desarrollar políticas climáticas, estos informes son a su vez aporte clave para las negociaciones internacionales sobre el cambio climático. Para los informes de evaluación, los expertos ofrecen su tiempo como autores del IPCC para evaluar los miles de artículos científicos publicados cada año para proporcionar un resumen completo, se sabe sobre los impulsores del cambio climático, sus impactos y riesgos futuros, y cómo la adaptación y la mitigación pueden reducir esos riesgos. Una revisión abierta y transparente por parte de expertos y gobiernos de todo el mundo es una parte esencial del proceso del IPCC, para garantizar una evaluación objetiva y completa y para reflejar una amplia gama de puntos de vista y experiencia. A través de sus evaluaciones, el IPCC identifica la fuerza del acuerdo científico en diferentes áreas e indica dónde se necesita más investigación (Panel Intergubernamental de Expertos sobre el Cambio Climático [IPCC], 2021).

2.4.5. Ensamble

Conjunto de simulaciones paralelas de modelos que caracterizan condiciones climáticas históricas, predicciones climáticas o proyecciones climáticas. La variación de los resultados entre los elementos del ensamble puede proporcionar una estimación del grado de incertidumbre basada en los modelos. Las fuentes restantes de incertidumbre no consideradas en los ensambles de modelos se relacionan con errores o sesgos sistemáticos de los modelos, permite evaluarse comparando de forma sistemática las simulaciones de modelos con las observaciones, cuando están disponibles (IPCC, 2018).

2.4.6. Incertidumbre

Estado de conocimiento incompleto que puede deberse a una falta de información o un desacuerdo con respecto a lo que es conocido o incluso cognoscible. Puede reflejar diversos tipos de situaciones, desde la imprecisión en los datos hasta una definición ambigua de un concepto o término, una comprensión incompleta de los procesos críticos, o una proyección incierta del comportamiento humano. Por ello, la incertidumbre puede representarse mediante valores cuantitativos (p. ej., una función de densidad de probabilidad) o mediante asertos cualitativos (que reflejen, por ejemplo, una apreciación de un equipo de expertos) (IPCC, 2018).

2.4.7. Forzamiento radiativo

Variación, expresada en Wm², del flujo radiativo neto (la descendente menos la ascendente) en la tropopausa o en la parte superior de la atmósfera, debido a una variación del causante externo del cambio climático; por ejemplo, una variación de la concentración de dióxido de carbono (CO²) o de la radiación solar. El forzamiento radiativo tradicional se calcula manteniendo fijas en un valor no perturbado todas las propiedades de la troposfera y dejando que las temperaturas estratosféricas, una vez perturbadas, se reajusten hasta alcanzar el equilibrio dinámico-radiativo (IPCC, 2018).

2.4.8. Clima

El clima se suele definir en sentido restringido como el estado promedio del tiempo y, más rigurosamente, como una descripción estadística del tiempo atmosférico en términos de los valores medios y de la variabilidad de las magnitudes correspondientes durante períodos que pueden abarcar desde meses hasta miles o millones de años. El período de promedio habitual es de 30 años, según la definición de la Organización Meteorológica Mundial. Las magnitudes son casi siempre variables de superficie (p. ej., temperatura, precipitación o viento). En un sentido más amplio, el clima es el estado del sistema climático en términos tanto clásicos como estadísticos (IPCC, 2018).

2.4.9. PISCO (Peruvian interpolated data of the SENAMHI's Climatological and Hydrological Observations)

Datos grillados de lluvia disponibles para Perú desde 1981 hasta el presente, con una resolución espacial de 0.1°x0.1°. Consiste en la combinación de datos de lluvia provenientes de pluviómetros en superficie de la red de estaciones del SENAMHI y datos satelitales de lluvia, utiliza métodos de interpolación geoestadística (Aybar et al., 2019).

2.4.10. Estaciones

Conjunto de instrumentos y/o sensores que realiza mediciones de tipo: meteorológicas, hidrológicas, agrometeorológicas o de vigilancia atmosférica, los cuales están agrupados en una ubicación geográfica con mediciones representativas del entorno. Dichas mediciones son tomadas en superficie y de instalación fija (Servicio Nacional de Meteorología e Hidrología [SENAMHI], 2021).

2.4.11. Variabilidad climática

Denota las variaciones del estado medio y otras características estadísticas (desviación típica, sucesos extremos, etc.) del clima en todas las escalas espaciales y temporales más amplias que las de los fenómenos meteorológicos. La variabilidad puede deberse a procesos internos naturales del sistema climático (variabilidad interna) o a variaciones del forzamiento externo

natural o antropógeno (variabilidad externa) (IPCC, 2018). Por lo tanto, la variabilidad climática se refiere a todas las variaciones del clima que estén por encima o debajo de sus valores promedios (Servicio Nacional de Meteorología e Hidrología [SENAMHI], 2020a).

2.4.12. Anomalía de caudal

Es una medida de desviación del caudal de su valor normal a largo plazo. Se toma como "Normal", al valor promedio de caudal en un periodo de 30 años (1981 – 2010). La anomalía de caudal (AC) puede ser calculado para un mes, una temporada o un año (Ávalos et al., 2021).

2.4.13. NYSKIP

Número de años para no imprimir la salida. Algunas simulaciones necesitaran un periodo de calentamiento o equilibrio. El uso de un periodo de equilibrio se vuelve más importante a medida que se acorta el periodo de simulaciones de interés. Para las simulaciones de 30 años, un periodo de equilibrio es opcional. Para una simulación que cubra 5 años o menos, se recomienda un periodo de equilibrio. Un periodo de equilibrio de un año suele ser suficiente para que el ciclo hidrológico sea plenamente operativo. (Soil Water Assessment Tool [SWAT], 2012a).

2.4.14. Validación de un modelo

Evaluación de la capacidad de un modelo específico de un lugar para proporcionar predicciones suficientemente precisas (OMM, 2012).

III. HIPÓTESIS Y VARIABLES

3.1. Hipótesis

3.1.1. Hipótesis general

El comportamiento de la escorrentía en la intercuenca Alto Huallaga en el periodo 2020-2059, se predice satisfactoriamente según proyecciones climáticas.

3.1.2. Hipótesis específicas

H1: La intercuenca Alto Huallaga es representada satisfactoriamente para el periodo de 1981 al 2016 mediante el modelo semidistribuido SWAT.

H2: La información climática usando con el método downscaling estadístico permite proyectar adecuadamente caudales en la intercuenca Alto Huallaga según trayectorias de concentración representativa 4.5 y 8.5 para el periodo 2020 al 2059, a través del modelo semidistribuido SWAT.

H3: Las anomalías de los caudales promedios son altas según trayectorias de concentración representativa 4.5 y 8.5 en la intercuenca Alto Huallaga para el periodo 2020 – 2059.

3.2. Definición conceptual de variables

Según Sociedad Hispana de Investigadores Científicos [SINCIE] (2014), indica la denominación de las variables en el nivel de investigación predictivo siendo variable endógena como la variable de estudio que se va a predecir y la variable exógena como la variable predictora.

Variable endógena: Escorrentía

La escorrentía es el agua que proviene de la lluvia o de los deshielos formando parte de la corriente de agua en una cuenca, se clasifican en escorrentía superficial, escorrentía subsuperficial y escorrentía subterránea (Pazos y Arias, 2019).

• Variable exógena: Proyecciones climáticas

Las proyecciones climáticas son la respuesta simulada del sistema climático a diversos escenarios de emisiones o de concentraciones de gases de efecto invernadero y aerosoles, frecuentemente basadas en simulaciones mediante modelos climáticos. Las proyecciones climáticas se diferencian de las climáticas del predicciones por su dependencia escenario de emisiones/concentraciones/forzamiento radiactivo utilizado. basado en supuestos relativos, por ejemplo, a un devenir socioeconómico y tecnológico que puede o no materializarse (IPCC, 2018).

3.2.1. Operacionalización de variables

En la Tabla 3, se muestra la operacionalización de las variables de la presente investigación.

Tabla 3 *Operacionalización de variables*

Variable exógena	Definición operacional	Dimensiones	Indicadores	Índices	Método	Técnica
Proyecciones climáticas	Las proyecciones climáticas, se evalúan a través de las trayectorias de concentración representativa, en el análisis de su elemento observable y medible mediante la ficha de recolección.		Precipitación	mm	Método estadístico	Observaciór documental
		Trayectorias de concentración representativa (RCP 4.5)	Temperatura máxima	°C	Método estadístico	Observaciór documental
			Temperatura mínima	°C	Método estadístico	Observaciór documental
		Trayectorias de	Precipitación	mm	Método estadístico	Observación documenta
		concentración representativa (RCP 8.5)	Temperatura máxima	°C	Método estadístico	Observación documenta
			Temperatura mínima	°C	Método estadístico	Observaciór documental
Variable endógena	Definición operacional	Dimensión	Indicador	Índice	Método	Técnica
Escorrentía	La escorrentía se evalúa a través de la escorrentía superficial, en el análisis de su elemento observable y medible mediante la ficha de recolección.	Escorrentía superficial	Caudal del río	m³/s	Método estadístico	Observaciór documental

IV. DISEÑO METODOLÓGICO

4.1. Tipo y diseño de investigación

4.1.1. Tipo de investigación

La investigación es básica, ya que tiene como propósito proveer información sobre el comportamiento de la escorrentía del 2020–2059 según proyecciones climáticas en la intercuenca Alto Huallaga, su finalidad es cognoscitivo.

Ñaupas et al. (2018), menciona que la investigación básica se basa en descubrir nuevos conocimientos, asimismo se emplea como base a la investigación aplicada o tecnológica. Asimismo, Nicomedes (2018), describe que la investigación básica está comprendida en los siguientes estudios de investigación: exploratorio, descriptivo, explicativo y predictivo.

4.1.2. Diseño de investigación

Según Álvarez y Risco (2020), el diseño de investigación es un diseño no experimental de corte longitudinal:

Es no experimental ya que "no existe manipulación de las variables por parte del investigador" y Longitudinal ya que "se mide en dos o más ocasiones la o las variables estudiadas. Se compara los valores de las variables en diferentes ocasiones ya sea futuro y presente o presente y pasado"

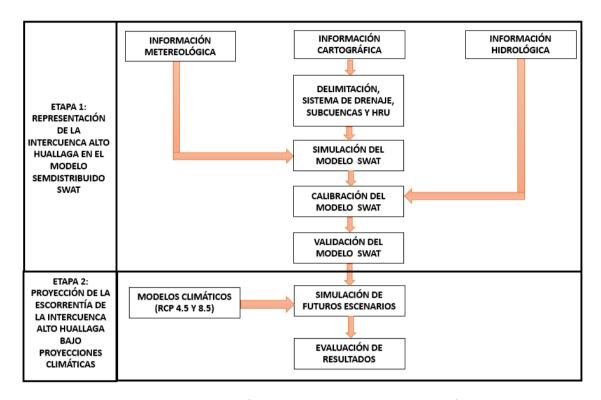
En la presente investigación no se manipulan variables o se modifican la realidad, así también se medirán valores en diferentes ocasiones en el tiempo (pasado y futuro).

4.1.3. Enfoque

El enfoque de la investigación es cuantitativo. Ñaupas et al. (2018), menciona que el enfoque cuantitativo consiste en la recolección y análisis de datos para contrastar la hipótesis formulada en la investigación mediante el uso de estadística descriptiva e inferencial.

4.1.4. Nivel de investigación

El nivel de investigación es predictivo. SINCIE (2014), señala que el nivel predictivo consiste en emplear información del pasado para predecir situaciones futuras. Asimismo, Ñaupas et. al (2018), indica que la investigación de nivel predictivo tiene como finalidad de prevenir y advertir condiciones adversas en el futuro como desastres naturales o situaciones no deseables, se aplica en investigaciones meteorológicas, geológica, geotecnia, hidrología y sociología.


En la investigación el evento a predecir es el comportamiento de la escorrentía según proyección climática, donde se prevé que el cambio climático (temperatura y precipitación) tendrá un efecto directo en los caudales de la intercuenca Alto Huallaga.

4.2. Método de investigación

El método de investigación según Pascual et al., (2021) es del tipo estadística, debido a que se establecen una secuencia de procedimientos para el manejo de datos, siguiendo etapas como la recolección, recuento, presentación síntesis y análisis de datos. estas etapas se encuentran inmersas en esta investigación tanto para la representación de la cuenca con el modelo semidistribuido SWAT, así como la proyección de caudales y el cálculo de anomalías. en la Figura 2 se puede observar el procedimiento que se siguió basadas en dicho método.

Figura 2

Diagrama de flujo de las etapas de la investigación

Nota: Las etapas de la investigación consisten en la representación de la intercuenca Alto Huallaga en el modelo semidistribuido SWAT y la proyección de la escorrentía de la intercuenca Alto Huallaga bajo proyecciones climáticas.

1. Etapa 1: Representación de la intercuenca Alto Huallaga mediante el modelo semidistribuido SWAT

En la representación de la intercuenca Alto Huallaga en el modelo semidistribuido SWAT, primero se ingresó la información cartográfica (mapa de tipo de suelo, mapa de uso de suelo, modelo digital de elevación) obteniendo la delimitación, las subcuencas y las unidades de respuestas hidrológicas (HRU). La delimitación, las subcuencas y el sistema de drenaje, se realizaron en el componente watershed delineator de la interfaz ArcSWAT, en el cual se ingresó la información del modelo digital de elevación. Asimismo, la obtención de las HRU se realizó en el componente HRU analysis de la interfaz ArcSWAT, donde se ingresó la información de uso de suelo, mapa de tipo de suelo y la clasificación de las pendientes.

Luego se ingresó la información meteorológica como la precipitación, las temperaturas (máximas y mínimas), la radiación solar, la velocidad del viento y la humedad relativa en el weather stations del componente write input tables de la interfaz ArcSWAT. Seguidamente se realizó la simulación del modelo hidrológico SWAT en el run SWAT del componente SWAT simulation de la interfaz ArcSWAT, colocándo el periodo 1981 - 2016, la distribución normal de la precipitación, la escala mensual y el periodo de calentamiento (NYSKIP) de 3 años. Luego se obtuvieron caudales mensuales simulado desde 01/01/1984 – 01/12/2016. En el periodo de 1981 al 1983 se usó para la recarga del acuífero de la intercuenca Alto Huallaga en el ArcSWAT, el cual no generó caudales simulados.

Asimismo, se realizó el proceso de la calibración y la validación del modelo semidistribuido SWAT, ambos se realizaron en el programa SWAT CUP, estos procesos se realizaron debido a que el modelo semidistribuido SWAT es complejo, ya que se simula los procesos hidrológicos de toda la cuenca hidrográfica basándose en datos empíricos. Para ambos procesos se necesitó los caudales mensuales históricos del producto PISCO H y M GR2M.

Para el proceso de calibración se realizó en el periodo de 1981 – 2004, considerándose 3 años de calentamiento, seguidamente se ingresó los caudales mensuales históricos, luego se realizó el análisis de sensibilidad donde se determinó de manera manual 23 parámetros sensibles, estos parámetros generaron cambio en la respuesta hidrológica, se muestran en la Tabla 4 los parámetros sensibles del modelo semidistribuido SWAT.

 Tabla 4

 Parámetros sensibles del modelo semidistribuido SWAT

Parámetro	Archivo	Descripción
SFTMP	bsn	Temperatura de las nevadas.
SURLAG	bsn	Tiempo de retraso de la escorrentía superficial.
GW DELAY	gw	Retraso de las aguas subterráneas
ALPHA BF	gw	Factor alfa de flujo base

GWQMN	gw	Profundidad límite de agua en el acuífero poco profundo
GW REVAP	gw	Coeficiente de las aguas subterráneas
REVAPMN	gw	Profundidad umbral del agua en el acuífero superficial
RCHRG DP	gw	Fracción de percolación del acuífero profundo
LATTTIME	hru	Tiempo de recorrido del flujo.
ESCO	hru	Factor de compensación de la evaporación del suelo.
SLSUBBSN	hru	Longitud media de la pendiente.
HRU SLP	hru	Pendiente media del talud
EPCO	hru	Factor de compensación de la absorción de las plantas.
OV N	hru	Valor "n" de Manning para el flujo terrestre.
CN2	mgt	Número de curva de escorrentía SCS.
CH N2	rte	El valor "n" de Manning para el canal principal.
CH K2	rte	Conductividad hidráulica efectiva en el aluvión del canal principal.
ALPHA BNK	rte	Factor alfa del caudal base para el almacenamiento en las orillas.
SOL BD	sol	Densidad aparente húmeda.
SOL AWC	sol	Capacidad de agua disponible de la capa de suelo.
SOL K	sol	Conductividad hidráulica saturada.
SOL Z	sol	Profundidad desde la superficie del suelo hasta el fondo de la capa.
USLE K	sol	Factor de erodabilidad del suelo.

Nota: Los parámetros sensibles del modelo semidistribuido SWAT se encuentran en el archivo de entrada como bsn: cuenca, gw: agua subterránea, hru: unidad de respuesta hidrológica, mgt: administración, rte: enrutamiento, sol: suelos.

Seguidamente, se realizó el ajuste de manera manual en los valores de los rangos mínimos y máximos de los parámetros sensibles. Luego se simuló el modelo y se obtuvieron caudales mensuales calibrados. Para evaluar el desempeño y la eficiencia del modelo hidrológico SWAT, se usaron 3 indicadores estadísticos los cuales fueron el coeficiente de eficiencia de Nash-Sutcliffe (NSE), el porcentaje de sesgo (PBIAS) y el coeficiente de determinación (R^2). Asimismo, para el proceso de la validación se realizó en el periodo de 2005 —

2016, considerándose 1 año de calentamiento, seguidamente se ingresó los caudales mensuales históricos, luego se usó los valores de los parámetros que fueron determinados en el proceso de la calibración en el cual se obtuvieron los caudales mensuales validados con 3 indicadores estadísticos el NSE, PBIAS y R^2 .

Finalmente se modificó los valores de los parámetros en el modelo semidistribuido SWAT que fue obtenido en el proceso de calibración, en el edit subbasin input en el componente edit SWAT input de la interfaz ArcSWAT.

2. Etapa 2: Proyección de la escorrentía de la intercuenca Alto Huallaga bajo proyecciones climáticas

Para el cálculo de los caudales futuros en el periodo 2020-2059 según proyecciones climáticas, se requirió obtener los datos de temperatura y precipitación proyectados, para ello se hizo uso del conjunto de datos NEX-GDDP de la NASA (Earth Engine Data Catalog, 2022) a través de la Plataforma de Google Earth Engine, mediante una ejecución de logaritmos, se obtiene los datos de temperatura y precipitación. En el presente estudio se han utilizado dos escenarios de emisiones diferentes (RCP 4.5 y RCP 8.5) para evaluar los efectos del cambio climático en la cuenca. Esta plataforma nos brinda los datos desde 1950 al año 2099, sin embargo, para el presente trabajo de investigación se tomarán los datos de los años 2020-2059.

Para tener la certeza de que estos datos de temperatura y precipitación coinciden con la cuenca de estudio, se realizó una comparación de los datos entre los años de 1981 al 2016 tanto de los datos obtenidos por SENAMHI (observado) y los datos obtenidos mediante los modelos climáticos (proyectados), sin embargo, se observó que existe un sesgo entre estos datos. Por ello estos datos obtenidos de los modelos climáticos requirieron pasar por un procedimiento de reducción del sesgo, este se realizó mediante el método downscaling estadístico haciendo uso de la técnica de mapeo de cuantiles mediante un script, este es ejecutado en el lenguaje de programación RStudio.

Una vez ejecutado este script que reduce el sesgo entre la información observada (base) y la información proyectada en los escenarios RCP 4.5 y RCP

8.5 de los años 1981-2016, los datos obtenidos de temperatura mínima, temperatura máxima y precipitación. Estos datos se ingresaron al modelo calibrado y validado en el ArcGis, se obtuvo los caudales proyectados mediante la interfaz ArcSWAT. Estos caudales obtenidos pasaron por una prueba estadística, se obtuvo un indicador estadístico R².

Asimismo, una vez obtenido los caudales proyectados, se procedió a realizar el análisis de anomalías, este se realizó basado en la metodología de Bedoya (2010).

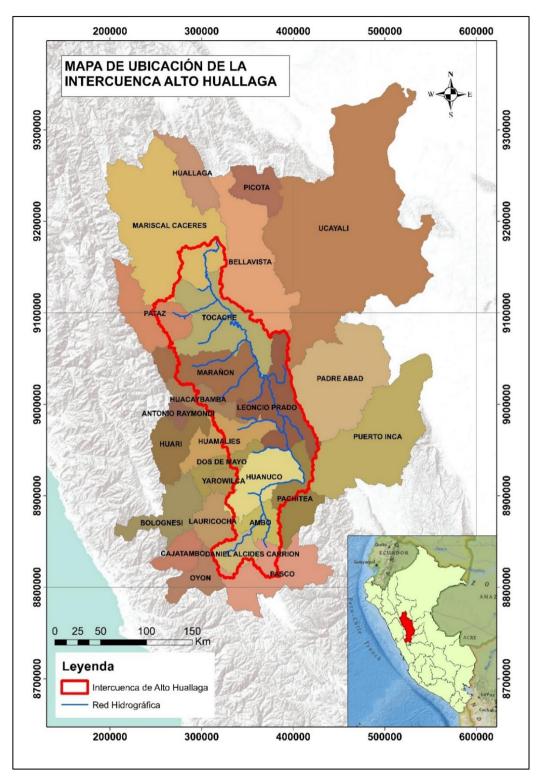
Finalmente, para el análisis de las anomalías calculadas se tomó como criterio a Avalos (2020), quien menciona que para el Índice de Anomalía de Caudal (AC) se toma como un valor promedio de caudal (período de 20 o 30 años), en un lugar y período prolongado de tiempo. En el trabajo de investigación se ha tomado como periodos de proyección futura de 20 años para el análisis de los índices de AC.

Para el índice de Anomalías de Caudal (AC), se ha utilizó la clasificación de AC (%) construido por criterio adoptado por La Dirección de Hidrología del SENAMHI.

4.3. Población y muestra

4.3.1. Población

La población de estudio es la intercuenca Alto Huallaga. La cual presenta una superficie de 30 276.00 km². La intercuenca comprende el siguiente ámbito político de acuerdo a la Tabla 5.


