Diseño de un modelo de red neuronal convolucional para mejorar el proceso de diagnóstico de neumonía en los pacientes del Hospital Gustavo Lanatta Luján de Bagua, 2024
Date
2024Author(s)
Alva Ita, Junior Ederson
Asuncion Ruiz, Dantya Mirielli
Huaman Llanos, Alex Alfredo
Metadata
Show full item recordAbstract
El presente trabajo de investigación tiene como objetivo general diseñar una
herramienta tecnológica que permita mejorar el proceso de diagnóstico de
neumonía a través de una radiografía de tórax. Esta herramienta, busca ayudar
al personal médico del Hospital General Gustavo Lanatta Luján en la realización
de diagnósticos de neumonía y de esta manera el tratamiento del paciente sea
oportuno.
La solución tecnológica desarrollada en esta investigación es un diseño de un
modelo predictivo basado en algoritmos de aprendizaje automático. Para la
elaboración del modelo, se utilizó un algoritmo de aprendizaje supervisado
basado en redes neuronales convolucionales y un dataset de 624 imágenes de
radiografías de tórax, estos datos se obtuvieron del área de Imagenología del
Hospital General Gustavo Lanatta Luján de Bagua, utilizando la técnica del
fichaje. Se logró en la fase de entrenamiento una precisión del modelo de un
91.98%, el cual es un porcentaje elevado de precisión y se procedió a realizar
las pruebas en el área respectiva, logrando obtener una aceptación alta de la
solución tecnológica. Referente al tipo de diseño metodológico, se aplicó un
diseño de investigación experimental, de tipo aplicativa y de nivel explicativa, con
ello se estableció el procedimiento y metodología adecuada para la elaboración
del trabajo de investigación.
El diseño del modelo de red neuronal convolucional generó mejoras significativas
en las métricas clave del diagnóstico de neumonía. Se observaron incrementos
notables del 5.1438% en el proceso de diagnóstico de neumonía; así como, del
4.6758% en la exactitud, 6.245% en la precisión, 4.5867% en la sensibilidad y
un 5.0675% en la especificidad. Estos resultados muestran un impacto positivo,
directo y estadísticamente significativo del diseño, respaldando las hipótesis
planteadas y la eficacia del diseño del modelo para la mejorar del proceso de
diagnóstico de neumonía.
Subject
Collections
- Título Profesional [47]