UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA

"DISEÑO DE UN REGULADOR AUTOMÁTICO LMV, EN SUMINISTROS DE BAJA TENSIÓN SEGÚN LA NORMA NTCSE"

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO ELECTRICISTA

AUTOR: LUIS MANUEL MAGUIÑA VEGA

Callao, 2016 PERÚ

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO ELECTRICISTA

"DISEÑO DE UN REGULADOR AUTOMÁTICO LMV, EN SUMINISTROS DE BAJA TENSIÓN SEGÚN LA NORMA NTCSE"

AUTOR: MAGUIÑA VEGA LUIS MANUEL

DEL AGUILA VELA EDGAR ASESOR:

CALIFICACION: 14(CATORCE)

UBER MURILLO MANRIQUE

DENTE DEL JURADO

ING ROBERTO ENRIQUE SOLÍS FARFÁN SECRETARIO DEL JURADO

ING. ERNESTO RAMOS TORRES VOCAL

> Callao, 2016 PERÚ

DEDICATORIA

Dedico este trabajo a Dios y a mi familia por el apoyo que siempre me han brindado de manera incondicional, a pesar de mis caídas siempre confiaron en mí y no los defraudaré.

AGRADECIMIENTO

Agradecemos principalmente a Dios por estar presente en todas mis batallas y a mi familia que por ellos es que estoy aquí subiendo un escalón más a pesar de todas las dificultades que se presentaron También agradecemos al Jurado de Tesis y al asesor Ing. Edgar del Águila Vela, quienes supieron guiarnos con sus conocimientos y consejos para culminar con éxito nuestro proyecto. Finalmente, agradecemos a todos nuestros amigos que nos ayudaron de una u otra forma con el desarrollo del mismo.

ÍNDICE

ÍNDICE	
ÍNDICE DE TABLAS4	
ÍNDICE DE FIGURAS5	
RESUMEN6	
ABSTRACT7	
CAPÍTULO I: PLANTEAMIENTO DE LA INVESTIGACIÓN8	
1.1.Identificación del Problema8	
1.2.Formulación del Problema	
1.2.1.Problema General 8	
1.2.2.Problemas Específicos9	
1.3.Objetivos de la Investigación9	
1.3.1.Generales9	
1.3.2.Específicos	
1.4. Justificación de la Investigación	
1.5.Importancia de la Investigación11	
CAPÍTULO II: MARCO TEÓRICO	
2.1.Transformador	
2.1.1.Constitución y Funcionamiento	
2.2.Autotransformador	
2.3.Regulador de tensión	
2.4.Fluctuaciones de Voltaje15	
2.5.Caídas e Interrupciones Breves de Voltaje	

2.6.Desbalance de voltaje	
2.7.Medición de Armónicos	
2.8.Calidad de Producto	
2.9.Indicadores de Calidad y Compensación21	
2.10.Suministros de baja tensión con mala calidad de tensión	
2.11. Soluciones Tomadas por las Empresas Distribuidoras	
2.11.1.Variación de perfiles de tensión MT	
2.11.2.Movimiento de Tap	
2.11.3.Reformas de baja tensión	
CAPÍTULO III: VARIABLES E HIPÓTESIS28	
3.1. Variables de la Investigación	
3.1.1.Cuadro de operacionalización de Variables28	
3.2.Hipótesis General e Hipótesis Específicas	
3.2.1.Hipótesis General	
3.2.2.Hipótesis Específicas	
CAPÍTULO IV: METODOLOGÍA	
4.1.Tipo de investigación	
4.2.Diseño de la investigación	
4.3.Diagrama básico del regulador:	
4.4.Etapas de la regulación	
4.4.1.Zona de regulación negativa 2	
4.4.2.Zona de regulación negativa 1:	
4.4.3.Zona de regulación positiva 1:	
4.4.4.Zona de regulación positiva 2:	
4.5.Simulación del transformador:	

4	.5.1.Estado estable:
4	.6.Población y muestra4
4	.6.1.Población de Estudio4
4	.6.2.Muestra de estudio4
C	APÍTULO V: DISCUSIÓN DE RESULTADOS4
5	.1.Contrastación de hipótesis con los resultados4
5	.1.1.Análisis del Perfil de Tensión4
5.	.1.2.Relación de Transformación Real4
5.	.1.3.Discusión Sobre la Base de la H1 e H24
С	APÍTULO VI: CONCLUSIONES4
С	APÍTULO VII: RECOMENDACIONES4
С	APÍTULO VIII: REFERENCIAS4
A	NEXOS5
•/	Anexo 1: Matriz de Consistencia3
•/	Anexo 2: Registros de tensión en la entrada y salida del regulador 5
•/	Anexo 3: Fotos de las partes del estabilizador LMV6
•/	Anexo 4: Hoja de datos del Atmega87
•,	Anexo 5: Imágenes del Procedo del Diseño de la Placa7
	Anexo 6: Código Utilizado (BASCOM-AVR):7