Tabla 5 *Ubicación política de la intercuenca Alto Huallaga*

Departamento	Provincia	Distritos
Huánuco	Ambo	Ambo, Huacar, San Rafael
Huánuco	Dos de Mayo	Marias
Huánuco	Huacaybamba	Cochabamba, Huacaybamba
Huánuco	Huamalies	Jircan, Monzón
Huánuco	Huánuco	Chinchao, San Pedro de Chaulan, Santa Maria del Valle, Churubamba, San Pablo de Pillao
Huánuco	Leoncio Prado	Daniel Alomia Robles, Rupa Rupa, Mariano Damaso Beraun, Pucayacu
Huánuco	Marañón	Cholón, La Morada, Santa Rosa de Alto Yanajanca
Huánuco	Pachitea	Chaglla, Molino
La Libertad	Pataz	Ongon
Pasco	Daniel Alcides Carrión	Yanahuanca, Santa Ana de Tusi
Pasco	Pasco	Ticlicayan
San Martin	Mariscal Cáceres	Campanilla
San Martin	Tocache	Nuevo Progreso, Shunte, Uchiza, Tocache, Pólvora

Nota. Corresponden a la ubicación política de la intercuenca Alto Huallaga. Tomado de la Autoridad Nacional del Agua [ANA] (s.f.).

Figura 3

Mapa de ubicación de la intercuenca Alto Huallaga

Nota. La intercuenca Alto Huallaga se encuentra de acuerdo al ámbito político en el departamento de Huánuco, Pasco, San Martin y La Libertad.

4.3.2. Muestra

En el presente trabajo de investigación, no se presenta muestra dado que se trabajó con la población, es decir intercuenca Alto Huallaga.

4.4. Lugar de estudio y periodo desarrollado

El estudio del comportamiento de la escorrentía de la intercuenca Alto Huallaga 2020-2059, según proyecciones climáticas, se desarrolló en gabinete recopilando los distintos datos cartográficos y meteorológicos extraídos de plataformas digitales de organismos nacionales e internacionales. El trabajo de investigación se desarrolló desde septiembre del 2021 hasta mayo del 2022.

4.5. Técnicas e instrumentos para la recolección de la información

En la presente investigación se empleó la técnica de observación documental y el instrumento ha sido la ficha de recolección. Según Ñaupas et al. (2018), menciona que la observación documental consiste en el proceso de análisis los documentos digitales o físicos como libros, revistas, periódicos, informes, actas, etc. Asimismo, la lectura debe ser activa para registrar la información de los datos en una ficha de localización.

Dentro de la observación documental, se podrá recopilar la información meteorológica, cartográfica e hidrológica obtenidas de plataformas digitales como el catálogo de datos de Earth Engine, SENAMHI, FAO, Land viewer y la instalación de satélites de Alaska (ASF, por sus siglas en ingles). Asimismo, el instrumento utilizado ha sido la ficha de recolección según el modelo climático y la ficha de recolección de datos según el modelo semidistribuido SWAT y del modelo climático.

4.6. Análisis y procesamiento de datos

4.6.1. Análisis de datos

El análisis de datos se clasificará de la siguiente manera:

a. Información cartográfica

Mapa de tipo de suelo

Organización de las Naciones Unidas para la Agricultura y la Alimentación [FAO] (s.f.), plataforma donde se obtuvo la información de tipo de suelo a una escala de 1:5 000 000 mediante el formato shapefile ESR.

> Mapa de uso de suelo

Land viewer (s.f.), plataforma donde se obtuvo la información del uso de suelo. Asimismo, Earth Observing System [EOS] (2020), indica que la información proporciona del satélite Sentinel en la plataforma Land viewer tiene una resolución espacial de 10 metros.

Mapa de modelo digital de elevación

La Instalación de satélites Alaska (s.f.), plataforma donde se obtuvo la información del modelo digital de elevación. Asimismo, asimismo, Earth Data (s.f.) indica que el satélite ALOS PALSAR empleado tiene resolución espacial 12.5 metros.

b. Información meteorológica

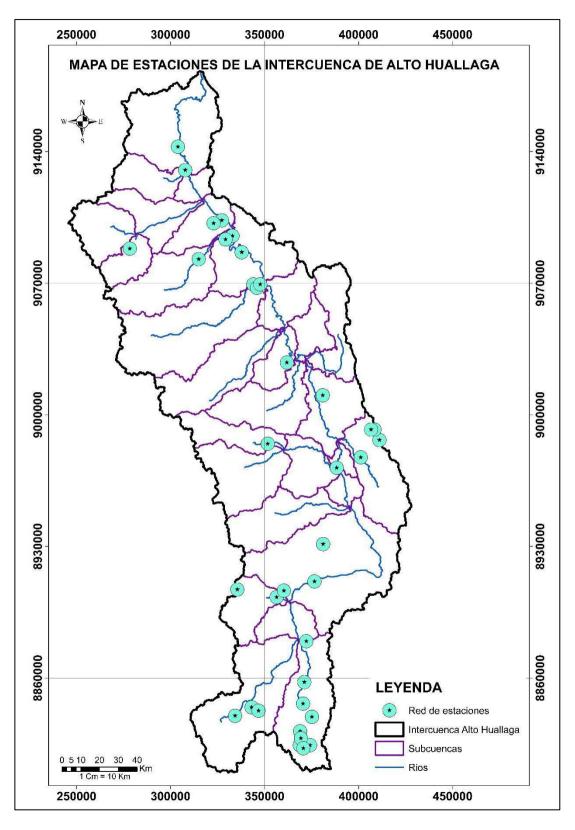
> Estación meteorológica

Servicio Nacional de Meteorología e Hidrología [SENAMHI] (s.f.), plataforma donde se obtuvo la información de las estaciones meteorológicas ubicada en la intercuenca Alto Huallaga, las estaciones meteorológicas se muestran en la Tabla 6. Asimismo, el mapa de las estaciones meteorológicas ubicadas en la intercuenca Alto Huallaga se muestra en la Figura 4.

 Tabla 6

 Coordenadas geográficas de las estaciones meteorológicas

ID	Nombre	Latitud	Longitud
1	Ají	-8.294495	-76.679813
2	Ambo (IDMA)	-10.133333	-76.166667
3	Atacocha	-10.566667	-76.198315
4	Aucayacu	-8.951255	-76.083164
5	Balzayacu	-7.866129	-76.743011
6	Cachicoto	-9.183333	-76.35


7	Canchan	-9.921111	-76.309722
8	Carpish	-9.666667	-76.083333
9	Chacayan	-10.45	-76.433333
10	Chaprin	-10.497082	-76.140674
11	Chiquicocha	-10.633333	-76.15
12	Goyllarisquisga	-10.466667	-76.4
13	Hacienda Carmen Chico	-10.633333	-76.2
14	Huánuco	-9.889922	-76.274308
15	Huariaca	-10.433333	-76.183333
16	Jacas Chico	-9.883333	-76.5
17	La Divisoria	-9.167118	-75.809176
18	La Morada	-8.793011	-76.256094
19	Milpo	-10.6	-76.194645
20	Ollates	-8.416667	-76.416667
21	Ongon	-8.242058	-77.012202
22	Palmawasi	-8.416667	-76.416667
23	Pariamarca	-10.648165	-76.183033
24	Plantación Margarita	-9.116667	-75.833333
25	Puente Taruca	-9.846029	-76.125842
26	Puerto Pizana	-8.108424	-76.567418
27	Rio Azul	-9.116667	-75.85
28	San Rafael	-10.33	-76.176944
29	Santa Lucia	-8.262186	-76.472223
30	Sión	-7.75367	-76.777678
31	Tananta	-8.122258	-76.607421
32	Tingo María	-9.3	-76.016667
33	Tocache	-8.183333	-76.516667
34	Tulumayo	-9.25	-75.9
35	Uchiza	-8.433333	-76.4
36	Viveros de Tocache	-8.2	-76.55
37	Yanahuanca	-10.490556	-76.513889

38 Yonte -8.416667 -76.383333

Nota. Las coordenadas geográficas de las estaciones meteorológicas de la intercuenca Alto Huallaga se obtuvieron en según SENAMHI (s.f.).

Figura 4

Mapa de estaciones de la intercuenca Alto Huallaga

Nota. En la intercuenca Alto Huallaga presentó 38 estaciones meteorológicas.

> Precipitación

Servicio Nacional de Meteorología e Hidrología [SENAMHI] (2020b), plataforma donde se obtuvo la información de precipitación a escala diaria. Asimismo, Abyar et al. (2020) indica que la información de precipitación del producto grillado PISCO versión 2.1 tiene un periodo 1981-2016, con una escala diaria y una resolución de 10 km en el formato netCDF. Por otro lado, la información se procesó mediante un script a través del RStudio, el script se muestra en la Figura 5.

Figura 5
Script para extraer datos de precipitación de PISCO

```
#DESCARGA DE INFORMACION GRILLADA PISCO, EN UN FORMATO CSV (CONSIDERANDO COORDENADAS).
4 #SE DIRECCIONA LA CARPETADE TRABAJO
   setwd("A:/RODRIGOCHAVARRY/Estacionees")
    #SE LLAMA LAS LIBERIAS (EN TODO CASO NO SE TENGA, INSTALAR CON "install.packages()"
    library(raster)
8 library(sp)
9 library(ncdf4)
10
    #DEBE TENER 3 COLUMNAS(NOMBRE ESTACION, XX, YY)
11
    long_lat <- read.csv("Coordenadas_de_estaciones.csv")</pre>
    #IMPORTAR EL ARCHIVO NETCDF(PISCO)
    raster_pp <- raster::brick("PISCOd_tmax.nc")</pre>
13
14 #CORRELACIONAR LAS COORDENADAS LONG Y LATITUD CON "XX-YY")
15 sp::coordinates(long lat) <- ~XX+YY
16 #PROYECTAMOS LA INFORMACION DE COORDENASD CON EL NETCDF
    raster::projection(long_lat) <- raster::projection(raster_pp)</pre>
    #EXTRAEMOS LA INFORMACION QUE SE ENCUENTRA EN LAS COORDENADAS DEL CSV
    points_long_lat <- raster::extract(raster_pp[[1]], long_lat, cellnumbers = T)[,1]</pre>
20 #ORDENAMOS LA INFORMACION
21 data_long_lat <- t(raster_pp[points_long_lat])</pre>
    colnames(data_long_lat) <- as.character(long_lat$NN)</pre>
    #EXPORTAMOS LA INFORMACIÓN EN UN FORMATO "CSV"
24 write.csv(data_long_lat, "Data_extraida_Pisco.csv", quote = F)
```

Nota. El script empleado en el RStudio para procesar la información de la precipitación a escala mensual, tomado de Chavarry (2022).

Según Aybar et al. (2017), indica que la información de precipitación del producto PISCO tiene coeficiente de correlación muy bueno en la costa y en la sierra, debido a que presentan estaciones meteorológicas para la validación de la información. En la investigación la red de la estación se encuentra en los

departamentos de Pasco, Huánuco, La libertad y San Martin, por lo que, la información brindada del producto PISCO tiene coeficiente de correlación muy bueno, por ello la información resultará confiable.

> Temperatura

SENAMHI (2020b), plataforma donde se obtuvo la información de temperatura máxima y mínima a escala diaria. Asimismo, Huerta et al. (2018) indica la información de temperatura del producto grillado PISCO versión 1.1 tiene un periodo 1981-2016, con una resolución de 10 km en el formato netCDF. Por otro lado, la información se procesó mediante un script a través del RStudio, el script se muestra en la Figura 6.

Figura 6
Script para extraer datos de temperatura de PISCO

```
#DESCARGA DE INFORMACION GRILLADA PISCO, EN UN FORMATO CSV (CONSIDERANDO COORDENADAS).
4 #SE DIRECCIONA LA CARPETADE TRABAJO
5 setwd("A:/RODRIGOCHAVARRY/Estacionees")
6 #SE LLAMA LAS LIBERIAS (EN TODO CASO NO SE TENGA, INSTALAR CON "install.packages()"
    library(raster)
   library(sp)
9
    library(ncdf4)
    #DEBE TENER 3 COLUMNAS(NOMBRE ESTACION, XX, YY)
11 long_lat <- read.csv("Coordenadas_de_estaciones.csv")</pre>
12 #IMPORTAR EL ARCHIVO NETCDF(PISCO)
   raster_pp <- raster::brick("PISCOd_tmax.nc")</pre>
14 #CORRELACIONAR LAS COORDENADAS LONG Y LATITUD CON "XX-YY")
    sp::coordinates(long_lat) <- ~XX+YY
   #PROYECTAMOS LA INFORMACION DE COORDENASD CON EL NETCDF
    raster::projection(long lat) <- raster::projection(raster pp)</pre>
    #EXTRAEMOS LA INFORMACION QUE SE ENCUENTRA EN LAS COORDENADAS DEL CSV
    points_long_lat <- raster::extract(raster_pp[[1]], long_lat, cellnumbers = T)[,1]</pre>
    #ORDENAMOS LA INFORMACION
    data_long_lat <- t(raster_pp[points_long_lat])</pre>
    colnames(data_long_lat) <- as.character(long_lat$NN)</pre>
    #EXPORTAMOS LA INFORMACIÓN EN UN FORMATO "CSV"
    write.csv(data_long_lat, "Data_extraida_Pisco.csv", quote = F)
```

Nota. El script empleado en el RStudio para procesar la información de temperatura máxima y mínima a escala mensual, tomado de Chavarry (2022).

Según Huerta et al. (2018), menciona que para evaluar su eficiencia de la interpolación de la temperatura se realizó validación cruzada donde sus resultados demuestran el buen rendimiento de la información obtenida en lugares donde presentan mayor cantidad de estaciones meteorológicas será confiable la información de PISCO.

c. Información hidrológica

> Caudal

SENAMHI (2020c), plataforma donde se obtuvo la información de los caudales a escala mensual. Por otro lado, Llauca et al. (2021) indica la información de los caudales del producto grillado PISCO versión 1.1 tiene un periodo de enero de 1981 hasta marzo 2020 en el formato netCDF. Por otro lado, la información se procesó mediante un script a través del RStudio, el script se muestra en la Figura 7. Asimismo, se identificó el tramo de río ubicado en el punto de aforo en la intercuenca Alto Huallaga.

Figura 7

Script para extraer datos de caudales mensual de PISCO H y M GR2M

```
# This script show how to read the
                                                         write.table(sm, 'sm.txt',sep='\t', row.names=FALSE)
PISCO_HyM_GR2M_v1.1.nc file
                                                        write.table(ru, 'ru.txt',sep='\t', row.names=FALSE)
# By Harold Llauca
                                                        write.table(qr, 'qr.txt',sep='\t', row.names=FALSE)
                                                        # Read data for an specific COMID (subbasin and river
# install.packages("ncdf4")
# install.packages("lubridate")
# Load required packages
require(ncdf4)
                                                         # You can find the COMID value for the subbasin an river
require(lubridate)
# Set your work directory
my_location <-
                                                        # of interest in:
'C:/Users/Elizabeth/Desktop/INTERCUENCA_HUALLAGA/
                                                        https://hllauca.github.io/PISCO_HyM_GR2M_map/
CAUDAL OBSERVADO/netcdf'
                                                        # Select your COMID
                                                        myCOMID <- 394
setwd(my_location)
# Read netCDF data and load variables and dimensions
                                                        # Read data for an specific COMID
                                                        ind <- which(comid==myCOMID)+1
#-----
                                                        my df <- data.frame(Dates=time,
nc <- nc_open('PISCO_HyM_GR2M_v1.1.nc')
                                                                   PR_mm=pr[,ind],
                                                                   AE mm=aef.ind1.
print(nc)
# Read COMIDs
                                                                   SM_mm=sm[,ind],
comid <- ncvar_get(nc,'comid')
                                                                   RU_mm=ru[,ind],
# Read dates
                                                                   QR_m3s=qr[,ind])
time <- floor_date(as.Date('1960-01-
                                                        # Save dataframe as textfile
01')+months(floor(ncvar_get(nc,'time'))),"month")
                                                         write.table(my_df, 'my_df.txt', row.names=FALSE, sep='\t')
# Read data at subbasins level
                                                         # Plot results
pr<-
                                                        x11()
cbind(time,round(as.data.frame(t(ncvar_get(nc,'pr'))),2))
                                                        par(mfrow=c(3,2))
# Precipitation in mm/month
                                                         par(mar=c(1,3,3,1), oma=c(0.5,0.5,0.5,0.5))
                                                         par(cex=0.6)
cbind(time,round(as.data.frame(t(ncvar get(nc,'ae'))),2))
                                                        par(tck=-0.02)
# Actual Evapotranspiration in mm/month
                                                        par(mgp=c(1.5,0.5,0))
                                                         plot(x=my_df$Dates, y=my_df$PR_mm, type='l', col='blue',
                                                           main=paste('PR COMID:',myCOMID),
cbind(time,round(as.data.frame(t(ncvar_get(nc,'sm'))),2)
) # Soil Moisture in mm/month
                                                         ylab='[mm/month]')
                                                         plot(x=my_df$Dates, y=my_df$AE_mm, type='l', col='green',
cbind(time,round(as.data.frame(t(ncvar_get(nc,'ru'))),2))
                                                           main=paste('AE COMID:',myCOMID), ylab='[mm/month]')
# Runoff in mm/month
                                                         plot(x=my_df$Dates, y=my_df$SM_mm, type='l', col='red',
# Read data at reaches level
                                                           main=paste('SM COMID:',myCOMID),
                                                         ylab='[mm/month]')
cbind(time,round(as.data.frame(t(ncvar_get(nc,'qr'))),2))
                                                        plot(x=my_df$Dates, y=my_df$RU_mm, type='I',
# Discharge in m3/s
                                                        col='black'.
# Save as texfiles
                                                           main=paste('RU COMID:',myCOMID), ylab='[mm/month]')
colnames(pr) <- c('Dates',paste0('PR_',comid))
                                                         plot(x=my_df$Dates, y=my_df$QR_m3s, type='l',
colnames(ae) <- c('Dates',paste0('AE_',comid))
                                                        col='magenta',
colnames(sm) <- c('Dates',paste0('SM_',comid))
                                                           main=paste('QR COMID:',myCOMID), ylab='[m3/s]')
colnames(ru) <- c('Dates',paste0('RU_',comid))
colnames(qr) <- c('Dates',paste0('QR_',comid))
write.table(pr, 'pr.txt',sep='\t', row.names=FALSE)
write.table(ae. 'ae.txt'.sep='\t'. row.names=FALSE)
```

Nota. El script empleado en el RStudio para procesar la información de los caudales a escala mensual, tomado de Llauca (2021).

d. Información climática proyectada

Para la obtención de los datos de temperatura y precipitación proyectados, se utilizó el conjunto de datos NEX-GDDP de la NASA (Earth Engine Data Catalog, 2022), el cual está compuesto de escenarios climáticos reducidos para el mundo que se derivan de las ejecuciones del Modelo de Circulación Global (GCM) realizadas en el Proyecto Intercomparación de Modelos Acoplados Fase 5 (CMIP5). Los datos consistían en 21 modelos que se descargaron del Catálogo de Data de Earth Engine - NASA_NEX-GDDP. En este estudio se han utilizado dos escenarios de emisiones diferentes (RCP 4.5 y RCP 8.5) para evaluar los efectos del cambio climático en la cuenca. El RCP 4.5 se caracteriza por ser un escenario de emisiones intermedias y RCP 8,5 se caracteriza por ser un escenario de altas emisiones. Para obtener los datos de las capas, es necesario hacer uso de un script, el script utilizado se muestra en la Figura 8.

Figura 8

Script para extraer datos de los modelos de circulación Global (GCM)

```
//SCRIPT PARA DESCARGAR LOS BASES DE DATOS DE MODELOS DE CIRCULACIÓN GENERAL (GCM's)
//COLECCIÓN DEL PRODUCTO NASA NEX GDDP A ESCALA DIARIA
//Insertar coordenadas geográficas de la estación (punto) de interés
//Cambia el nombre de la variable "estac" para tener una carpeta en Google Drive con el nombre de cada
estación
//INGRESAMOS DATOS DE LA ESTACIÓN (PUNTO) EN ESTUDIO
//Insertar coordenadas geográficas.
//Cambia el nombre de la variable "estac" para tener una carpeta en Google Drive
//con el nombre de cada estación que desees estudiar.
var estacname = NOMBRE DE LA ESTACIÓN
var point = ee.Geometry.Point([-71.3332532,-16.226843]);
Map.addLayer(point);
Map.centerObject(point,6);
//DEFINIMOS LOS PERÍODOS PARA LA EXTRACCIÓN
//ESCENARIOS RCP 4.5 Y RCP 8.5
var startDatehist = ee.Date('1950-01-01');
var endDatehist = ee.Date('2005-12-31');
//PERÍODO HISTÓRICO
var startDate = ee.Date('2006-01-01');
var endDate = ee.Date('2099-12-31');
//INGRESAMOS DATOS DEL LA COLECCIÓN A USAR PARA EXTRACCIÓN DE DATOS
var dataset = ee.ImageCollection('NASA/NEX-GDDP')
         .filter(ee.Filter.date(startDate, endDate));
var datasethist = ee.ImageCollection('NASA/NEX-GDDP')
         .filter(ee.Filter.date(startDatehist, endDatehist));
//************SOLO HABILITAR PARA VISUALIZACIÓN**************
```

Nota. Tomado de Montenegro (2022).

68

Este script requirió la ubicación de las estaciones y el nombre que se le asignó al archivo de salida. Este script extrae los datos y los publica como un archivo delimitado por comas tipo CSV.

La validación de los modelos mediante la comparación de los resultados con los datos de observación es un paso fundamental para evaluar el valor de un modelo climático.

> Reducción del sesgo

La reducción del sesgo de los caudales obtenidos de la información climática proyectada, se realizó mediante el método de reducción de escala (downscaling) estadístico haciendo uso del método mapeo de cuantiles mediante un script que se muestra en el Anexo VI, en el lenguaje de programación RStudio.

> Cálculo de caudales

Una vez ejecutado este script que reduce el sesgo entre la información observada (base) y la información proyectada RCP 4.5 y RCP 8.5, los datos obtenidos de temperatura mínima, temperatura máxima y precipitación, se ingresa al modelo calibrado y validado en el ArcGIS, se obtuvo los caudales proyectados mediante la interfaz ArcSWAT, al ejecutar Run SWAT. Los resultados de los caudales proyectados son arrojados en una base de datos Access.

> Anomalías de caudales

El análisis de anomalías se realizó basado en la metodología de Bedoya (2010). Se muestran las ecuaciones siguientes:

Anomalias =
$$\frac{\underline{X}(i,t)\sum_{2020}^{2059}Q(i-t) - \underline{X}(i,t)\sum_{1981}^{2019}Q(i,t)}{\underline{X}(i,t)\sum_{1981}^{2019}Q(i,t)}x100$$

donde:

 $\underline{X}(i,t) \sum_{1981}^{2019} Q, T, P(i,t)$: Promedio de la suma de caudales, del año 1981 al año 2019, donde i son los meses, t es el año representado.

 $\underline{X}(i,t) \sum_{2020}^{2059} Q, T. P(i,t)$: Promedio de la suma de caudales, del año 2020 al año 2059, donde i son los meses, t es el año representado.

Posteriormente, se estimó el promedio de estas anomalías para los meses de enero a diciembre.

$$\underline{X}(i,t)$$
 \sum_{i}^{n} Anomalías (i,t)

donde:

i: Mes inicial

n: Mes final

t: Año representado

Asimismo, para el análisis de la información proyectada se tomó como criterio a Avalos (2020), quien menciona que en el Índice de Anomalía de Caudal (AC) se toma como un valor promedio de caudal (período de 20 o 30 años), en un lugar y período prolongado de tiempo. En el trabajo de investigación se ha tomado como periodos de proyección futura de 20 años para el análisis de los índices de AC.

Para el índice de Anomalías de Caudal (AC), se ha utilizó el siguiente esquema mostrado en la Tabla 7, de clasificación de AC (%).

Tabla 7
Categorías de Anomalías de Caudales - AC (%)

Clasificación	AC (%)	Color
Muy debajo de lo normal	-100 < AC <= -50	
Debajo de lo normal	-50 < AC <= -25	
Normal	-25 <ac <="25</td"><td></td></ac>	
Sobre lo normal	25 < AC <= 50	
Muy sobre lo normal	50< AC <= 100	
Alto	AC> 100	

Nota. Adaptado de Avalos at al., (2020).

4.6.2. Procesamiento de datos

El procesamiento de datos se desarrolló mediante softwares libres que ayudaron a procesar y analizar la información cartográfica, información meteorológica, información hidrológica e información climática para la obtención de los caudales proyectados.

RStudio

Es un software para manejar el lenguaje de programación R de manera más sencilla, se usó la versión 4.1.2. Asimismo, realizó el proceso de los datos hidrometeorológicos conjunto a los modelos climáticos mediante la técnica estadística downscaling que trabaja con el método mapeo de cuantiles para la proyección futura que se requiera para la estimación de caudales.

ArcSWAT

El modelo semidistribuido SWAT se usó mediante la interfaz ArcSWAT versión 2012.10.5.24 del ArcGIS 10.5, permitió simular y predecir los caudales de la cuenca hidrográfica bajo las proyecciones climáticas, luego de realizarse el proceso del calibración y validación de modelo hidrológico.

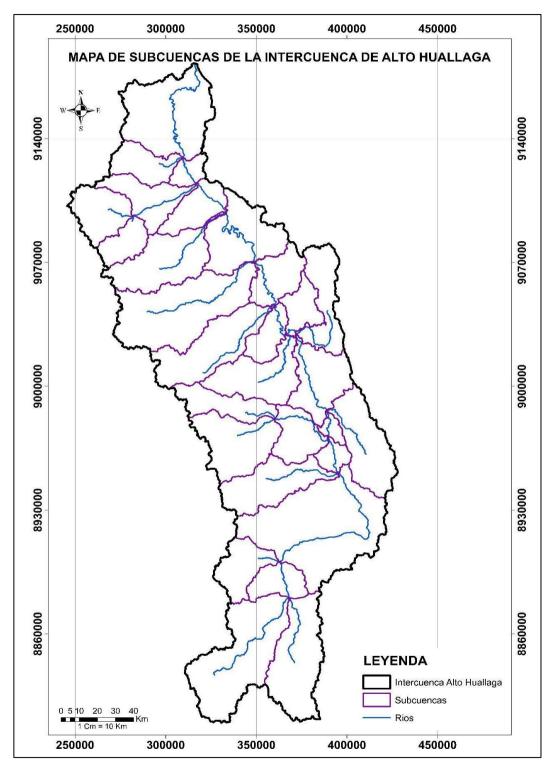
ArcGIS

Programa que recopila, organiza, administra, analiza, comparte y distribuye la información geográfica, se usará la versión 10.5, permitió incorporar el modelo semidistribuido SWAT mediante la interfaz ArcSWAT.

SWAT CUP

Programa que trabaja con la interfaz ArcSWAT, se usó la versión 5.1.6, que permitió realizar el análisis de sensibilidad, la calibración y la validación de los datos simulados, respecto a los datos observados, mediante la iteración de los parámetros hidrológicos, hasta lograr un mejor desempeño en el modelo basándose en los indicadores estadísticos y obtener resultados eficientes en los caudales proyectados.

V. RESULTADOS


5.1. Resultado Descriptivos

5.1.1. Representar la intercuenca Alto Huallaga para el periodo de 1981 al 2016 mediante el modelo semidistribuido SWAT.

En la representación de la intercuenca Alto Huallaga en el modelo semidistribuido SWAT, se obtuvo la delimitación, el sistema de drenajes y 29 subcuencas, se muestra en la Figura 9. Asimismo, el área y el porcentaje de la superficie de las subcuencas de la intercuenca Alto Huallaga, se muestra en la Tabla 8.

Figura 9

Mapa de subcuencas de la intercuenca Alto Huallaga

Nota. El mapa de subcuenca de la intercuenca Alto Huallaga fue obtenido al realizar la delimitación, en la interfaz ArcSWAT.

Tabla 8Área de las subcuencas de la intercuenca Alto Huallaga

Subcuenca	Área (km²)	Porcentaje (%)
1	1956	6.47
2	613	2.03
3	265	0.88
4	651	2.15
5	791	2.62
6	798	2.64
7	472	1.56
8	1324	4.38
9	1348	4.46
10	712	2.35
11	2306	7.63
12	467	1.54
13	472	1.56
14	904	2.99
15	1414	4.68
16	1144	3.78
17	1050	3.47
18	693	2.29
19	148	0.49
20	1245	4.12
21	683	2.26
22	1233	4.08
23	247	0.82
24	1151	3.81
25	3184	10.53
26	704	2.33
27	518	1.71

28	1558	5.15
29	2189	7.24

Nota. Las áreas de la subcuenca de la intercuenca Alto Huallaga fueron obtenidas en el programa ArcSWAT.

Seguidamente se obtuvo 2 049 HRU, son áreas que representan la misma información de tipo y uso de suelo, y clase de pendiente. En la Tabla 9, Tabla 10, y Tabla 11 se muestra las clases de uso y tipo de suelo, y la clasificación de pendiente de la intercuenca Alto Huallaga respectivamente. Asimismo, en la Figura 10, Figura 11 y Figura 12 se muestra el mapa de uso y tipo de suelo, y el mapa de pendientes de la intercuenca Alto Huallaga respectivamente.

Tabla 9
Clases de uso de suelos de la intercuenca Alto Huallaga

Uso de suelo	Código	Área (km²)	Área (%)
Agua	WATR	1 350.14	4.40
Tierras mixtas	SWRN	1 486.55	4.91
Matorral	RNGB	3 823.86	12.63
Pasto	PAST	4 877.46	16.11
Bosques	FRST	2 034.55	6.72
Humedales	WETL	16 721.44	55.23

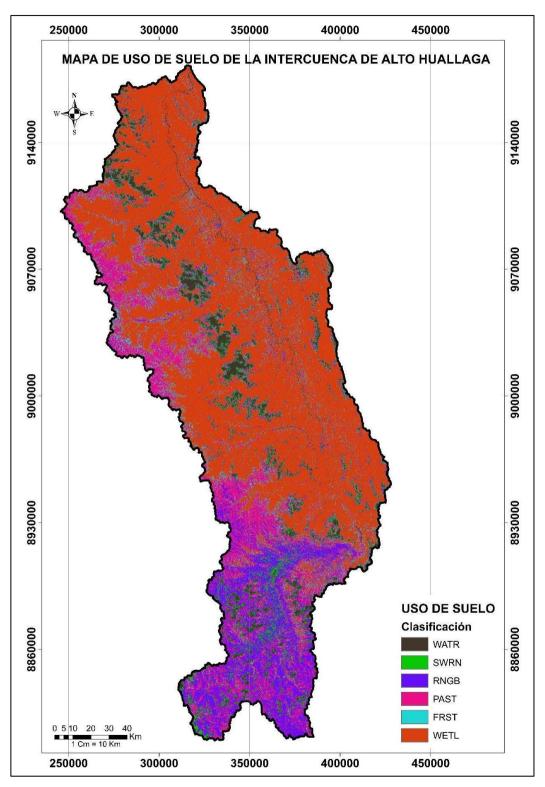
Nota. Los códigos del uso de suelo de la intercuenca Alto Huallaga se categorizó según Soil Water Assessment Tool [SWAT] (2012b).

Tabla 10Clase de tipo de suelo de la intercuenca Alto Huallaga

Tipo Suelo	Código	Área (km²)	Área (%)
Cambisoles dístricos	Ao25-3c-5378	378.45	1.25
Cambisoles eútricos	Ao26-3c-5379	1,174.70	3.88

Litosol - Cambisoles dístricos	I-Bd-c-5513	1,398.75	4.62
Litosol - Cambisoles eútricos	I-Be-Bh-c-5514	7,541.75	24.91
Litosol - Andosoles vítricos	I-Bh-Tv-c-5518	1,214.00	4.01
Litosol - Cambisoles húmicos	I-Bh-c-5519	953.70	3.15
Litosol - Faeozems Iúvicos	I-HI-KI-b-5527	6,258.00	20.67
Litosol - Fluvisoles jeútricos	I-Je-c-5530	784.15	2.59
Litosol - Kastanozems háplicos	I-Kh-J-c-5531	1,865.00	6.16
Litosol - Andosoles móllicos	I-To-c-5541	548.00	1.81
Nitosoles eutricos	Ne5-3c-5624	7299.55	24.11
Andosoles húmicos	Th8-a-5672	439.00	1.45
Glaciar	GLACIER-6998	420.95	1.39

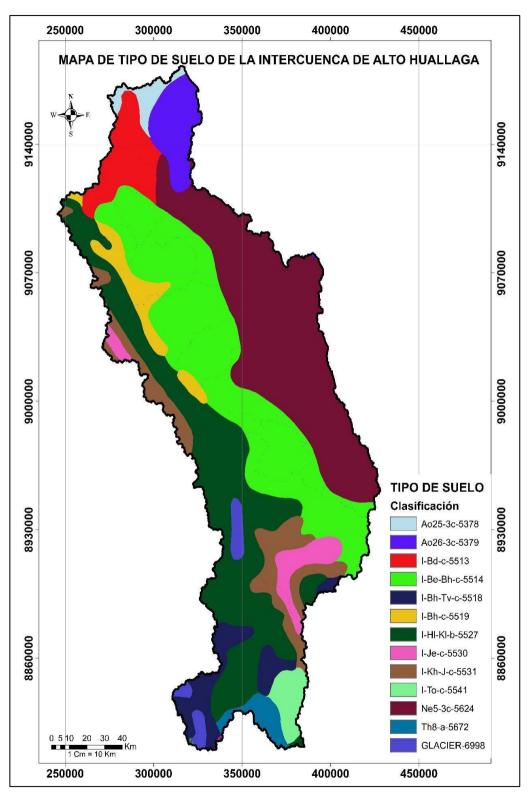
Nota. El tipo de suelo de la intercuenca Alto Huallaga se categorizó según FAO (2022).


Tabla 11
Clasificación de pendientes de la intercuenca Alto Huallaga (%)

Clase de pendiente	Rango (%)	
Pendiente suave	0 - 25	
Pendiente moderada	25 - 50	
Pendiente escarpado	50 - 75	
Pendiente muy escarpado	>75	

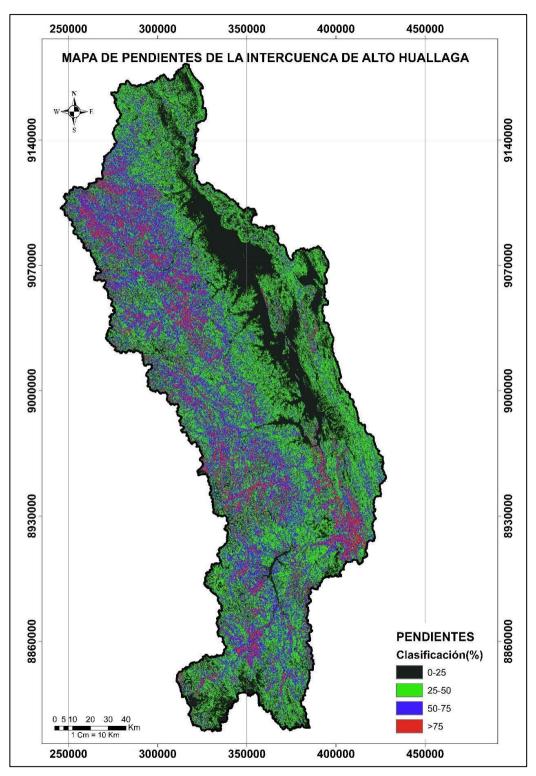
Nota. La clasificación de las pendientes de la intercuenca Alto Huallaga categorizó según ANA (2015).

Figura 10


Mapa de uso de suelo de la intercuenca Alto Huallaga

Nota. Las clases de uso de suelo se categorizaron según SWAT (2012b), descrito en la Tabla 9.

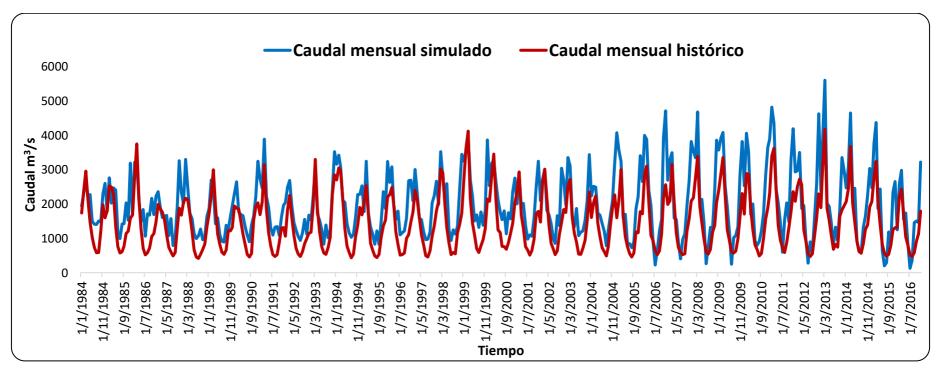
Figura 11


Mapa de tipo de suelo de la intercuenca Alto Huallaga

Nota. Las clases de tipo de suelo se categorizaron según FAO (2022), descrito en la Tabla 10.

Figura 12

Mapa de pendientes de la intercuenca Alto Huallaga



Nota. El mapa de pendientes en la intercuenca Alto Huallaga se clasificó en 4 clases de pendiente en la interfaz ArcSWAT.

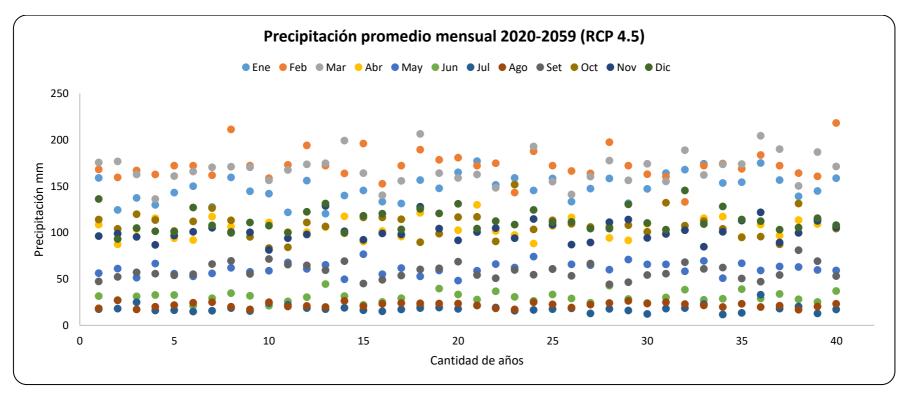
Luego en el proceso de la simulación del modelo semidistribuido SWAT se obtuvieron caudales mensuales simulados en el periodo 01/01/1984 – 01/12/2016, el cual fue comparado con los caudales mensuales históricos, se muestra en la Figura 13.

Figura 13

Hidrograma de los caudales mensuales simulados en el ArcSWAT vs caudales mensuales históricos (1984 al 2016)

Nota. Se comparó los caudales promedio mensual histórico con el caudal promedio mensual simulado en el modelo semidistribuido SWAT desde el periodo 1984 hasta 2016.

5.1.2. Proyectar caudales en la intercuenca Alto Huallaga según trayectorias de concentración representativa 4.5 y 8.5 para el periodo 2020 al 2059, con información climática usando el método downscaling estadístico, a través del modelo semidistribuido SWAT.

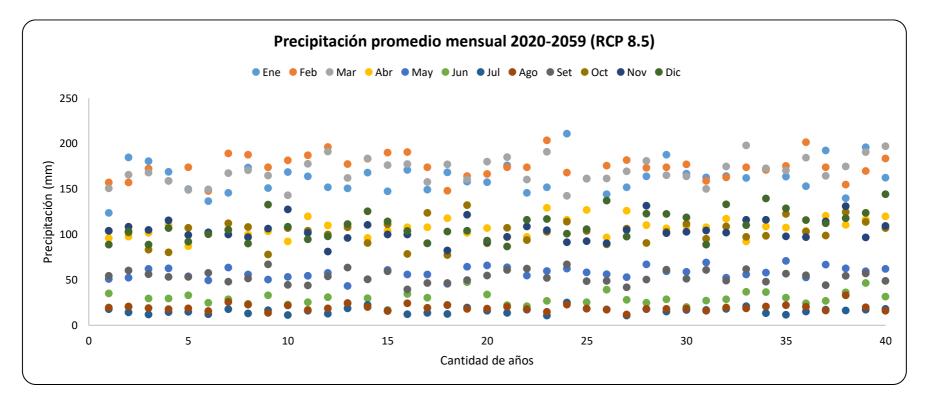

a. Obtención de la información meteorológica

La información meteorológica de temperatura y precipitación se obtiene a partir de los 21 modelos climáticos del conjunto de datos NEX-GDDP de la NASA (Earth Engine Data Catalog, 2022) a través de la Plataforma de Google Earth Engine, obtenidos a través de un script. A partir de la información meteorológica obtenida, se tomaron los datos del periodo 2020 al 2059.

Los promedios mensuales de precipitación del periodo 2020-2059 en el escenario RCP 4.5 se representan según la Figura 14.

Figura 14

Diagrama de dispersión de precipitación mensual bajo el escenario RCP 4.5 (2020 -2059)


Nota. RCP 4.5= Trayectoria de concentración representativa 4.5.

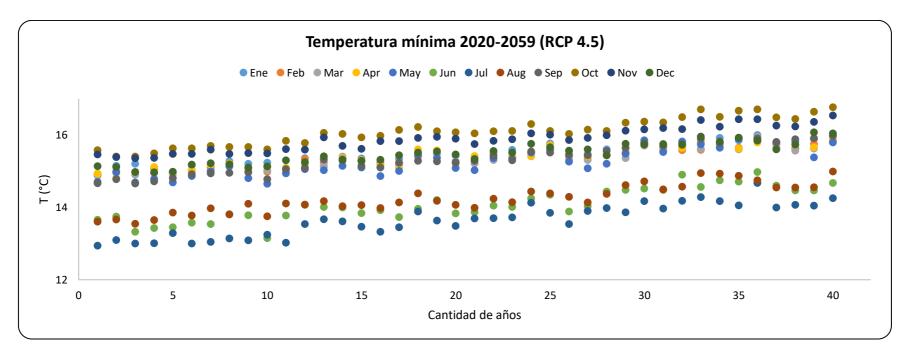
De acuerdo a la Figura 14, se puede observar que los promedios mensuales de precipitación del periodo 2020 – 2059, para el escenario RCP 4.5 mostrarían su mayor valor en los meses de febrero y marzo, con un máximo de 7.78 mm en el mes de febrero del año 2059. Asimismo, las menores precipitaciones se presentarían en los meses de julio y agosto, teniendo un valor mínimo de 0.37 mm en el mes de julio del año 2053.

Los promedios mensuales de precipitación 2020-2059 en el escenario RCP 8.5 se representan según la Figura 15.

Figura 15

Diagrama de dispersión de precipitación mensual bajo el escenario RCP 8.5 (2020 -2059)

Nota. RCP 8.5= Trayectoria de concentración representativa 8.5.

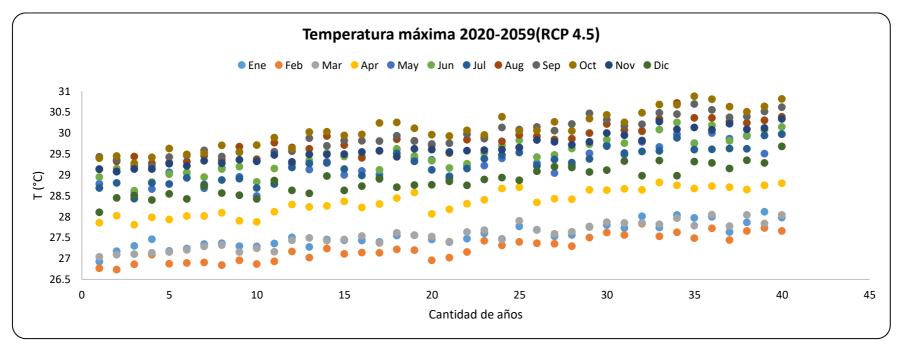

De acuerdo a la Figura 15, se puede observar que los promedios mensuales de precipitación del periodo 2020 – 2059, para el escenario RCP 4.5 mostrarían su mayor valor en los meses de febrero y marzo, con un máximo de 7.8 mm en el mes

de febrero del año 2048. Asimismo, las menores precipitaciones se presentarían en los meses de julio y agosto, teniendo un valor mínimo de 0.37 mm en el mes de julio del año 2054.

Los promedios mensuales de temperatura mínima 2020-2059 en el escenario RCP 4.5 se representan según la Figura 16.

Figura 16

Diagrama de dispersión de temperatura mínima bajo el escenario RCP 4.5 (2020-2059)

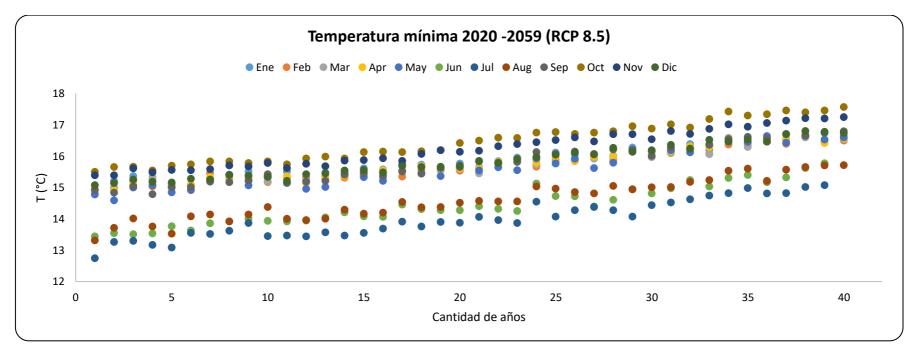


Nota. RCP 4.5= Trayectoria de concentración representativa 4.5.

De acuerdo a la Figura 16, se puede observar que los promedios mensuales de temperatura mínima del periodo 2020 – 2059, para el escenario RCP 4.5 mostrarían su mayor valor en los meses de octubre y noviembre, con un máximo de 16.76 °C en el mes de octubre del año 2059. Asimismo, las menores temperaturas se presentarían en los meses de junio y julio, teniendo un valor mínimo de 13 °C en el mes de julio del año 2025.

Los promedios mensuales de temperatura máxima 2020-2059 en el escenario RCP 4.5 se representan según la Figura 17.

Figura 17
Histograma del promedio de temperatura máxima bajo el escenario RCP 4.5 (2020-2059)

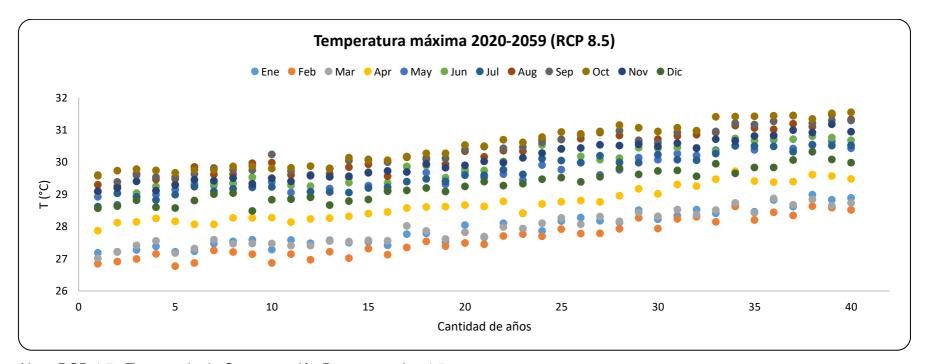

Nota. RCP 4.5= Trayectoria de concentración representativa 4.5.

De acuerdo a la Figura 17, se puede observar que los promedios mensuales de temperatura máxima del periodo 2020 – 2059, para el escenario RCP 4.5 mostrarían su mayor valor en los meses de agosto, septiembre y octubre, con un máximo de 30.87 °C en el mes de octubre del año 2059. Asimismo, las menores temperaturas se presentarían en los meses de febrero y marzo, teniendo un valor mínimo de 26.8 °C en el mes de febrero del año 2027.

Los promedios mensuales de temperatura mínima 2020-2059 en el escenario RCP 8.5 se representan según la Figura 18.

Figura 18

Histograma del promedio de temperatura máxima RCP 4.5 y RCP 8.5 (2020 -2059)


Nota. RCP 8.5= Trayectoria de Concentración Representativa 8.5.

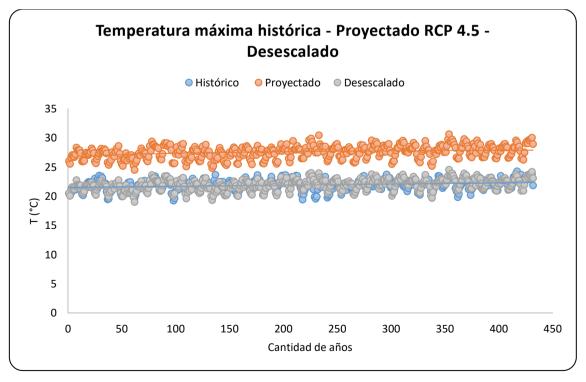
De acuerdo a la Figura 18, se puede observar que los promedios mensuales de temperatura mínima del periodo 2020 – 2059, para el escenario RCP 8.5 mostrarían su mayor valor en los octubre y noviembre, con un máximo de 17.5 °C en el mes

de octubre del año 2059. Asimismo, las menores temperaturas se presentarían en los meses de junio y julio, teniendo un valor mínimo de 13.0.8 °C en el mes de julio del año 2024.

Los promedios mensuales de temperatura máxima 2020-2059 en el escenario RCP 8.5 se representan según la Figura 19.

Figura 19
Histograma del promedio de temperatura máxima 2020 -2059 (RCP 8.5)

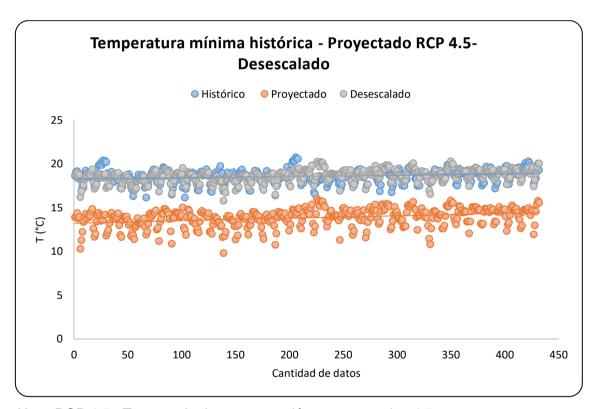
Nota. RCP 4.5= Trayectoria de Concentración Representativa 4.5.


De acuerdo a la Figura 19, se puede observar que los promedios mensuales de temperatura máxima del periodo 2020 – 2059, para el escenario RCP 8.5 mostrarían su mayor valor en los octubre y noviembre, con un máximo de 31.54 °C en el mes de octubre del año 2059. Asimismo, las menores temperaturas se presentarían en los meses de enero y febrero, teniendo un valor mínimo de 26.76 °C en el mes de febrero del año 2024.

Sin embargo, al comparar la información obtenida tomando el periodo de 1981 -2016, con la información observada obtenida de PISCO para el periodo 1981-2016, se observa que se tiene un sesgo entre ambas, esta información obtenida a partir de los modelos climáticos debe pasar por un proceso estadístico, que ayude a reducir el sesgo y acerque la información obtenida de los Modelos Climáticos Globales a la información observada en PISCO.

b. Ensamblaje de la información meteorológica

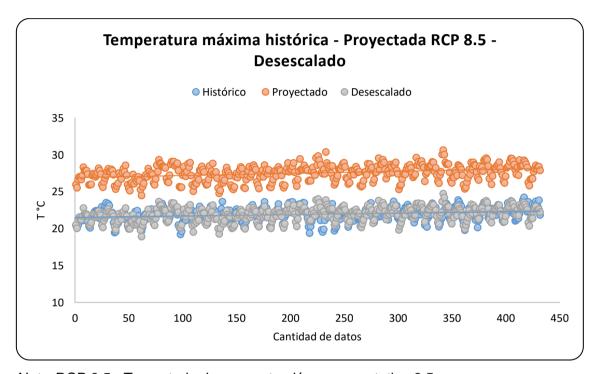
Al obtener los datos de precipitación y temperatura de los 21 modelos climáticos bajo los escenarios RCP 4.5 y RCP 8.5, estos datos obtenidos están dados a nivel global, para regionalizarlo a la intercuenca Alto Huallaga y reducir el sesgo se procedió a ejecutar sobre ellos el modelo de reducción de escala (Downscaling) estadístico, el cual se ejecutó mediante un script en el lenguaje de programación RStudio, una vez ejecutado este script que reduce el sesgo entre la información observada (base) y la información proyectada (RCP 4.5 y RCP 8.5), se procedió a comparar la eficacia del método downscaling estadístico sobre la información proyectada de temperatura mínima, máxima y precipitación. Con el fin de evaluar visualmente el desempeño de los datos obtenidos mediante el modelo climático corregidos con el método downscaling, estadístico, se obtuvo los siguientes resultados, los cuales demuestran que se ha podido reducir el sesgo de manera satisfactoria:


Figura 20
Comparación entre temperatura máxima observada, proyectada RCP 4.5 y desescalada

Nota. RCP 4.5= Trayectoria de concentración representativa 4.5.

En la Figura 20, se puede observar que la data de temperatura máxima proyectada en el escenario RCP 4.5 (1981-2016) difiere considerablemente de la data de temperatura máxima observada, es decir existe sesgo en las proyecciones. Con el fin de eliminar este sesgo se ejecutó el método downscaling estadístico sobre la información proyectada para el periodo de 1981 al 2016, observándose luego que la data de temperatura máxima proyectada desescalada es similar en comportamiento y valores a la data de temperatura máxima observada.

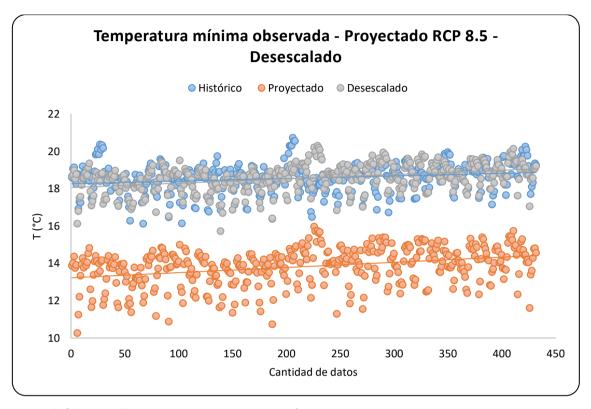
Figura 21
Comparación entre temperatura mínima observada, proyectada RCP 4.5 y desescalada.


Nota. RCP 4.5= Trayectoria de concentración representativa 4.5.

En la Figura 21, se puede observar que la data de temperatura mínima proyectada en el escenario RCP 4.5 (1981-2016) difiere considerablemente de la data de temperatura mínima observada, es decir existe sesgo en las proyecciones. Con el fin de eliminar este sesgo se ejecutó el método downscaling estadístico sobre la información proyectada para el periodo de 1981 al 2016,

observándose luego que la data de temperatura mínima proyectada desescalada es similar en comportamiento y valores a la data de temperatura mínima observada.

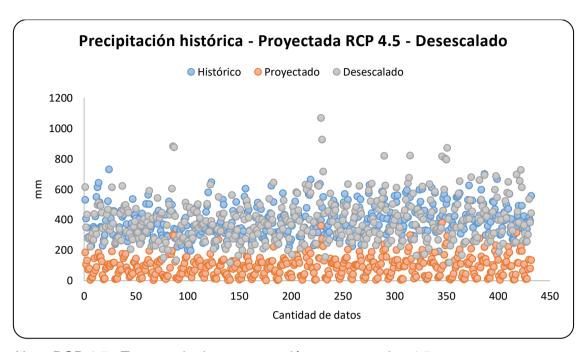
Figura 22


Comparación entre temperatura máxima observada, proyectada RCP 8.5 y desescalada

Nota. RCP 8.5= Trayectoria de concentración representativa 8.5.

En la Figura 22, se puede observar que la data de temperatura máxima proyectada en el escenario RCP 8.5 (1981-2016) difiere considerablemente de la data de temperatura máxima observada, es decir existe sesgo en las proyecciones. Con el fin de eliminar este sesgo se ejecutó el método downscaling estadístico sobre la información proyectada para el periodo de 1981 al 2016, observándose luego que la data de temperatura máxima proyectada desescalada es similar en comportamiento y valores a la data de temperatura máxima observada.

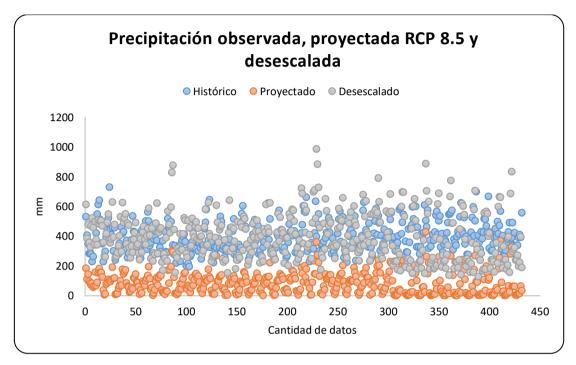
Figura 23Comparación entre temperatura mínima observada, proyectada RCP 8.5 y desescalada



Nota. RCP 8.5= Trayectoria de concentración representativa 8.5.

En la Figura 23, se puede observar que la data de temperatura mínima proyectada en el escenario RCP 8.5 (1981-2016) difiere considerablemente de la data de temperatura mínima observada, es decir existe sesgo en las proyecciones. Con el fin de eliminar este sesgo se ejecutó el método downscaling estadístico sobre la información proyectada para el periodo de 1981 al 2016, observándose luego que la data de temperatura mínima proyectada desescalada es similar en comportamiento y valores a la data de temperatura mínima observada.

Figura 24


Comparación entre precipitación observada, proyectada RCP 4.5 y desescalada

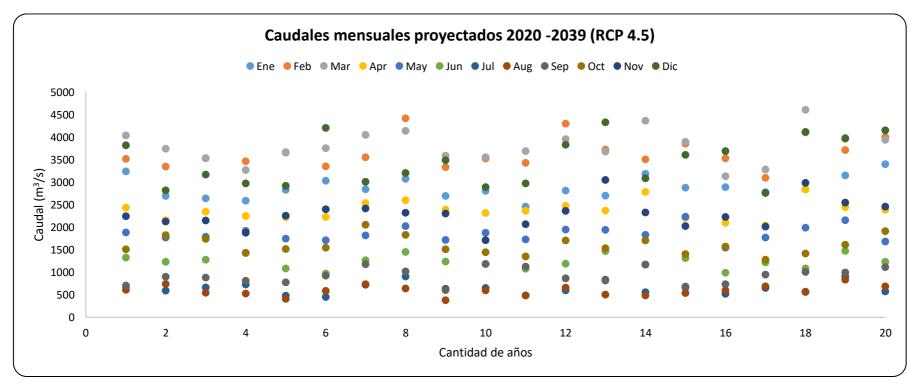
Nota. RCP 4.5= Trayectoria de concentración representativa 4.5.

En la Figura 24, se puede observar que la data de precipitación proyectada en el escenario RCP 4.5 (1981-2016) difiere considerablemente de la data de precipitación observada, es decir existe sesgo en las proyecciones. Con el fin de eliminar este sesgo se ejecutó el método downscaling estadístico sobre la información proyectada para el periodo de 1981 al 2016, observándose luego que la data de precipitación proyectada desescalada es similar en comportamiento y valores a la data de precipitación observada.

Figura 25Comparación entre precipitación observada, proyectada RCP 8.5 y desescalada

Nota. RCP 8.5= Trayectoria de concentración representativa 8.5.

En la Figura 25, se puede observar que la data de precipitación proyectada en el escenario RCP 8.5 (1981-2016) difiere considerablemente de la data de precipitación observada, es decir existe sesgo en las proyecciones. Con el fin de eliminar este sesgo se ejecutó el método downscaling estadístico sobre la información proyectada para el periodo de 1981 al 2016, observándose luego que la data de precipitación proyectada desescalada es similar en comportamiento y valores a la data de precipitación observada.

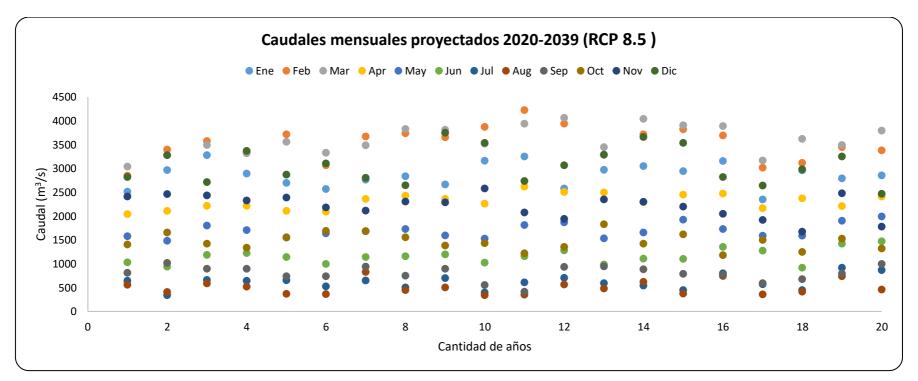

A partir de esta información de temperatura máxima, temperatura mínima y precipitación ya desescalada, se toman los años que se necesitan para proyectar (2020 al 2059.

c. Simulación de caudales bajo condiciones climáticas

Para la obtención de caudales proyectados en los escenarios RCP 4.5 y RCP 8.5 en el periodo 2020 -2059, se hizo uso del modelo hidrológico calibrado y validado, se ingresaron datos de información climática desescalada con el

método downscaling estadístico, obteniéndose datos de caudales desde 1950 al 2059.

Figura 26
Caudales promedios proyectados 2020-2039 (RCP 4.5)

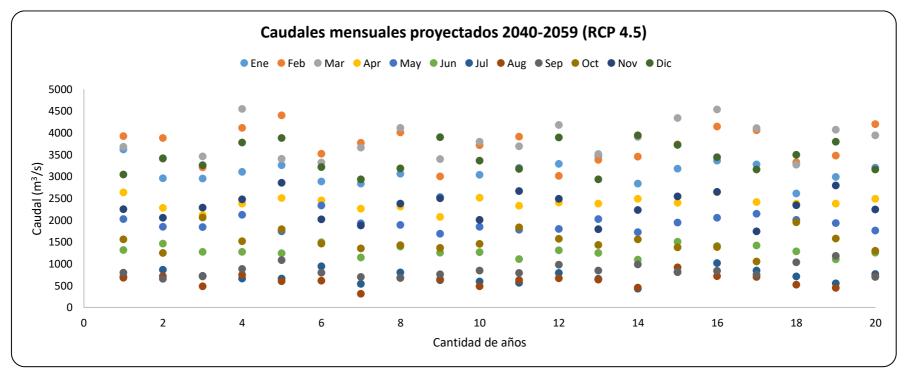

Nota. RCP 4.5= Trayectoria de Concentración Representativa 4.5.

De acuerdo a la Figura 26, se puede observar que los promedios mensuales de los caudales del periodo 2020 – 2039, para el escenario RCP 4.5 mostrarían su mayor valor en marzo y diciembre, con un máximo de 4611 m³/s en el mes de marzo

del año 2037. Asimismo, los menores caudales se presentarían en los meses de julio y agosto, teniendo un valor mínimo de 380.10 m³/s en el mes de agosto del año 2028.

Figura 27

Caudales promedios proyectados 2020-2039 (RCP 8.5)

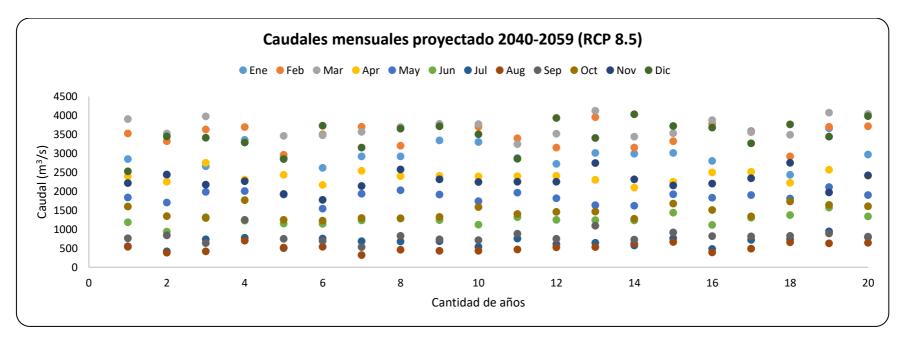


Nota. RCP 8.5= Trayectoria de Concentración Representativa 8.5.

De acuerdo a la Figura 27, se puede observar que los promedios mensuales de los caudales del periodo 2020 – 2039, para el escenario RCP 8.5 mostrarían su mayor valor en febrero, marzo y diciembre, con un máximo de 4226 m³/s en el mes de febrero del año 2030. Asimismo, los menores caudales se presentarían en los meses de julio y agosto, teniendo un valor mínimo de 337.3 m³/s en el mes de agosto del año 2029.

Figura 28

Caudales promedios proyectados 2040-2059 (RCP 4.5)


Nota. RCP 4.5= Trayectoria de Concentración Representativa 4.5.

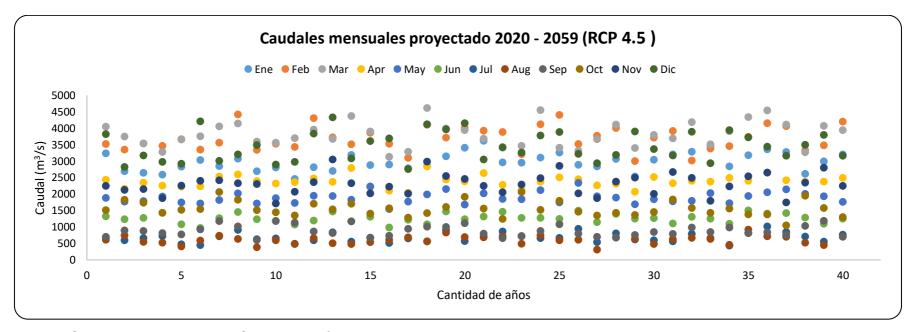
De acuerdo a la Figura 28, se puede observar que los promedios mensuales de los caudales del periodo 2040 – 2059, para el escenario RCP 4.5 mostrarían su mayor valor en febrero, marzo y diciembre, con un máximo de 4546 m³/s en el mes

de marzo del año 2043. Asimismo, los menores caudales se presentarían en los meses de julio y agosto, teniendo un valor mínimo de 310.7 m³/s en el mes de agosto del año 2046.

Figura 29

Caudales promedios proyectados 2040-2059 (RCP 8.5)

Nota. RCP 8.5= Trayectoria de Concentración Representativa 8.5.

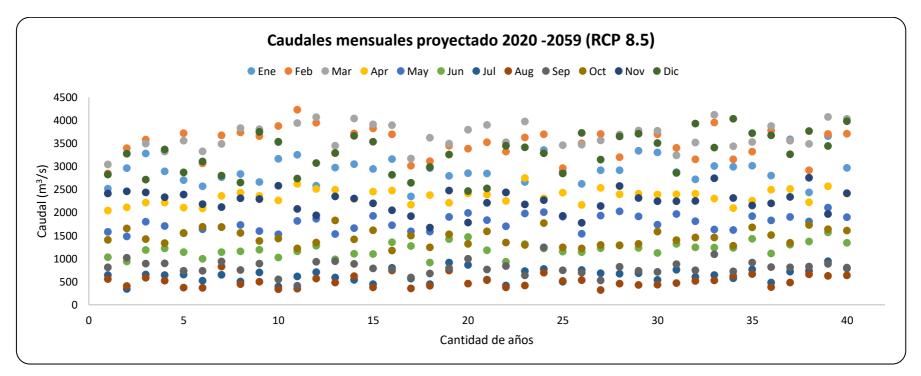

De acuerdo a la Figura 29, se puede observar que los promedios mensuales de los caudales del periodo 2040 – 2059, para el escenario RCP 8.5 mostrarían su mayor valor en febrero, marzo y diciembre, con un máximo de 4121 m³/s en el mes

de marzo del año 2052. Asimismo, los menores caudales se presentarían en los meses de julio y agosto, teniendo un valor mínimo de 318.7 m³/s en el mes de agosto del año 2046.

Asimismo, en la Figura 30, se muestra el promedio mensual de los caudales proyectados en el escenario RCP 4.5 en los años 2020 -2059.

Figura 30

Caudales promedios proyectados 2020-2059 (RCP 4.5)

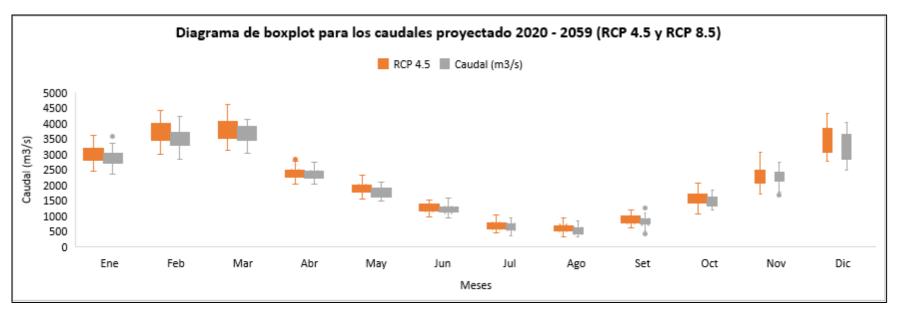


Nota. RCP 4.5= Trayectoria de Concentración Representativa 4.5.

De acuerdo a la Figura 30, se puede observar que los promedios mensuales de los caudales del periodo 2020 – 2059, para el escenario RCP 4.5 mostrarían su mayor valor en febrero, marzo y diciembre, con un máximo de 4611 m³/s en el mes de marzo del año 2037. Asimismo, los menores caudales se presentarían en los meses de julio y agosto, teniendo un valor mínimo de 310.7 m³/s en el mes de agosto del año 2046.

Figura 31

Caudales promedios proyectados 2020-2059 (RCP 8.5)


Nota. RCP 8.5= Trayectoria de Concentración Representativa 8.5.

De acuerdo a la Figura 31, se puede observar que los promedios mensuales de los caudales del periodo 2020 – 2059, para el escenario RCP 8.5 mostrarían su mayor valor en febrero, marzo y diciembre, con un máximo de 4226 m³/s en el mes de febrero del año 2030. Asimismo, los menores caudales se presentarían en los meses de julio y agosto, teniendo un valor mínimo de 318.7 m³/s en el mes de agosto del año 2046.

Con el fin de identificar valores atípicos y comparar distribuciones., se realizó un diagrama de boxplot para los caudales promedios proyectado 2020 -2059 en ambos escenarios RCP 4.5 y RCP 8.5. Obteniendo la Figura 32.

Figura 32

Diagrama de boxplot para el caudal simulado a futuro en el periodo 2020-2059 (RCP 4.5 y RCP 8.5)

Nota. RCP 4.5= Trayectoria de Concentración Representativa 4.5; RCP 8.5= Trayectoria de Concentración Representativa 8.5.

De acuerdo a la Figura 32, en el escenario RCP 4.5 para los promedios mensuales de caudales proyectados, se tiene un valor atípico en el mes de abril con un valor de 2834 m³/s, asimismo, para el escenario RCP 8.5, se cuenta con un dato valor de atípico 3589 m³/s en el mes de enero, además en el mes de noviembre presenta un valor atípico de 1670 m³/s de caudal.

Tabla 12Estadísticos para el diagrama de boxplot en el periodo 2020 -2059 (RCP 4.5).

2020-2059	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Min	2460	3000	3133	2038	1543	969	432	311	601	1050	1711	2760
Q ₁	2812	3450	3528	2274	1769	1179	569	515	757	1414	2064	3074
Q_2	2954	3612	3750	2378	1862	1258	660	609	845	1516	2295	3392
Q_3	3192	3944	4054	2480	1994	1341	769	686	999	1705	2482	3824
Max	3617	4420	4611	2834	2334	1503	1016	919	1183	2059	3049	4328

Nota. Min= Valor mínimo, Q₁₌Primer cuartil, Q₂=Segundo cuartil, Q3= Tercer cuartil, Max= Valor máximo.

Según se muestra en la Tabla 12, en el periodo 2020-2059, para el escenario RCP 4.5 para los promedios mensuales de caudales proyectados, el mayor caudal se da en el mes de marzo con un valor de 4611 m³/s, y el menor caudal se da en el mes de agosto con un valor de 311 m³/s.

Tabla 13
Estadísticos para el diagrama de boxplot en el periodo 2020 -2059 (RCP 8.5)

2020-2059	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Min	2351	2847	3041	2042	1482	915	343	319	413	1177	1670	2467
Q_1	2716	3311	3469	2221	1627	1120	539	412	734	1322	2133	2853
Q_2	2906	3573	3559	2382	1804	1209	647	492	807	1429	2260	3289
Q_3	3022	3710	3881	2437	1912	1288	731	593	894	1597	2394	3652
Max	3657	4226	4121	2750	2108	1567	946	825	1243	1828	2751	4030

Nota. Min= Valor mínimo, Q₁₌Primer cuartil, Q₂=Segundo cuartil, Q3= Tercer cuartil, Max= Valor máximo.

Según se muestra en la Tabla 13, en el periodo 2020 – 2059, para el escenario RCP 8.5 para los promedios mensuales de caudales proyectados. el mayor caudal se da en el mes de febrero con un valor de 4226 m³/s, y el menor caudal se da en el mes de agosto con un valor de 318.7 m³/s.

5.1.3. Estimar las anomalías de los caudales promedios según trayectorias de concentración representativa 4.5 y 8.5 en la intercuenca Alto Huallaga para el periodo 2020-2059.

a. Cálculo de las anomalías de caudales

A continuación, se muestra la variabilidad mensual de los diferentes periodos, considerando como caudal histórico el promedio de los caudales históricos (observados) entre los años 1981-2019, se muestra en la Tabla 14.

Tabla 14Caudales histórico (Promedio de los caudales 1981 -2019)

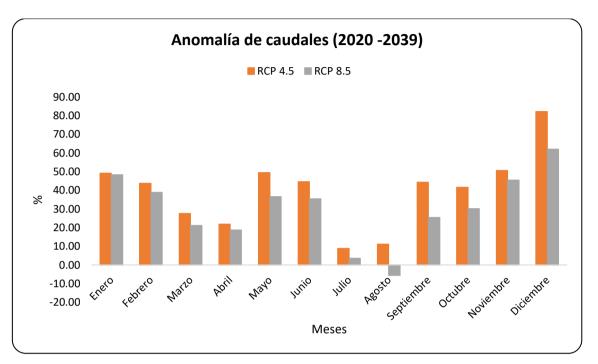
-						
Mes	Caudal histórico (m³/s)					
Enero	1 929.4					
Febrero	2 539.1					
Marzo	2 971.7					
Abril	1 946.9					
Mayo	1 240.2					
Junio	852.4					
Julio	589.4					
Agosto	530.1					
Setiembre	638.2					
Octubre	1 126.3					
Noviembre	1 521.9					
Diciembre	1 893.1					

Nota. El caudal histórico es el caudal promedio mensual desde el periodo de 1981 hasta el 2019.

En la tabla 15 se presenta las anomalías de los promedios mensuales de los caudales proyectados en sus dos escenarios (RCP 4.5 y RCP 8.5) para los periodos 2020 – 2039 y 2040 – 2059.

Tabla 15Anomalías de caudales promedios (%)

		RCP 4	.5 (%)	RCP 8	.5 (%)
Periodo	Mes -	2020 -2039	2040-2059	2020 -2039	2040-2059
Húmedo	Enero	49.17	59.77	48.39	53.76
Húmedo	Febrero	43.73	46.20	38.90	37.00
Húmedo	Marzo	27.66	28.43	21.19	23.31
Húmedo	Abril	21.91	22.85	18.67	22.44
Seco	Mayo	49.43	54.91	36.63	49.45
Seco	Junio	44.63	51.61	35.45	46.49
Seco	Julio	8.90	20.81	3.51	12.83
Seco	Agosto	11.17	16.44	-5.61	-2.88
Seco	Septiembre	44.29	31.92	25.51	27.09
Húmedo	Octubre	41.56	34.31	30.16	29.02
Húmedo	Noviembre	50.67	51.76	45.39	49.31
Húmedo	Diciembre	82.26	81.43	62.03	83.06


Nota. RCP 4.5= Trayectoria de concentración representativa 4.5, RCP 8.5= Trayectoria de concentración representativa 8.5.

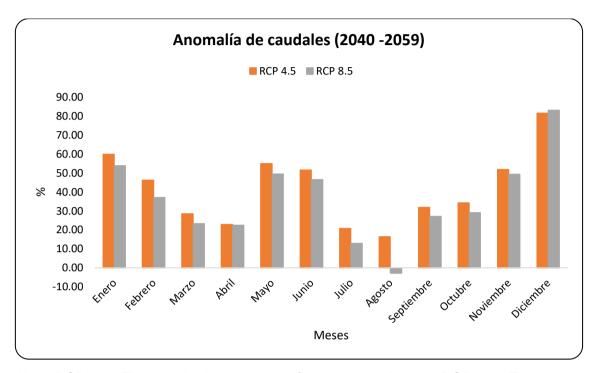
Las anomalías de los caudales mensuales proyectados de los años 2020 -2039, en el escenario RCP 4.5 y RCP 8.5, se muestra en la Figura 33.

Figura 33

Anomalías de los caudales promedios proyectados en los escenarios RCP 4.5

y RCP 8.5 (2020-2039)

Nota. RCP 4.5= Trayectoria de concentración representativa 4.5, RCP 8.5= Trayectoria de concentración representativa 8.5.


De acuerdo a la Figura 33, para los escenarios RCP 4.5 y RCP 8.5, en el periodo húmedo (octubre- abril), la mayor variación se da en el mes de diciembre con un 82.26% y 62.03%, respectivamente. Asimismo, en el periodo seco (mayoseptiembre), la menor variación de caudal promedio para el escenario RCP 4.5 se da en el mes de julio con un 8.9% y para el escenario RCP 8.5 se da en el mes de agosto con un -5.61%.

Las anomalías de los caudales mensuales proyectados de los años 2040 -2059, en el escenario RCP 4.5 y RCP 8.5, se muestra en la Figura 38.

Figura 34

Anomalías de los caudales promedios proyectados en los escenarios RCP 4.5

y RCP 8.5 (2040-2059)

Nota. RCP 4.5= Trayectoria de concentración representativa 4.5, RCP 8.5= Trayectoria de concentración representativa 8.5.

De acuerdo a la Figura 34, para los escenarios RCP 4.5 y RCP 8.5, en el periodo húmedo (octubre- abril), la mayor variación se da en el mes de diciembre con un 81.43% y 83.06% respectivamente. Asimismo, en el periodo seco (mayoseptiembre), la menor variación de caudal promedio para ambos escenarios RCP 4.5 y RCP 8.5 se da en el mes de agosto con un 16.44% y -2.88%, respectivamente.

b. Clasificación de las Anomalías de Caudales

Asimismo, a partir de las anomalías halladas de los promedios mensuales de los caudales proyectado 2020-2039 y 2040-2059, se realizó la clasificación del Índice de Anomalía de Caudales según Avalos et al. (2020) en la Tabla 7, obteniéndose los siguientes resultados mostrados en la Tabla 16 para el intervalo de año de 2020 – 2039 y en la Tabla 17 para el intervalo de años de 2040 – 2059.

Tabla 16Clasificación de los promedios de las anomalías de los caudales mensuales proyectados obtenidos 2020-2059 (RCP 4.5)

		RCP 4.5			
Periodo	Mes	2020 -2039	AC	2040-2059	AC
Húmedo	Enero	49.17	Sobre lo normal	59.77	Muy sobre lo normal
Húmedo	Febrero	43.73	Sobre lo normal	46.20	Sobre lo normal
Húmedo	Marzo	27.66	Sobre lo normal	28.43	Sobre lo normal
Húmedo	Abril	21.91	Normal	22.85	Normal
Seco	Mayo	49.43	Sobre lo normal	54.91	Muy sobre lo normal
Seco	Junio	44.63	Sobre lo normal	51.61	Muy sobre lo normal
Seco	Julio	8.90	Normal	20.81	Normal
Seco	Agosto	11.17	Normal	16.44	Normal
Seco	Septiembre	44.29	Sobre lo normal	31.92	Sobre lo normal
Húmedo	Octubre	41.56	Sobre lo normal	34.31	Sobre lo normal
Húmedo	Noviembre	50.67	Muy sobre lo normal	51.76	Muy sobre lo normal
Húmedo	Diciembre	82.26	Muy sobre lo normal	81.43	Muy sobre lo normal

Nota. AC=Clasificación de las Anomalía de Caudales.

De acuerdo a la Tabla 16, la variación de los promedios mensuales de caudales proyectados 2020-2039 y 2040-2059, con respecto al caudal histórico de la intercuenca Alto Huallaga, para el escenario RCP 4.5, en ambos intervalos

de año 2020-2039 y 2040-2059, en el periodo húmedo (octubre – abril) la mayor variación se da en el mes de diciembre con un 82.26% y 81.43%, respectivamente teniendo un comportamiento "Muy sobre lo normal" y la menor variación se da en el mes de abril en el escenario con un 21.91% y 22.85% respectivamente teniendo un comportamiento "Normal". En el intervalo 2020 - 2039, el periodo seco (mayo – septiembre) tiene la mayor variación en el mes de mayo en con un 49.43%, teniendo un comportamiento "Sobre lo normal", asimismo la menor variación se da en el mes de abril con un 21.91 %, teniendo un comportamiento de "Normal". En el intervalo 2040-2059, el periodo seco, tiene la mayor variación en el mes de mayo en con un 59.91%, teniendo un comportamiento "Muy sobre lo normal". Además, la menor variación se da en el mes de julio con un 8.90%, teniendo un comportamiento de "Normal".

Tabla 17Clasificación de los promedios de las anomalías de los caudales mensuales proyectados obtenidos 2020 -2059 (RCP 8.5)

Dowlada	Maa		RCP	8.5	
Periodo	Mes	2020 -2039	AC	2040-2059	AC
Húmedo	Enero	48.39	Sobre lo normal	53.76	Muy sobre lo normal
Húmedo	Febrero	38.90	Sobre lo normal	37.00	Sobre lo normal
Húmedo	Marzo	21.19	Normal	23.31	Normal
Húmedo	Abril	18.67	Normal	22.44	Normal
Seco	Mayo	36.63	Sobre lo normal	49.45	Sobre lo normal
Seco	Junio	35.45	Sobre lo normal	46.49	Sobre lo normal
Seco	Julio	3.51	Normal	12.83	Normal
Seco	Agosto	-5.61	Normal	-2.88	Normal

Seco	Septiembre	25.51	Sobre lo normal	27.09	Sobre lo normal
Húmedo	Octubre	30.16	Sobre lo normal	29.02	Sobre lo normal
Húmedo	Noviembre	45.39	Sobre lo normal	49.31	Sobre lo normal
Húmedo	Diciembre	62.03	Muy sobre lo normal	83.06	Muy sobre lo normal

Nota. AC=Clasificación de las Anomalía de Caudales.

De acuerdo a la Tabla 17, muestra las anomalías de los promedios mensuales de caudales proyectados para los intervalos de años 2020-2039 y 2040-2059, con respecto al caudal histórico de la intercuenca Alto Huallaga, para el escenario RCP 8.5. Para ambos intervalos de año 2020-2039 y 2040-2059, en el periodo húmedo (octubre – abril) la mayor variación se da en el mes de diciembre con un 62.03% y 83.06%, respectivamente teniendo un comportamiento "Muy sobre lo normal" y la menor variación se da en el mes de abril en el escenario con un 18.67% y 22.44% respectivamente teniendo un comportamiento "Normal". Asimismo, para ambos intervalos de año 2020-2039 y 2040-2059, en el periodo seco (mayo – septiembre) se tiene la mayor variación en el mes de mayo en 36.63% y 49.45% respectivamente, teniendo un comportamiento "Sobre lo normal", y la menor variación se da en el mes de agosto en -5.61% y -2.88% respectivamente, teniendo un comportamiento de "Normal".

A continuación, se muestran las anomalías de los años 2020-2059 de las 29 subcuencas de la intercuenca Alto Huallaga, en sus dos escenarios RCP 4.5 y RCP 8.5 para ambos periodos húmedo y seco.

En la Tabla 18 se muestra los resultados del promedio de las anomalías obtenidas entre los años 2020 – 2059 en el escenario RCP 4.5 en el periodo seco y periodo húmedo.

Tabla 18Clasificación de los promedios de las anomalías de los caudales mensuales proyectados obtenidos en el periodo 2020 -2059 (RCP 4.5)

RCP	Subcuenca	Periodo Húmedo	AC	Periodo Seco	AC
	Sub 1	51.51	Muy sobre lo normal	42.88	Sobre lo normal
	Sub 2	50.68	Muy sobre lo normal	47.95	Sobre lo normal
	Sub 3	63.3	Muy sobre lo normal	46.76	Sobre lo normal
	Sub 4	75.96	Muy sobre lo normal	58.71	Muy sobre lo normal
	Sub 5	41.28	Sobre lo normal	9.24	Normal
	Sub 6	36.13	Sobre lo normal	2.93	Normal
	Sub 7	60.98	Muy sobre lo normal	5.27	Normal
	Sub 8	83.58	Muy sobre lo normal	69.24	Muy sobre lo normal
	Sub 9	37.82	Sobre lo normal	-1.42	Normal
	Sub 10	63.13	Muy sobre lo normal	51.83	Muy sobre lo normal
	Sub 11	339.53	Alto	269.5	Alto
	Sub 12	71.61	Muy sobre lo normal	60.28	Muy sobre lo normal
RCP 4.5	Sub 13	69.5	Muy sobre lo normal	57.53	Muy sobre lo normal
	Sub 14	93.03	Muy sobre lo normal	55.01	Muy sobre lo normal
	Sub 15	352.33	Alto	298.15	Alto
	Sub 16	36.75	Sobre lo normal	21.57	Normal
	Sub 17	75.48	Muy sobre lo normal	66.74	Muy sobre lo normal
	Sub 18	-22.91	Normal	-15.25	Normal
	Sub 19	73.04	Muy sobre lo normal	69.41	Muy sobre lo normal
	Sub 20	80.1	Muy sobre lo normal	91.69	Muy sobre lo normal
	Sub 21	-6.3	Normal	3.18	Normal
	Sub 22	66.34	Muy sobre lo normal	38.43	Sobre lo normal
	Sub 23	197	Alto	149.4	Alto
	Sub 24	87.93	Muy sobre lo normal	56.62	Muy sobre lo normal
	Sub 25	898.32	Alto	521.47	Alto

Sub 26	6034.28	Alto	5763.71	Alto
Sub 27	663.1	Alto	347.31	Alto
Sub 28	512.87	Alto	218.43	Alto
Sub 29	1246.57	Alto	804.3	Alto

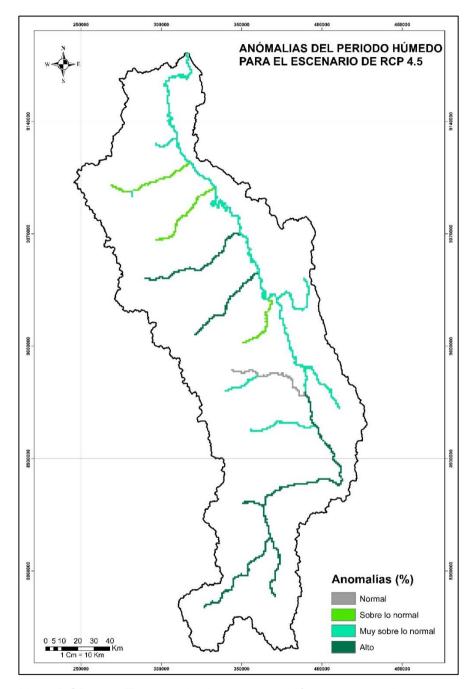
Nota. RCP 4.5= Trayectoria de concentración representativa 4.5.

En la Tabla 19 se muestra los resultados del promedio de las anomalías obtenidas entre los años 2020–2059 en el escenario RCP 8.5 en el periodo seco y periodo húmedo.

Tabla 19Clasificación de los promedios de las anomalías de los caudales mensuales proyectados obtenidos en el periodo 2020-2059 (RCP 8.5)

		Periodo		Periodo	•
RCP	Subcuenca	Húmedo	AC	Seco	AC
	Sub 1	64.08	Muy sobre lo normal	33.18	Sobre lo normal
	Sub 2	46.91	Sobre lo normal	33.18	Sobre lo normal
	Sub 3	59.03	Muy sobre lo normal	32.81	Sobre lo normal
	Sub 4	68.2	Muy sobre lo normal	42.53	Sobre lo normal
	Sub 5	37.62	Sobre lo normal	-1.89	Normal
	Sub 6	32.67	Sobre lo normal	-7.57	Normal
	Sub 7	56.72	Muy sobre lo normal	-5.61	Normal
RCP 8.5	Sub 8	78.82	Muy sobre lo normal	53.25	Muy sobre lo normal
101 0.0	Sub 9	34.03	Sobre lo normal	-11.32	Normal
	Sub 10	58.95	Muy sobre lo normal	37.66	Sobre lo normal
	Sub 11	328.01	Alto	231.4	Alto
	Sub 12	67.28	Muy sobre lo normal	45.38	Sobre lo normal
	Sub 13	65.2	Muy sobre lo normal	42.89	Sobre lo normal
	Sub 14	88.18	Muy sobre lo normal	39.54	Sobre lo normal
	Sub 15	340.87	Alto	260.8	Alto
	Sub 16	33.11	Sobre lo normal	10.51	Normal

Sub 17	71.06	Muy sobre lo normal	51.36	Muy sobre lo normal
Sub 18	-24.81	Normal	-23.52	Normal
Sub 19	68.72	Muy sobre lo normal	54.12	Muy sobre lo normal
Sub 20	75.57	Muy sobre lo normal	72.88	Muy sobre lo normal
Sub 21	-8.7	Normal	-6.67	Normal
Sub 22	62.11	Muy sobre lo normal	23.76	Normal
Sub 23	189.78	Alto	127.2	Alto
Sub 24	83.31	Muy sobre lo normal	41.49	Sobre lo normal
Sub 25	876.47	Alto	467.11	Alto
Sub 26	5810.28	Alto	5086.26	Alto
Sub 27	645.99	Alto	305.46	Alto
Sub 28	498.11	Alto	188.52	Alto
Sub 29	1216.39	Alto	719.28	Alto

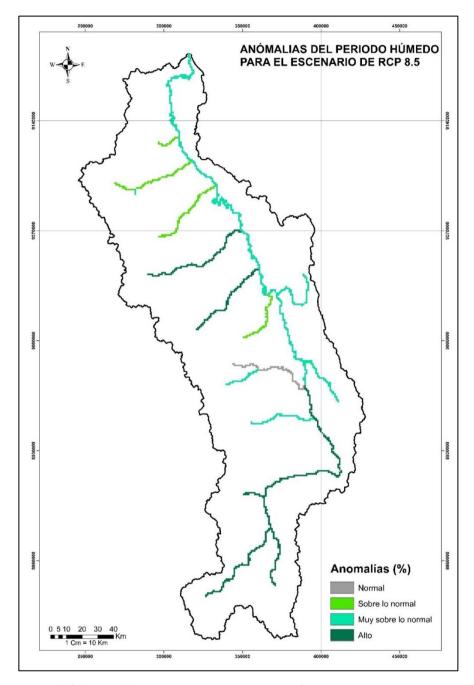

Nota. RCP 8.5= Trayectoria de concentración representativa 8.5.

c. Mapa de las anomalías de caudales

En las siguientes figuras, se muestra las anomalías de caudales basados en los resultados de la Tabla 18 y Tabla 19, en cada escenario RCP 4.5 y RCP 8.5.

Figura 35

Anomalías de los caudales promedios proyectados 2020-2059 en los escenarios RCP 4.5 (Periodo húmedo)

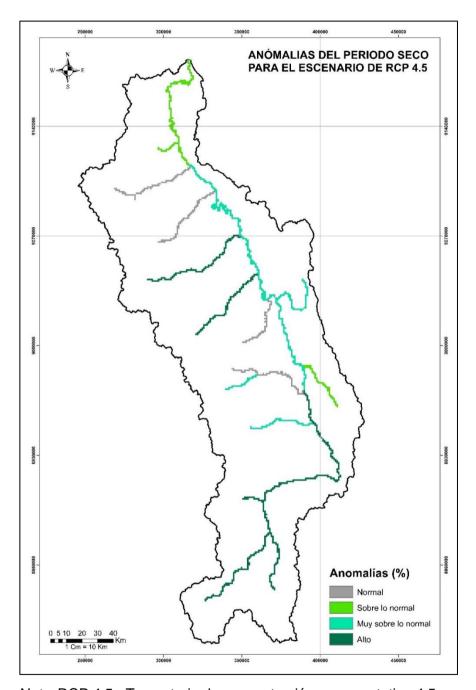


Nota. RCP 4.5= Trayectoria de concentración representativa 4.5.

Según la Tabla 18 y la Figura 35 se observa que para un periodo húmedo en el escenario RCP 4.5 se presentan anomalías de caudales clasificadas como altos en las subcuencas 11, 15, 23, 25, 26, 27, 28 y 29.

Figura 36

Anomalías de los caudales promedios proyectados 2020 – 2059 en los escenarios RCP 8.5 (Periodo húmedo)

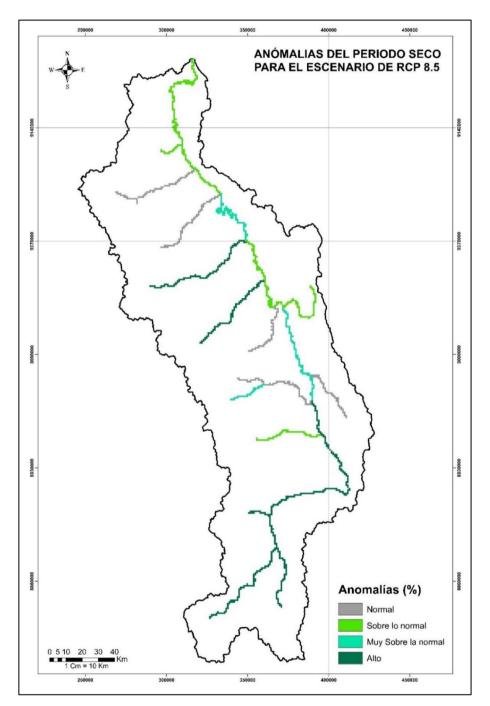


Nota. RCP 8.5= Trayectoria de concentración representativa 8.5.

Según la Tabla 19 y la Figura 36 se observa que para un periodo húmedo en el escenario RCP 8.5 se presentan anomalías de caudales clasificadas como altos en las subcuencas 11, 15, 23, 25, 26, 27, 28 y 29.

Figura 37

Anomalías de los caudales promedios proyectados 2020 – 2059 en los escenarios RCP 4.5 (Periodo seco)



Nota. RCP 4.5= Trayectoria de concentración representativa 4.5.

Según la Tabla 18 y la Figura 37 se observa que para un periodo seco en el escenario RCP 4.5 se presentan anomalías de caudales clasificadas como altos en las subcuencas 11, 15, 23, 25, 26, 27, 28 y 29.

Figura 38

Anomalías de los caudales promedios proyectados 2020 – 2059 en los escenarios RCP 8.5 (Periodo seco)

Nota. RCP 8.5= Trayectoria de concentración representativa 8.5.

Según la Tabla 19 y la Figura 38 se observa que para un periodo seco en el escenario RCP 8.5 se presentan anomalías de caudales clasificadas como altos en las subcuencas 11, 15, 23, 25, 26, 27, 28 y 29.

5.2. Resultado Inferenciales

5.2.1. La intercuenca Alto Huallaga es representada satisfactoriamente para el periodo de 1981 al 2016 mediante el modelo semidistribuido SWAT.

En el proceso de calibración se obtuvieron los valores óptimos de los parámetros del modelo semidistribuido SWAT, se muestra en la Tabla 20. Luego, se obtuvieron en los indicadores estadísticos un NSE 0.69 siendo el modelo bueno, PBIAS -18.2 siendo el modelo satisfactorio y R^2 0.8 siendo el modelo muy bueno, se muestra en la Tabla 21. Asimismo, se obtienen los caudales mensuales calibrados que se compararon con los caudales históricos (observados) en el periodo 1984 al 2004, se muestra en la Figura 39.

Tabla 20Valores de los parámetros sensibles del modelo SWAT

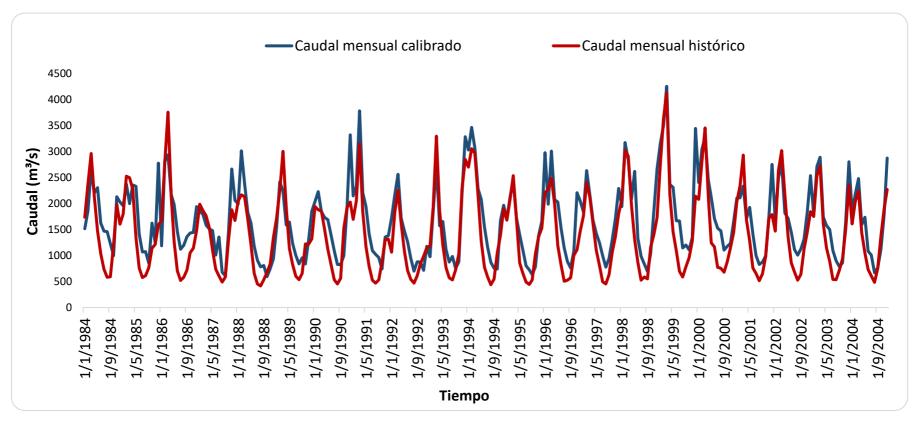
Parámetro	Archivo	Valores
SFTMP	bsn	9.20
SURLAG	bsn	3.50
GW DELAY	gw	101.00
ALPHA BF	gw	210.00
GWQMN	gw	1.00
GW REVAP	gw	0.10
REVAPMN	gw	340.00
RCHRG DP	gw	0.04
LATTTIME	hru	9.00
ESCO	hru	0.13
SLSUBBSN	hru	23.35
HRU SLP	hru	0.16

EPCO	hru	1.00
OV N	hru	0.01
CN2	mgt	51.29
CH N2	rte	-0.125
CH K2	rte	29.00
ALPHA BNK	rte	1.20
SOL BD	sol	0.59
SOL AWC	sol	0.51
SOL K	sol	5.02
SOL Z	sol	481.50
USLE K	sol	0.45

Nota. La descripción de los parámetros sensibles del modelo SWAT se encuentra en la Tabla 4, cada parámetro se encuentra dentro de un archivo de entrada del modelo distribuido SWAT como bsn: cuenca, gw: agua subterránea, hru: unidades de respuesta hidrológica, mgt: administración, rte: enrutamiento, sol: suelo.

Tabla 21Valores de los indicadores estadísticos en el proceso de calibración

NSE	PBIAS	R ²
0.69	-18.2	0.8
Bueno	Satisfactorio	Muy bueno


Nota. Se clasificaron los resultados de los indicadores estadísticos según Calizaya et al. (2020) según la Tabla 1.

Donde:

NSE: coeficiente de eficiencia, PBIAS: porcentaje de sesgo y R²: coeficiente de determinación

Figura 39

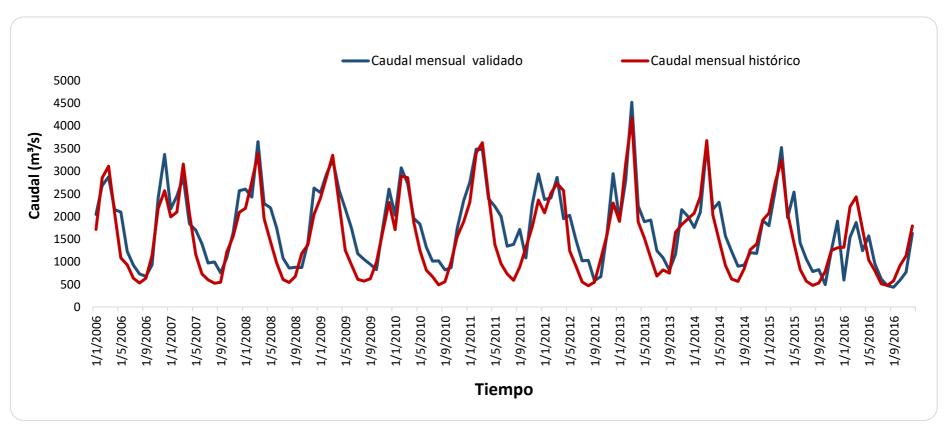
Hidrograma de los caudales mensuales calibrados vs caudales mensuales históricos (1984 al 2004)

Nota. Se comparó los caudales promedio mensual histórico con los caudales promedios mensuales calibrados en el modelo semidistribuido SWAT en el periodo 1984 al 2004.

Finalmente, en el proceso de la validación se obtuvieron en los indicadores estadísticos un NSE 0.74 siendo el modelo bueno, PBIAS -13.4 siendo el modelo bueno y R^2 0.8 siendo el modelo muy bueno, se muestra en la Tabla 22. Asimismo, se obtienen los caudales mensuales validados que se compararon con los caudales históricos (observados) en el periodo 2006 al 2016, se muestra en la Figura 40.

Tabla 22Valores de los indicadores estadísticos en el proceso de validación

NSE	PBIAS	R^2
0.74	-13.4	0.8
Bueno	Bueno	Muy bueno


Nota. Se clasificaron los resultados de los indicadores estadísticos según Calizaya et al. (2020), según la Tabla 1.

Donde:

NSE: coeficiente de eficiencia, PBIAS: porcentaje de sesgo y R²: coeficiente de determinación

Figura 40

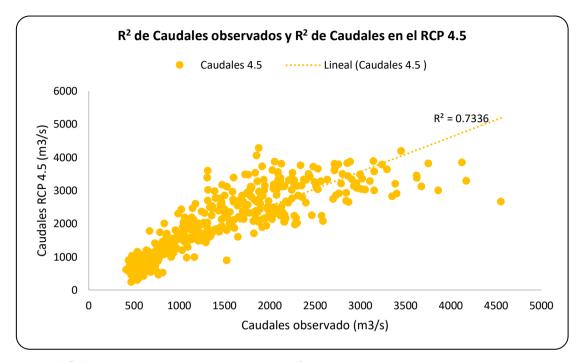
Hidrograma de los caudales mensuales validados vs caudales mensuales históricos (2006 al 2016)

Nota. Se comparó los caudales promedio mensual histórico con los caudales promedios mensuales validados en el modelo semidistribuido SWAT en el periodo 2006 al 2016.

5.2.2. La información climática usando el método downscaling estadístico permite proyectar adecuadamente caudales en la intercuenca Alto Huallaga según trayectorias de concentración representativa 4.5 y 8.5 para el periodo 2020 al 2059, a través del modelo semidistribuido SWAT.

A. Simulación de caudales bajo condiciones climáticas

Para representar la confiabilidad que la información obtenida mediante el método downscaling estadístico; se tomó los caudales obtenidos mediante el modelo semidistribuido SWAT con los datos de los modelos climáticos en el periodo de 1981 al 2016 y se analizó junto con los datos de caudales observados obtenidos de la ANA desde el periodo 1981 al 2016, obteniéndose un coeficiente de determinación (R²) según se muestra en la Tabla 23, de 0.73 y 0.74 para cada escenario RCP 4.5 y RCP 8.5 respectivamente, significa que el caudal proyectado tiene una buena representación, por lo tanto los datos obtenidos son confiables.


Tabla 23Valor estadístico R² en los caudales proyectado en RCP 4.5 y RCP 8.5

Índice estadístico	RCP 4.5	Significancia	RCP 8.5	Significancia
R ²	0.73	Bueno	0.74	Bueno

Nota. RCP 4.5= Trayectoria de concentración representativa 4.5. RCP 8.5= Trayectoria de concentración representativa 8.5. Los valores del coeficiente de determinación (R²⁾ está en función según Calizaya et al. (2020).

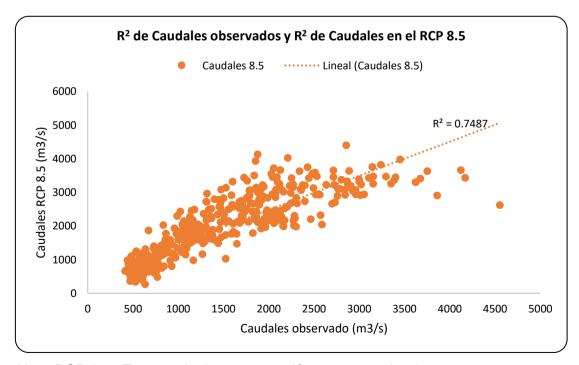

En las siguientes figuras se representa el índice estadístico R² de los Caudales en los escenarios 4.5 y 8.5.

Figura 41Representación del R² de los caudales observado y caudales en el RCP 4.5

Nota. RCP 4.5= Trayectoria de concentración representativa 4.5.

Figura 42Representación del R² de los Caudales observado y Caudales en el RCP 8.5

Nota. RCP 8.5= Trayectoria de concentración representativa 8.5.

VI. DISCUSIÓN DE RESULTADOS

6.1. Contrastación y demostración de la hipótesis con los resultados.

H₁: La intercuenca Alto Huallaga es representada satisfactoriamente para el periodo de 1981 al 2016 mediante el modelo semidistribuido SWAT.

H₀: La intercuenca Alto Huallaga no es representada satisfactoriamente para el periodo de 1981 al 2016 mediante el modelo semidistribuido SWAT.

Según la Tabla 14, la representación de la intercuenca es satisfactoria ya que en el análisis estadístico se obtuvo para el índice PBIAS una clasificación satisfactoria, para el NSE de bueno y para el R² de muy bueno. Por lo que, la intercuenca del Alto Huallaga es representada satisfactoriamente para el periodo de 1981 al 2016 mediante el modelo hidrológico SWAT. Aceptándose la Hipótesis Alterna (H₁).

H₂: La información climática usando el método downscaling estadístico permite proyectar adecuadamente caudales en la intercuenca Alto Huallaga según trayectorias de concentración representativa 4.5 y 8.5 para el periodo 2020 al 2059, a través del modelo semidistribuido SWAT.

H₀: La información climática usando con el método downscaling estadístico no permite proyectar adecuadamente caudales en la intercuenca Alto Huallaga según trayectorias de concentración representativa 4.5 y 8.5 para el periodo 2020 al 2059, a través del modelo semidistribuido SWAT.

El método downscaling estadístico (quantile mapping), se ejecutó con el fin de reducir el sesgo de la información proyectada (temperatura máxima, temperatura mínima y precipitación) obtenidas de los Modelos Climáticos Globales sobre la información climática histórica. Con el fin de evaluar visualmente la eficacia de la información climática corregida con el método dowscaling estadístico, se observó que se obtuvo una buena representación de la información climática proyectada, permite la confiabilidad de obtener las proyecciones de los caudales futuros. Asimismo, se ejecutó el coeficiente de determinación (R²) sobre los caudales generados con la información climática proyectada, que brindó un resultado de bueno. Por lo que, la información

climática con el método downscaling estadístico permite proyectar adecuadamente caudales en la intercuenca Alto Huallaga según trayectorias de concentración representativa (4.5 y 8.5) para los periodos 2020 al 2059, a través del modelo hidrológico SWAT. Entonces se acepta la Hipótesis Alterna (H₂).

H₃: Las anomalías de los caudales promedios son altas según trayectorias de concentración representativa 4.5 y 8.5 en la intercuenca Alto Huallaga para el periodo 2020 - 2059.

H₀: Las anomalías de los caudales promedios no son altas según trayectorias de concentración representativa 4.5 y 8.5 en la intercuenca Alto Huallaga para el periodo 2020 - 2059.

Según el cálculo de anomalías de los promedios mensuales de los caudales proyectados con respecto a los históricos, se observa que para un periodo húmedo en el escenario RCP 4.5 y RCP 8.5, se presentan anomalías de caudales clasificadas como "altos" en las subcuencas 11, 15, 23, 25, 26, 27, 28 y 29. Asimismo, para un periodo seco en el escenario RCP 4.5 y RCP 8.5 se presentan anomalías de caudales clasificadas como "altos" en las subcuencas 11, 15, 23, 25, 26, 27, 28 y 29. Por lo que, las anomalías de los caudales promedios según trayectorias de concentración representativa (4.5 y 8.5) en la intercuenca del Alto Huallaga hasta el año 2059, si son altas. Entonces se acepta la Hipótesis alterna (H₃).

6.2. Contrastación de los resultados con otros estudios similares.

La intercuenca Alto Huallaga es representada satisfactoriamente para el periodo de 1981 al 2016 mediante el modelo semidistribuido SWAT.

Carbajal (2017), en su investigación logró simular la producción de agua y erosión en la subcuenca del río Tempisquito para el periodo base (2008-2013) haciendo uso del modelo hidrológico SWAT. Logrando calibrar el modelo con NSE de 0.70 siendo este un ajuste muy bueno en la simulación del caudal del punto de aforo de la subcuenca, esto permite tener una confiabilidad para realizar proyecciones sobre el modelo. Asimismo, Sánchez (2021), simuló la cuenca, obteniendo como NSE un valor de 0.83, R² de 0.91 y PBIAS de 4.53. Además, Valladares (2017), realizó la calibración del modelo para simular caudales en la

zona de estudio, obteniendo un NSE, PBIAS y R² de 0.89, 8.26, y 0.92 respectivamente. En la investigación realizada se cuentan con resultados similares, obteniéndose para la calibración de la intercuenca un NSE de 0.69, el PBIAS de -18.2 y R² es de 0.9, demostró la adecuada representación de la intercuenca, brindando la confiabilidad para las proyecciones de datos sobre el modelo.

La información climática usando con el método downscaling estadístico permite proyectar adecuadamente caudales en la intercuenca Alto Huallaga según trayectorias de concentración representativa 4.5 y 8.5 para los periodos 2020 al 2059, a través del modelo semidistribuido SWAT.

Valladares (2017) en su estudio, para la información de precipitaciones futuras del periodo 2050 – 2059 bajo trayectoria de concentración representativa 4.5 (RCP 4.5), se consideró 11 modelos de circulación general que forman parte del protocolo experimental del Proyecto de Intercomparación de Modelos Acoplados – Fase 5 (CMIP5), los cuales fueron previamente sometidos a una reducción de escala de tipo estadística y corrección del sesgo por el método del Mapeo de cuantiles, considerando para ello el periodo de referencia 2005 – 2015. Asimismo, Torreblanca (2020), para poder determinar la climatología futura 2020- 2050 tomó en cuenta siete modelos de circulación general MCG, los cuales fueron reducidos estadísticamente de escala por medio del modelo estadístico downscaling 5.2. En la investigación se realizó métodos similares para las proyecciones de los caudales mensuales, se debe obtener los datos de precipitación y temperatura máxima y mínima de los 21 modelos climáticos bajo los escenarios RCP 4.5 y 8.5, sin embargo, los datos obtenidos están dados a nivel global, para regionalizarlo a la intercuenca Alto Huallaga y reducir el sesgo se procedió a ejecutar sobre ellos el método downscaling estadístico.

Las anomalías de los caudales promedios son altas según trayectorias de concentración representativa 4.5 y 8.5 en la intercuenca del Alto Huallaga para el periodo 2020- 2059.

Valladares (2017), en su estudio encontró que las variaciones de los caudales durante la época húmeda (octubre - abril) en el RCP 4.5, tienen la mayor variación en el mes de noviembre con el + 84% y la menor variación dentro

de este mismo periodo lo tiene el mes de abril con el -31% y considerando el periodo seco (mayo - Setiembre) la mayor variación ocurriría en Julio siendo alcanzando esta el +48% y la variación menor se produciría en mayo con el disminuyendo 27%. Asimismo, León (2017) obtuvo que el volumen del flujo mensual de los caudales proyectados para el periodo 2025 - 2054 en el escenario RCP 4.5, proyectan para el periodo húmedo (octubre - abril) variar en +103.4% en promedio, que representa un incremento aproximado de 80.48 m³/s. modificar la palabra cambio para el periodo seco (mayo - septiembre) proyectan una variación de -64.4%, que representa una disminución aproximada de 11.71 m³/s. En la investigación realizada se cuenta con análisis similares, para el intervalo de año 2020-2039, en el escenario RCP 4.5, la mayor variación se da en el periodo húmedo en el mes diciembre con un 82.26%, teniendo un comportamiento muy sobre lo normal y la menor variación se da en el periodo seco en el mes de julio con un 8.90%. Para el escenario RCP 8.5, la mayor variación se da en el periodo húmedo en el mes de diciembre con 62.03% teniendo un comportamiento muy sobre lo normal. La menor variación se da en el periodo seco en el mes de agosto con una disminución de 5.61% teniendo un comportamiento normal. Para el intervalo del periodo 2040-2059, en el escenario RCP 4.5, la mayor variación se presenta en el periodo húmedo en el mes diciembre con un 81.43%, con un comportamiento muy sobre lo normal y la menor variación se da en el periodo seco en el mes de agosto con un 16.44%. Para el escenario RCP 8.5, la mayor variación se da en el periodo húmedo en el mes de diciembre con 83.06% con un comportamiento muy sobre lo normal. La menor variación se da en el periodo seco en el mes de agosto con una disminución 2.88% con un comportamiento normal.

6.3. Responsabilidad ética de acuerdo a los reglamentos vigentes (el autor de la investigación se responsabiliza por la información emitida en el informe)

La presente investigación titulado "Comportamiento de la escorrentía según proyecciones climáticas en la intercuenca Alto Huallaga 2020-2059" se encuentra dentro de los principios y compromisos de responsabilidad ética según con los reglamentos vigentes de la Universidad Nacional del Callao".

Del mismo modo el desarrollo de la investigación se centra en teorías las cuales han sido debidamente referenciadas en este trabajo, evidenciando de esta forma la originalidad de este tema de investigación.

CONCLUSIONES

Se concluye que el modelo hidrológico SWAT, representó satisfactoriamente la intercuenca Alto Huallaga, obteniéndose los índices estadísticos NSE, PBIAS y R² categorizados como satisfactorio a muy bueno. Esta representación brinda la confiabilidad de proyectar escenarios futuros con la finalidad de tomar decisiones ante cualquier evento extraordinario.

Además, se concluye que el método downscaling estadístico a través de la herramienta Quantile Mapping se realizó la reducción de escala de los MCG, permitiendo ejecutar la información de proyecciones futuras de precipitación, temperaturas máximas y mínimas de manera satisfactoria, para los escenarios de cambio climático proyectados RCP 4.5 y RCP 8.5, logrando simular la estacionalidad de los caudales futuros en el periodo 2020 – 2059 en la intercuenca Alto Huallaga. Se observa que se tienen mayores caudales para los meses de verano con respecto a los meses de invierno.

Las anomalías del promedio mensual de los caudales proyectados (2020 – 2059) con respecto a los caudales históricos, en ambos escenarios RCP 4.5 y RCP 8.5, muestran un aumento del 30% para ambos escenarios RCP 4.5 y RCP 8.5 con respecto al periodo 1981-2019, representando un potencial factor de inundaciones, sin embargo se debe tener en cuenta que este resultado no contempla la ocurrencia del fenómeno del niño o de la niña, ya que los Modelos de Circulación Global (MCG) no pueden contemplar ese fenómeno.

RECOMENDACIONES

Se recomienda realizar el análisis del caudal futuro con respecto a la demanda por sectores, y verificar si el impacto del cambio climático afectará en la generación hidroeléctrica y en la agricultura, ya que un aumento brusco en los caudales producirá pérdidas económicas y sus efectos se verán reflejados en las poblaciones rurales que dependen de la agricultura para subsistir. Ante ello es necesario una gestión a nivel de intercuenca, que incluya medidas de adaptación para reducir la vulnerabilidad de la zona.

Fomentar la investigación basada en estudios de cambio climático cuyos resultados contribuyan a la Gestión del Riesgo de Desastres basado en la Ley Nº 29664, con la finalidad de proteger la vida de la población. Asimismo, la presente investigación ayuda a que entidades como la Autoridad Nacional del Agua (ANA), orienten estrategias y líneas de acción referidas al quinto eje de la política de intervención en el Plan de Gestión de Recursos Hídricos, referida al cumplimiento de la Ley Marco sobre Cambio Climático, la información obtenida permite establecer medidas de adaptación y mitigación al cambio climático, a fin de reducir la vulnerabilidad ante estos desastres naturales.

El presente trabajo de investigación, se enfoca en dos factores climáticos la temperatura y precipitación. Es posible que se necesiten análisis más completos para futuros estudios donde se incluyan factores como la influencia de la velocidad del viento, la humedad relativa y la radiación solar como principales componentes meteorológicos.

Se recomienda el uso del modelo hidrológico SWAT ya que se obtuvo resultados satisfactorios en la representación de la intercuenca Alto Huallaga. Asimismo, de recomienda comparar el modelo distribuido SWAT con el modelo distribuido TETIS para obtener ventajas en su aplicación.

Los Modelos de Circulación General Atmosféricos-Oceánicos Acoplados (CMIP5), utilizados en el presente estudio, muestran buena habilidad para simular la evolución de las circulaciones de escala global. Se recomienda realizar el mismo estudio, pero utilizando los modelos climáticos CMIP6 de WORD CLIM

y como manipular su información debido que su data está en promedios mensuales para 2040, 2060, 2080 y 2100.

Se ejecutó el método downscaling estadístico para obtener datos climáticos regionalizados de alta resolución, obteniendo una reducción de escala satisfactorias, por ello que se recomienda el uso de este método. Asimismo, se puede comparar con el método downscaling dinámico para ver la eficiencia de ambos métodos.

Los índices de anomalías de caudal, presenta aumentos en el comportamiento de los mismos, se recomienda utilizar la presente investigación como una línea base para la gestión del recurso hídrico en la intercuenca Alto Huallaga, con una visión a futuro para la adaptación al cambio climático.

REFERENCIAS BIBLIOGRÁFICAS

- Álvarez, A. (2020). Clasificación de las investigaciones. https://repositorio.ulima.edu.pe/bitstream/handle/20.500.12724/10818/No ta%20Acad%C3%A9mica%202C%20%20Clasificaci%C3%B3n%20de% 20Investigaciones.pdf?sequence=4&isAllowed=y
- Andina. (11 de noviembre de 2019) Río Huallaga se desborda en San Martin por Iluvias intensas. https://andina.pe/agencia/noticia-rio-huallaga-se-desborda-san-martin-lluvias-intensas-772691.aspx#:~:text=18%3A08%20%7C%20Lima%2C%20nov,de%20Defensa%20Civil%20(Indeci).
- Araque, M., Vásconez, M., Mancheno A., Alvarez C., Prehn, C., Cevallos C. y Ortiz, L. (2019). *Cuencas hidrográficas*. Abya Yala. https://dspace.ups.edu.ec/bitstream/123456789/19038/1/Cuencas%20hi drogr%c3%a1ficas.pdf
- Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., y Jha, M. K. (2012). SWAT: Model use, calibration, and validation. *Transactions of the ASABE*, 55(4), 1491-1508. https://doi.org/10.13031/2013.42256
- Astorayme, M. (2017). Configuración de modelos climáticos, hidrológicos e hidráulicos en la Cuenca del Río Rímac, Perú. http://hdl.handle.net/20.500.12404/8506
- Autoridad Nacional del Agua. (2015). Evaluación de recursos hídricos en la cuenca de Huallaga. Repositorio Digital de Recurso Hídricos. https://repositorio.ana.gob.pe/handle/20.500.12543/19
- Autoridad Nacional del Agua. (s.f.). *Observatorio del Agua.* https://snirh.ana.gob.pe/observatorioSNIRH/
- Avalos, G., Correa, K., Endara Huanca, S. M., Sosa, J., Lavado, W., Quevedo, K. y Ortega, M. (2020). Reporte de Condiciones secas y húmedas en el Perú durante el año hidrológico 2019-2020. https://hdl.handle.net/20.500.12542/830

- Avalos, G., Correa, K., Quevedo, K., Tello, C., Endara, S., Acuña, J., y Cristóbal, K. (2021). Glosario de términos relacionados a sequías, gestión de riesgo y cambio climático 2021. https://hdl.handle.net/20.500.12542/1773
- Aybar, C., Fernández, C., Huerta, A., Lavado, W., Vega, F., y Felipe, O. (2019). Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day. *Hydrological Sciences Journal*, 65(5), 770–785. https://doi.org/10.1080/02626667.2019.1649411
- Baptista, M. y Pillco, R. (2021). *Predicción de caudales bajo el impacto de cambio climático en condiciones de información limitada en la microcuenca del río Azanaque, Oruro* (Doctoral dissertation). Repositorio institucional de la Universidad Nacional de San Andrés. https://repositorio.umsa.bo/handle/123456789/20689
- Bedoya, M., Contreras, C. y Ruiz, F. (2010). *Alteraciones del régimen hidrológico y de la oferta hídrica por variabilidad y cambio climático*. IDEAM. Estudio Nacional del Agua.
- Bustos, D. F. (2020). Comportamiento atmosférico y oceánico para el 2100 en el Mar Caribe con base a proyecciones de modelos climáticos del CMIP5. http://hdl.handle.net/10584/9711
- Calizaya A., Mendoza, J. y Copa, M. (2020). Bases hidrológicas para la conservación de los recursos naturales en la cuenca del lago Moa, Bolivia. http://portal.amelica.org/ameli/jatsRepo/425/4251836010/movil/index.htm
- Carvajal, D. (2017). Dinámica hídrica bajo condiciones climáticas cambiantes en la subcuenca del Río Tempisquito, cuenca del Tempisque, Guanacaste, Costa Rica. Repositorio de Conocimiento Institucional CATIE. https://repositorio.catie.ac.cr/handle/11554/8705
- Cervera, R. (2014). *Métodos y técnicas de investigación internacional*. https://www.ucm.es/data/cont/docs/247-2013-09-26-metodosytecnicas_rafaelcalduch2013_2014.pdf
- Chavarry, R. (18 de abril de 2022). SENAMHI HRS PISCO. Recuperado el 15 de mayo de 2022, de https://github.com/rchavarryv97/SENAMHI-HSR-PISCO/blob/main/FORMATO%20PUNTO%20(CSV)

- Del Aguila Ríos, S. (2021). Modelamiento de procesos hidrológicos en cuencas de la Sierra Central del Perú. http://repositorio.lamolina.edu.pe/handle/20.500.12996/4659
- D.S. 013-2015-MINAGRI. Aprueban el Plan Nacional de los Recursos Hídricos. https://busquedas.elperuano.pe/normaslegales/aprueban-el-plan-nacional-de-los-recursos-hidricos-decreto-supremo-n-013-2015-minagri-1263786-5/
- Earth data. (s.f.). ALOS PALSAR Corrección radiométrica del terreno. https://asf.alaska.edu/data-sets/derived-data-sets/alos-palsar-rtc/alos-palsar-radiometric-terrain-correction/
- Earth Observing System. (8 de diciembre de 2020). Resolución espacial en una imagen satelital. Recuperado el 4 de abril de 2022, de https://eos.com/es/blog/resolucion-espacial/
- El comercio. (13 de febrero 2014) Desborde del río Huallaga deja a varias familias sin hogar. https://elcomercio.pe/peru/pasco/desborde-rio-huallaga-deja-familias-hogar-293346-noticia/.
- Nicomedes, N. (2018). *Tipos de investigación*. Universidad Santo Domingo Guzmán. http://repositorio.usdg.edu.pe/bitstream/USDG/34/1/Tipos-de-Investigacion.pdf
- Fattorelli, S. y Fernández, P. C. (2011). *Diseño Hidrológico.* (2^{da} ed.) Edición Digital. Water Assessment and Advisory Global Network.
- Fiseha, B. M., Melesse, A. M., Romano, E., Volpi, E., y Fiori, A. (2012). Statistical downscaling of precipitation and temperature for the Upper Tiber Basin in Central Italy. *International journal of water sciences*, 1.
- Gassman, P. W., Sadeghi, A. M., y Srinivasan, R. (2014). Applications of the SWAT model special section: overview and insights. *Journal of Environmental Quality*, 43(1), 1-8. https://doi.org/10.2134/jeq2013.11.0466
- Gutiérrez, C. (2014). *Hidrología básica y aplicada*. Universitaria Abya Yala. https://dspace.ups.edu.ec/bitstream/123456789/6758/1/Hidrologia%20ba sica%20y%20aplicada.pdf

- Guevara, E. (2015). *Métodos para el análisis de variables hidrológicas y ambientales*. Autoridad Nacional del Agua Ministerio de Agricultura y Riego.

 https://repositorio.ana.gob.pe/bitstream/handle/20.500.12543/3940/ANA0 002522.pdf?sequence=1&isAllowed=y
- Horas Edición Central. (31 de diciembre de 2020). Huánuco fuertes lluvias provocaron el desborde del río Huallaga. Recuperado el 10 de marzo de 2022, de https://m.panamericana.pe/24horas/nacionales/310893-huanuco-fuertes-lluvias-provocaron-desborde-rio-huallaga.
- Huerta, A., y Aybar, C. Lavado, W. (2018). PISCO temperatura v. 1.1. http://iridl.ldeo.columbia.edu/documentation/.pisco/.PISCOt_report.pdf
- Instalación de satélites Alaska (s.f.). *ASF Data search vertex*. https://search.asf.alaska.edu/#/?dataset=ALOS
- Jia, X., et al. (2014). The tradeoff and synergy between ecosystem services in the Grain-for-Green areas in Northern Shaanxi, China. *Ecological* indicators, 43, 103-113. https://doi.org/10.1016/j.ecolind.2014.02.028
- Jodar, A., Ruiz, M. y Melgarejo, J. (2018). Evaluación del impacto del cambio climático sobre una cuenca hidrológica en régimen natural (SE, España) usando un modelo SWAT. *Revista mexicana de ciencias geológicas*, 35(3), 240-253. https://doi.org/10.22201/cgeo.20072902e.2018.3.564
- Joo, J., Zhang, A., Li, X., y Zheng, C. (2017). *Hydrological responses to climate* shifts for a minimally disturbed mountainous watershed in northwestern *China*. Hydrological Sciences Journal. 62(9), 1440–1455. https://doi.org/10.1080/02626667.2017.1316851
- Klove, B., Ala Aho, P., Bertrand, G., Gurdak, J. J., Kupfersberger, H., Kværner, J. y Pulido Velazquez, M. (2014). Climate change impacts on groundwater and dependent ecosystems. *Journal of Hydrology*, 518, 250-266. https://doi.org/10.1016/j.jhydrol.2013.06.037
- Komperda, R. (20 de noviembre de 2017). ACS Publications. Obtenido de ACS SYMPOSIUM SERIES. https://pubs.acs.org/doi/full/10.1021/bk-2017-1260.ch007
- Land viewer. (s.f.). *Land viewer*. https://eos.com/landviewer/

- Lario, J. y Bardaji T. (2017). Introducción a los riesgos geológicos. UNED.
- Lee, T., y Singh, V.P. (2018). Statistical Downscaling for Hydrological and Environmental Applications (1st ed.). *CRC Press*. https://doi.org/10.1201/9780429459580
- Ley N° 30754. Ley marco sobre cambio climático. https://busquedas.elperuano.pe/normaslegales/ley-marco-sobre-cambio-climatico-ley-n-30754-16381611/#:~:text=La%20Ley%20Marco%20sobre%20Cambio,las%20medidas%20de%20adaptaci%C3%B3n%20y
- León Ochoa, R. F. (2017). Modelación de la disponibilidad hídrica del río Piura, considerando la incidencia del cambio climático. Repositorio de la Universidad Agraria La Molina. http://repositorio.lamolina.edu.pe/handle/20.500.12996/2877
- León, R. F., Portuguez, D. M., y Chávarri, E. A. (2019). Modelación de la disponibilidad hídrica del rio Piura-Perú, considerando la incidencia del cambio climático. Revista de Investigaciones Altoandinas. http://dx.doi.org/10.18271/ria.2019.476
- Llauca, H., Lavado, W., Montesinos, C., Santini, W. y Rau, P. (2021). PISCO_HyM_GR2M: A model of monthly water balance in Peru (1981–2020). *Water*, 13(8), 1048. https://doi.org/10.3390/w13081048
- López Pineda, R. F. y Patrón Ríos, E. (2013). *Cuencas hidrográficas*. *Fundamentos y perspectivas para su manejo y gestión.* (1^{ra} ed.). Secretaría de Medio Ambiente y Recursos Naturales. https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/Libros2013/Cuencas_final_2014.pdf
- Mejía Marcacuzco, J. A. (2017). Probabilidad y estadística en hidrología.
- Ministerio del Ambiente del Perú. (2015). La Libertad: ¿Por qué el Perú es el tercer país más vulnerable al cambio climático? https://sinia.minam.gob.pe/contenido/libertad-porque-peru-tercer-pais-mas-vulnerable-cambio-climatico

- Montenegro, J. (10 febrero del 2022). *CMIP5 and Google Earth Engine*. https://github.com/Hydroenvironment/CMIP5-and-Google-Earth-Engine/blob/master/Point_CMIP5_daily_V1.0.js
- Montenegro, J. (24 agosto del 2021). Reducción estadística de datos climáticos diarios utilizando técnica de mapeo cuantil (QMP). https://github.com/Hydroenvironment/Statdownscaling/blob/master/Down scalePT full V1.1.r
- Munévar Guerrero, N. y Saavedra Hincapié, D. (2020). Evaluación de la Amenaza por Sequía en el Sector Agrícola de la Cuenca del Río Prado bajo los escenarios del Cambio Climático. Bogotá: Universidad Santo Tomás.
- NASA center for climate simulation. (2021). NASA Earth Exchange Global Daily

 Downscaled Projections (NEX GDDP).

 https://www.nccs.nasa.gov/services/data-collections/land-basedproducts/nex-qddp
- Núñez, M. A. (2011). La cuenca hidrográfica en la gestión integrada de los recursos hídricos. *Revista Virtual REDESMA*, *5*(1), 1. http://www.siagua.org/sites/default/files/documentos/documentos/cuenca s_m_aguirre.pdf
- Naupas, H., Valdivia, M., Palacios, J. y Romero, H. (2018). *Metodología de la Investigación Cuantitativa-Cualitativa y Redacción de Tesis*. (5^{ta} ed.) Colombia. Ediciones de la U.
- Ordoñes, J. (2011). Cartilla Técnica: Ciclo hidrológico. Sociedad Geográfica de Lima, 10-14. Recuperado de https://www.gwp.org/globalassets/global/gwp-sam_files/publicaciones/varios/ciclo_hidrologico.pdf
- Organización Meteorológica Mundial. (2012). *Glosario Hidrológico Internacional*. Recuperado el 14 de abril de 2022, de http:// unescoguatemala.org/wp-content/uploads/2014/11/glosario.pdf
- Organización de las Naciones Unidas para la Agricultura y la Alimentación. (s.f.). *Mapa digital de suelos del mundo.*

- https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/metadata/446ed430-8383-11db-b9b2-000d939bc5d8
- Palomino Lemus, R. (2016). Proyecciones de cambio climático para la precipitación en América tropical mediante técnicas de downscaling estadístico.
- Panel Intergubernamental sobre el Cambio Climático. (2018). Anexo I: Glosario. Calentamiento global de 1,5 °C, Informe especial del IPCC sobre los impactos del calentamiento global de 1,5 °C con respecto a los niveles preindustriales y las trayectorias correspondientes que deberían seguir las emisiones mundiales de gases de efecto invernadero, en el contexto del reforzamiento de la respuesta mundial a la amenaza del cambio climático, el desarrollo sostenible y los esfuerzos por erradicar la pobreza. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/10/SR15_Glossary_spanish.pdf
- Panel Intergubernamental sobre el Cambio Climático. (2021). What is the IPCC?. https://www.ipcc.ch/site/assets/uploads/2021/07/AR6_FS_What_is_IPCC .pdf
- Pascual, V. A., Burgos-Martínez, R. y Palacios, R. H. (2021). Etapas del método estadístico. *Ciencia Huasteca Boletín Científico de la Escuela Superior de Huejutla*, 9(17), 35-36.
- Pazos, M. y Arias, D. (2019). Hidrología Agrícola. *CIDEPRO*. https://www.researchgate.net/profile/David-Mayorga-Arias/publication/338669423_Hidrologia_Agricola/links/5e8c148592851c 2f52868483/Hidrologia-Agricola.pdf
- Pontificia Universidad Católica de Chile. (2017). Glosario de términos de proyección climática. Centro cambio global. https://cambioglobal.uc.cl/comunicacion-y-recursos/glosario/proyeccion-climatica
- Sánchez, A. I. (2021). Modelo hidrológico de la parte alta de la cuenca Cahabón para establecer la oferta hídrica considerando el efecto del cambio climático para el periodo de referencia (1981-2000) y un futuro próximo (2020-2100) utilizando los escenarios AR5 del IPCC.

- Servicio Nacional de Meteorología e Hidrología. (2020a). Lineamientos Generales que orientan la aplicación de la información climática sobre tendencias históricas, eventos extremos y proyecciones de escenarios climáticos nacionales. Recuperado de https://www.senamhi.gob.pe/load/file/00701SENA-1278.pd
- Servicio Nacional de Meteorología e Hidrología. (2020b). SENAMHI HRS PISCO. Instituto internacional de investigación sobre el clima y la sociedad. Recuperado el 10 de abril de 2022, de http://iridl.ldeo.columbia.edu/SOURCES/.SENAMHI/.HSR/.PISCO/
- Servicio Nacional de Meteorología e Hidrología. (2021). *Instalación y operación de estaciones*. https://www.senamhi.gob.pe/load/file/00711SENA-53.pdf
- Servicio Nacional de Meteorología e Hidrología. (2022). *Boletín Hidroclimático Huánuco DZ 10.*
- Servicio Nacional de Meteorología e Hidrología. (s.f.). *Mapa de estaciones*. https://www.senamhi.gob.pe/mapas/mapa-estaciones/mapadepesta1.php
- Senent Aparicio, J., Pérez Sánchez, J., Carrillo García, J. y Soto, J. (2017). Uso de SWAT y Fuzzy TOPSIS para evaluar el impacto del cambio climático en la cabecera de la cuenca del río Segura (SE de España). Water.
- Silva, O, y Tobón, C. (2019). Evaluación de impactos ecohidrológicos del cambio climático en una cuenca de la región central de Venezuela. https://www.researchgate.net/profile/Oscar-Silva-6/publication/336591732_Evaluacion_de_impactos_ecohidrologicos_del _cambio_climatico_en_una_cuenca_de_la_region_central_de_Venezuel a/links/5da771cc92851caa1baa5959/Evaluacion-de-impactos-ecohidrologicos-del-cambio-climatico-en-una-cuenca-de-la-region-central-de-Venezuela.pdf
- Sociedad Hispana de Investigadores Científicos. (2014). *José Supo Master Class: El Estudio de Nivel Predictivo.* Youtube. https://www.youtube.com/watch?v=VGn7LPp_mRs&t=4854s
- Soil Water Assessment Tool. (2012a). SWAT Input Data: File.CIO. https://swat.tamu.edu/media/69308/ch03_input_cio.pdf

- Soil Water Assessment Tool. (2012b). Model database. https://swat.tamu.edu/media/69419/Appendix-A.pdf
- Sunghun K., Kyungwon J., Hanbeen K., Ju Young S. y Jun Haeng H. (2021). Regional quantile delta mapping method using regional frequency analysis for regional climate model precipitation. *Journal of Hydrology*, 596, 125685. https://doi.org/10.1016/j.jhydrol.2020.125685
- Traverso Yucra, K. A., Lavado Casimiro, W. y Felipe Obando, O. (2022).

 Monitoreo hidrológico en tiempo cuasi real en la vertiente del pacífico empleando el modelo hidrológico SWAT, estudio final. https://repositorio.senamhi.gob.pe/handle/20.500.12542/1780
- Torreblanca Gonzales, L. (2020). Predicción de la hidrología en la cuenca del río Cancusane hasta su almacenamiento en la represa "El Frayle" hasta el año 2050.
- TV Perú Noticias. (18 de marzo 2018) Huánuco desborde del río Huallaga deja un desaparecido. Recuperado el 10 de abril del 2022, de https://www.tvperu.gob.pe/noticias/regionales/huanuco-desborde-del-rio-huallaga-deja-un-desaparecido
- Valladares, E. A. (2017). Respuesta hidrológica de la cuenca del río Santa en condiciones de cambio climático. Repositorio de la Universidad Nacional Agraria La Molina. http://repositorio.lamolina.edu.pe/handle/20.500.12996/3367
- Villón, M. (2004). Hidrología. Instituto Tecnológico de Costa Rica.
- Vuille, M. (2013). El cambio climático y los recursos hídricos en los Andes tropicales. Banco Interamericano de Desarrollo. https://keneamazon.net/Documents/Publications/Virtual-Library/Economia-Desarrollo/131.pdf
- Walling, D. E. y Fang, D. (2003). Recent trends in the suspended sediment loads of the world's rivers. Global and planetary change, 39(1-2), 111-126. https://doi.org/10.1016/S0921-8181(03)00020-1
- Williams, J. R., Arnold, J. G., Kiniry, J. R., Gassman, P. W. y Green, C. H. (2008).
 History of model development at Temple, Texas. *Hydrological sciences journal*, 53(5), 948-960. https://doi.org/10.1623/hysj.53.5.948

World Meteorological Organization. (2021). 2021 State of climate services.

Water. https://library.wmo.int/doc_num.php?explnum_id=10826

ANEXOS

Anexo I. Caudales mensuales simulados en el SWAT (1984-2016)

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Set	Oct	Nov	Dic
1984	1941	2307	2694	2224	2271	1493	1409	1407	1505	1470	2289	2600
1985	1788	2759	2025	2471	2404	1193	994	1420	1425	2035	1528	3187
1986	1690	3210	3230	2120	1490	1840	1062	1714	1672	2163	1688	2227
1987	2361	1903	1605	1633	1665	1078	1572	787.6	1002	1973	3257	2344
1988	2013	3302	2480	1726	1576	1131	990.5	1066	1274	959.5	1066	1642
1989	1873	2701	2397	1426	1599	1108	912.4	887.1	1377	1258	1634	1949
1990	2301	2649	1772	1693	1658	1338	1091	902.3	1389	1643	2212	3242
1991	2731	2459	3892	2219	1903	1314	1090	1322	1341	1087	1603	1961
1992	2041	2491	2685	1953	1457	1239	1057	940.6	1152	1548	1127	1679
1993	1536	2203	3108	1709	1530	1261	826.1	1389	1012	1229	2371	3522
1994	3160	3424	3084	2100	2047	1425	1156	1030	1115	1610	2274	2282
1995	2529	1780	3241	1737	1330	1126	827.8	1217	824.1	1493	2361	1868
1996	3235	2628	3085	1986	1553	1792	1101	1162	1215	1590	2681	2693
1997	2097	3007	2320	1582	1546	1196	957.9	973.1	1177	2031	2240	2662
1998	1983	3526	2777	2082	2589	1255	939.5	1250	1127	1359	2429	3449
1999	3243	3566	3935	2708	2237	1501	1683	1315	1768	1380	1815	3862
2000	2533	3184	3276	2641	2118	1768	1540	1803	1131	1742	1565	2361
2001	2754	1999	2887	1923	2016	1378	979.1	1102	1059	1590	2506	3243
2002	2095	2719	3011	1813	1682	1424	994.8	849.6	1661	1373	3043	2692
2003	1977	3351	3101	1659	1333	1867	1075	1179	1214	1514	2086	3442
2004	2237	2513	2488	1730	1678	1438	1210	778.7	1225	1664	2098	3176
2005	4078	3559	3236	1587	1695	836.5	840.6	727.3	900	1865	2209	3407
2006	2652	4000	3878	2400	1951	895.2	225.4	663.9	1218	1550	3939	4712

2007	2695	3286	3494	1590	1553	874.6	398.6	968.1	1129	1950	2652	3817
2008	3540	3347	4685	2103	2132	1440	258	779.2	1317	1299	2406	3856
2009	3572	3910	4081	2540	1934	1192	248.1	1013	1087	1345	2878	3819
2010	2527	4057	3520	1700	2003	931.1	794.1	909.6	1206	1722	2844	3646
2011	3895	4821	4358	2438	2041	1476	596.1	1546	2030	1483	3297	4194
2012	2935	2970	3498	1873	1955	943	277.5	896	570.7	1580	2581	4628
2013	2385	3977	5604	2018	1933	1452	795.1	1329	937	1861	3352	2973
2014	2464	3081	4649	2232	2456	920.1	609.6	597.4	1318	1654	2239	3035
2015	2468	3761	4370	1873	2440	653.6	200.2	289.1	1189	823.6	2339	2653
2016	1246	2579	2979	1549	1734	825.8	126.9	358.8	1460	1504	1459	3221

Anexo II. Caudales mensuales calibrados (1984 -2004)

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Set	Oct	Nov	Dic
1984	1513	1859	2651	2199	2303	1622	1466	1457	1227	994.4	2131	2027
1985	1956	2370	1994	2356	2327	1409	1069	1075	853.6	1623	1245	2774
1986	1188	2811	2933	2171	1978	1463	1120	1194	1360	1433	1442	1942
1987	1864	1784	1583	1511	1477	1004	1357	676.6	609.2	1467	2664	2056
1988	1993	3012	2386	1827	1621	1183	908.4	779.5	806.9	593.1	746.9	936.2
1989	1544	2415	2238	1584	1641	1234	1003	836.5	957.6	838.3	1300	1854
1990	2036	2229	1843	1731	1687	1398	1092	825.4	822.5	997.1	1919	3319
1991	2147	2337	3781	2205	1942	1405	1093	1020	959.2	740.7	1357	1379
1992	1726	2165	2561	1714	1475	1263	944.3	699	878.2	875	712.9	1176
1993	977.9	1856	2749	1569	1654	1112	874.3	981.1	748.3	877.8	2197	3282
1994	3027	3461	3068	2285	2076	1550	1156	867.2	754.8	739.7	1667	1967
1995	1696	2124	2427	1721	1401	1103	799	722.2	631.1	780.9	1383	1659
1996	2975	1988	3006	2072	2025	1527	1145	885.3	761.6	1082	2208	2047

1997	1839	2630	2165	1675	1428	1248	994.9	774.9	944.6	1306	1712	2288
1998	1940	3170	2834	2082	2617	1328	986.9	837.7	692.9	1043	1859	2666
1999	3143	3500	4251	2366	2306	1666	1661	1147	1199	1107	1343	3439
2000	2402	3040	3268	2451	2121	1710	1526	1472	1106	1175	1233	1652
2001	2101	2109	2335	1705	1922	1417	996.1	827.1	875.2	991.2	1736	2747
2002	1668	2496	2760	1814	1715	1449	1114	1006	1125	1319	1837	2536
2003	1788	2710	2887	1738	1577	1501	1096	897.8	784.5	855.5	1654	2799
2004	1836	2180	2480	1592	1733	1084	1009	668.4	761.9	1114	1787	2871

Anexo III. Caudales mensuales validados en el SWAT-CUP (2006 -2016)

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Set	Oct	Nov	Dic
2006	2040	2679	2872	2148	2097	1223	921	729.7	677.5	926.7	2407	3368
2007	2163	2451	2858	1836	1695	1395	971.4	992.4	750	1090	1642	2565
2008	2604	2425	3646	2284	2190	1744	1079	856.1	877.9	869.4	1422	2624
2009	2525	2934	3247	2576	2169	1746	1178	1055	942.1	826	1724	2602
2010	2025	3074	2717	1954	1829	1320	1009	1015	819.2	871.5	1743	2349
2011	2752	3485	3475	2392	2219	2000	1341	1382	1713	1081	2267	2939
2012	2373	2406	2860	1950	2023	1495	1018	1032	582.1	672.2	1621	2942
2013	1918	2787	4517	2228	1881	1919	1240	1088	810.6	1165	2147	1994
2014	1754	2092	3593	2153	2315	1565	1231	898.1	920.9	1203	1183	1907
2015	1795	2589	3520	1970	2536	1415	1057	784.7	822.5	495	1250	1894
2016	594.2	1542	1863	1243	1571	955.8	618.9	470.4	436.3	589.1	769.5	1626

Anexo IV. Caudales históricos (observados) PISCO HYH GR2M (1981 -2019)

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Set	Oct	Nov	Dic
1981	1766	2091	2866	1510	1061	780	492	471	550	1080	1826	2291
1982	2588	4555	3861	2302	1345	834	612	453	640	1293	1964	2243
1983	1843	1922	2716	2046	1237	847	534	460	478	863	1023	1500
1984	1734	2376	2958	2120	1468	1031	735	583	591	1204	1981	1600
1985	1798	2522	2493	2272	1338	761	575	612	765	1141	1210	1590
1986	1674	2789	3752	2140	1262	706	520	581	721	1052	1139	1475
1987	1986	1863	1762	1529	1097	733	605	487	587	1310	1878	1674
1988	2049	2163	2128	1700	1207	658	455	414	537	674	835	1339
1989	1719	2253	2999	1930	1134	825	599	533	658	1224	1214	1317
1990	1939	1878	1853	1500	1122	825	537	452	559	1524	1917	2029
1991	1694	2054	3146	1839	1170	785	526	470	528	875	1306	1314
1992	1061	1831	2247	1611	1083	711	539	468	609	844	988	1148
1993	1180	1933	3295	1864	1199	764	571	530	726	1033	2279	2845
1994	2700	3054	2963	2157	1274	776	584	436	544	1048	1384	1900
1995	1680	2077	2534	1698	859	657	489	440	532	1030	1359	1526
1996	2206	2271	2483	1983	1187	820	506	525	570	1002	1110	1469
1997	1758	2400	2122	1607	1102	813	492	455	633	1065	1366	1802
1998	2075	3022	2907	1972	1303	870	525	584	550	1161	1400	1727
1999	2732	3624	4122	2165	1453	1093	696	586	781	958	1280	2140
2000	2080	2802	3451	2133	1242	1167	769	757	680	876	1147	1444
2001	2036	2340	2931	1681	1285	760	655	512	648	980	1712	1787
2002	1470	2635	3014	2164	1361	855	686	525	638	1124	1454	1840
2003	1750	2533	2716	1602	1144	889	539	536	712	934	1506	2351
2004	1607	2041	2232	1435	1046	731	608	483	753	1369	1895	2269
2005	1596	2121	3001	1656	1047	761	561	457	568	1183	1161	1778
2006	1712	2846	3106	2059	1085	930	635	529	638	1134	2174	2563
2007	1986	2097	3154	2067	1153	728	600	522	546	1211	1561	2091
2008	2180	2764	3387	1950	1442	971	604	539	679	1180	1369	2044
2009	2400	2870	3350	2284	1254	938	614	570	626	987	1644	2305
2010	1706	2889	2857	1863	1247	814	672	489	558	1000	1557	1882
2011	2315	3401	3625	2464	1377	950	728	589	884	1312	1774	2360
2012	2076	2510	2725	2572	1242	913	550	469	549	1064	1590	2295
2013	1892	3155	4172	1879	1525	1082	684	817	746	1648	1820	1947
2014	2074	2443	3674	2025	1475	921	620	567	842	1267	1391	1918
2015	2072	2759	3241	2065	1407	829	568	476	532	786	1247	1308

2016	1315	2210	2429	1706	1037	803	511	474	577	913	1129	1788
2017	2287	3025	3407	2224	1653	1121	604	755	840	1014	1953	1843
2018	1842	2218	2564	1993	1156	913	571	605	653	2182	2203	2170
2019	2669	2690	3654	2163	1291	881	617	465	663	1382	1608	2919

Anexo V. Caudales proyectados (2020-2059) según RCP 4.5

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Set	Oct	Nov	Dic
2020	3237	3520	4042	2436	1881	1323	684.8	607.3	701.6	1512	2245	3820
2021	2696	3349	3744	2154	1772	1232	591.8	738	896.5	1825	2124	2818
2022	2644	3536	3533	2343	1789	1276	660.3	543.4	881.1	1739	2147	3171
2023	2589	3465	3272	2251	1919	1431	726.4	524.7	811.1	1427	1877	2972
2024	2833	3668	3653	2221	1746	1082	477.1	410.1	772.9	1516	2254	2917
2025	3034	3352	3755	2228	1710	968.8	448.1	583.1	925.4	1546	2399	4205
2026	2845	3556	4049	2534	1817	1269	719.1	732.2	1179	2057	2416	3010
2027	3071	4420	4138	2599	2023	1453	907.4	637.2	1019	1828	2324	3202
2028	2696	3336	3589	2390	1715	1234	630.2	380.1	600.6	1511	2305	3486
2029	2807	3525	3556	2318	1877	1183	651.8	598.5	1181	1446	1711	2891
2030	2460	3430	3693	2361	1730	1076	487	485	1127	1349	2067	2973
2031	2814	4300	3959	2476	1945	1192	594.8	655.9	861.9	1705	2363	3834
2032	2701	3724	3676	2369	1941	1470	834.4	501.8	815	1532	3049	4328
2033	3189	3507	4366	2786	1827	1166	556	482.9	1171	1705	2329	3083
2034	2879	3855	3898	2210	2232	1311	663.9	537.2	677.8	1403	2023	3610
2035	2892	3530	3133	2097	1543	985.9	517.2	599.1	732.4	1569	2226	3689
2036	2778	3095	3283	2038	1772	1217	650.2	684.6	946	1281	2015	2760
2037	2844	4103	4611	2834	1990	1082	560.5	564.5	1008	1417	2982	4119
2038	3149	3715	3985	2443	2153	1472	904.4	832.2	995.7	1609	2546	3966
2039	3401	4004	3937	2384	1683	1233	571.6	688.2	1113	1912	2460	4153

2040	3617	3924	3682	2638	2021	1317	706.1	682	794.4	1557	2249	3047
2041	2957	3879	3405	2278	1847	1464	861.3	716.1	657.9	1246	2055	3420
2042	2950	3208	3459	2122	1840	1275	725.4	487	712.1	2059	2284	3258
2043	3103	4114	4546	2376	2121	1275	659.2	747.1	880	1516	2479	3777
2044	3260	4400	3402	2505	1745	1239	664.2	598.4	1084	1790	2857	3881
2045	2887	3519	3319	2453	2334	1492	939.8	610.2	795.2	1461	2017	3217
2046	2838	3770	3660	2263	1928	1145	537.4	310.7	700.3	1349	1878	2936
2047	3061	4007	4113	2313	1891	1393	804.4	674.6	681.4	1428	2376	3184
2048	2530	3000	3398	2072	1690	1252	622	640.1	757.5	1365	2500	3897
2049	3038	3715	3794	2511	1845	1264	591.1	484.3	847.4	1457	2007	3363
2050	3200	3915	3691	2331	1778	1108	561.8	624.8	790.2	1835	2667	3170
2051	3286	3014	4179	2402	1796	1308	788.5	668.2	980.7	1572	2489	3893
2052	3466	3379	3512	2378	2026	1250	655.5	637.4	843.4	1429	1790	2935
2053	2836	3456	3908	2491	1724	1096	431.8	455.5	986.9	1559	2230	3942
2054	3180	3737	4340	2399	1942	1503	810.8	918.7	814.7	1377	2542	3721
2055	3360	4146	4536	2644	2056	1407	1016	718.8	839.7	1383	2648	3439
2056	3274	4058	4109	2417	2144	1420	843.2	698.5	754.3	1050	1742	3161
2057	2609	3327	3269	2376	2004	1287	708.3	519.6	1034	1948	2342	3496
2058	2992	3479	4069	2377	1931	1100	552.1	445.4	1183	1575	2795	3796
2059	3206	4198	3940	2491	1761	1252	762.4	707.4	700.6	1299	2245	3158

Anexo VI. Caudales proyectados 2020-2059 según RCP 8.5

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Set	Oct	Nov	Dic
2020	2515	2847	3041	2042	1579	1028	644.1	556.5	809.6	1405	2413	2822
2021	2964	3397	3281	2110	1482	939.6	342.6	406	1020	1654	2460	3277
2022	3280	3579	3492	2218	1800	1188	656.7	584.9	894.5	1423	2433	2713
2023	2895	3340	3318	2218	1708	1224	643.7	520.1	895.6	1336	2329	3367

2024	2700	3719	3558	2108	1551	1139	655.4	368.8	736	1554	2388	2870
2025	2566	3068	3328	2091	1640	995	523.4	362.5	734.9	1688	2181	3107
2026	2766	3674	3488	2363	1683	1142	649	825.3	940.6	1682	2115	2802
2027	2835	3738	3831	2427	1728	1155	504.1	444.8	750.9	1557	2308	2647
2028	2662	3654	3809	2359	1595	1195	698.6	501	893.4	1381	2289	3748
2029	3162	3875	3520	2262	1529	1024	395.1	337.3	553.3	1434	2580	3535
2030	3250	4226	3939	2618	1814	1157	611.3	350.8	413	1221	2076	2739
2031	2581	3943	4066	2509	1866	1281	704.3	565.1	932.7	1351	1939	3069
2032	2971	3285	3445	2494	1534	983	591.3	482.6	945.8	1828	2349	3291
2033	3051	3715	4039	2294	1658	1106	539	617.8	885.8	1418	2302	3659
2034	2943	3822	3909	2453	1927	1101	447.8	376	789.3	1615	2199	3536
2035	3159	3696	3892	2474	1726	1352	797.9	743.2	769.5	1177	2048	2819
2036	2351	3015	3168	2168	1589	1276	568.2	354.1	590.1	1498	1920	2641
2037	2960	3115	3619	2375	1586	915.4	448.8	413.6	676.2	1247	1670	2985
2038	2793	3446	3493	2212	1902	1423	916	739.2	791.1	1529	2477	3254
2039	2854	3382	3793	2414	1992	1469	865	458	996.4	1321	1780	2467
2040	2846	3525	3899	2391	1833	1183	547.4	534.7	763	1594	2213	2525
2041	2433	3320	3525	2251	1702	933	417.5	379.3	839.9	1346	2437	3447
2042	2661	3628	3974	2750	1980	1316	729.2	415.5	634.5	1297	2173	3413
2043	3357	3694	3298	2307	2008	1223	776	694.2	1243	1768	2267	3287
2044	2890	2959	3458	2431	1911	1150	496.9	513.8	748	1245	1928	2846
2045	2618	3499	3472	2164	1539	1141	751.3	534.9	692.2	1224	1776	3725
2046	2918	3701	3562	2536	1934	1229	681.4	318.7	526.9	1298	2139	3149
2047	2916	3197	3688	2395	2024	1282	674	457.8	821.9	1288	2572	3649
2048	3337	3711	3775	2406	1916	1235	682.9	428.9	733.2	1322	2316	3710
2049	3301	3698	3769	2388	1735	1122	537.5	432.4	711.2	1585	2242	3503

- 4													
	2050	2875	3399	3238	2398	1965	1317	755.8	468	880.4	1401	2247	2855
	2051	2721	3150	3516	2405	1813	1247	604.5	518	749.1	1456	2253	3927
	2052	3010	3950	4121	2300	1629	1239	643.5	529.1	1094	1460	2743	3405
	2053	2989	3151	3436	2097	1620	1232	571	619.7	723.9	1277	2316	4030
	2054	3012	3321	3530	2254	1919	1432	763	664.1	913.6	1676	2151	3717
	2055	2801	3777	3877	2496	1827	1113	481	384.9	816.5	1508	2198	3674
	2056	3589	3566	3559	2510	1902	1305	718.5	483.5	810.4	1340	2339	3264
	2057	2435	2915	3487	2222	1807	1369	735.6	657.9	826.9	1733	2751	3765
	2058	3657	3701	4072	2569	2108	1567	945.7	623.8	887.3	1640	1966	3439
	2059	2966	3710	4033	2408	1897	1340	787.6	637.8	804.6	1606	2420	3980

Anexo V. Matriz de consistencia

Problema de la investigación	Objetivo de la investigación	Hipótesis de la investigación	Método	
Problema General: ¿Cuál será el comportamiento de la escorrentía en la intercuenca Alto Huallaga en el periodo 2020 - 2059, según proyecciones climáticas?	Objetivo General: Predecir el comportamiento de la escorrentía en la intercuenca Alto Huallaga en el periodo 2020 - 2059, según proyecciones climáticas.	Hipótesis General: El comportamiento de la escorrentía en la intercuenca Alto Huallaga en el periodo 2020 - 2059, se predice satisfactoriamente según proyecciones climáticas.	Tipo de Investigación: Básica Por su diseño: No experimental	
Problemas específicos ¿De qué manera se representa la intercuenca Alto Huallaga para el periodo de 1981 al 2016 mediante el modelo semidistribuido SWAT?	Objetivos específicos Representar de la intercuenca Alto Huallaga para el periodo 1981 al 2016 mediante el modelo semidistribuido SWAT.	Hipótesis específicas La intercuenca Alto Huallaga es representada satisfactoriamente para el periodo de 1981 al 2016 mediante el modelo semidistribuido SWAT.	Por su nivel: Predictivo. Población: Intercuenca Alto Huallaga.	
¿De qué manera se proyectará los caudales en la intercuenca Alto Huallaga según trayectorias de concentración representativa 4.5 y 8.5 para el periodo 2020 al 2059, con información climática usando el método downscaling estadístico, a través del modelo semidistribuido SWAT.?	Proyectar caudales en la intercuenca Alto Huallaga según trayectorias de concentración representativa 4.5 y 8.5 para el periodo 2020 al 2059, con información climática usando el método downscaling estadístico, a través del modelo semidistribuido SWAT.	La información climática usando el método downscaling estadístico permite proyectar adecuadamente caudales en la intercuenca Alto Huallaga según trayectorias de concentración representativa 4.5 y 8.5 para el periodo 2020 al 2059, a través del modelo semidistribuido SWAT.		
¿Cuál será el comportamiento de los caudales promedios según trayectorias de concentración representativa 4.5 y 8.5 en la intercuenca Alto Huallaga para el periodo 2020 - 2059?	Estimar las anomalías de los caudales promedios según trayectorias de concentración representativa 4.5 y 8.5 en la intercuenca Alto Huallaga para el periodo 2020 - 2059.	Las anomalías de los caudales promedios son altas según trayectorias de concentración representativa 4.5 y 8.5 en la intercuenca Alto Huallaga para el periodo 2020 - 2059.		