ÍNDICE DE TABLAS

TABLA N°01: Formas de fluctuación de voltaje	
TABLA N°02: Operacionalizacion de variables	28
TABLA N°03: Precios de los Componentes Utilizados	46
TABLA N°04: Costo del regulador automático de 50Kw	47
TABLA N°05: Registros de tensión	53

ÍNDICE DE FIGURAS

FIGURA N°01: TRANSFORMADOR CON NÚCLEO DE FERRITA	13
FIGURA N°02:INTERRUPCIONES DE VOLTAJE	17
FIGURA N°03: GRAFICO DE TENSION DEL SUMINISTRO 211953	23
FIGURA N°04: TRANSFORMADOR MONOFASICO REDUCTOR	30
FIGURA N°05: ETAPA DE POTENCIA DEL REGULADOR	31
FIGURA N°06: ETAPA DE CONTROL	32
FIGURA N°07: CIRCUITO DE CONTROL	33
FIGURA N°08: ZONAS DE REGULACIÓN	33
FIGURA N°09: DIAGRAMA PARA REGULAR LA ZONA NEGATIVA 2	34
FIGURA N°10: DIAGRAMA PARA REGULAR LA ZONA NEGATIVA 1	35
FIGURA N°11: DIAGRAMA PARA REGULAR LA ZONA POSITIVA 1	36
FIGURA N°12: DIAGRAMA PARA REGULAR LA ZONA POSITIVA 2	36
FIGURA N°13: SIMULACION DE LA NEGATIVA 1	37
FIGURA N°14: SIMULACION DE LA NEGATIVA 2	37
FIGURA N°15: SIMULACION DE LA POSITIVA 1	38
FIGURA N°16: SIMULACION DE LA POSITIVA 2	38
FIGURA N°17: FUNCIONAMIENTO DEL CIRCUITO SIN RELÉS	39
FIGURA N°18: CIERRE Y APERTURA DE UN RELE	39
FIGURA N°19: GRACFICA DEL CIERRE DEL RELE	40
FIGURA N°20: GRACFICA DE LA APERTURA DEL RELE	40
FIGURA N°21: PERFIL DETENSIÓNEN LA ENTRADA Y SALIDA	43

RESUMEN

En el presente proyecto se concibe una nueva manera de solucionar casos que tienen una deficiente calidad de tensión según la norma NTCSE. Esta nueva manera consta de instalar un equipo hibrido en la red de baja tensión. El equipo tiene propiedades de un regulador automático y a la vez de un elevador de salto fijo, tiene la capacidad de elevar o disminuir tensiones según los registros en tiempo real o de acuerdo a un perfil de tensión definido de manera previa. El costo del equipo es bajo comparado con un regulador automático debido a que el corazón y la robustez de este equipo es un transformador reductor de tensión. Se tiene construido un equipo funcionando lo cual constituye una evidencia material de primera mano la que en el transcurso de la investigación es pieza clave en la obtención de los resultados, la que motivará en efecto la discusión producto del análisis a detalle en las gráficas de tensión de entrada y salida del regulador hibrido.

ABSTRACT

This project is conceived a new way to solve cases that have poor voltage quality according to NTCSE standard. This new approach consists of installing a hybrid computer on the network low voltage, where it is detected that there is a poor tension quality. The machine has an automatic regulator properties and simultaneously an elevator fixed jump, has the ability to increase or decrease tension as the tensions in real time or according to a defined voltage profile prior manner. The cost of equipment is low compared to an automatic regulator because the heart and the strength of this team is a step-down transformer voltage. It has already built a team working which is a material evidence firsthand that in the course of research is key in obtaining the results, which motivate indeed the product discussion detailed analysis on charts input and output voltage of the hybrid regulator.

CAPÍTULO I: PLANTEAMIENTO DE LA INVESTIGACIÓN

Hoy en día las redes de distribución eléctrica son complejas debido a la carga que es variable en el tiempo, esto ocasiona que en algunos puntos de las redes obtengan una deficiente calidad de tensión. Las empresas eléctricas de distribución están en constante labor para solucionar estos tipos de problemas, de modo que existe un plan anual para poder solucionar los casos que tienen una deficiente calidad. Además de no ser solucionado la empresa de distribución tiene el deber de pagar una compensación por cada cliente que tiene esta deficiencia. Esta compensación debe ser pagada de manera mensual hasta que la empresa distribuidora solucione dicha deficiencia.

1.1. Identificación del Problema

El objeto de estudio a ser investigado es el impacto que produce el regulador hibrido llamado LMV en los suministros de baja tensión con una deficiente calidad según NTCSE (Calidad de Producto).

1.2. Formulación del Problema

1.2.1. Problema General

Las soluciones actuales son eficientes un cierto tiempo, sin embargo, las redes son dinámicas debido a los factores descritos anteriormente. Esto implica que la solución debe tener un impacto directo en las variaciones de tensión. Es por ello que planteamos la siguiente interrogante:

¿De qué manera un regulador automático LMV, tiene impacto en los suministros de baja tensión según la NTCSE?

1.2.2. Problemas Específicos

P1 ¿Qué comprende el diseño de un regulador automático LMV, para mejorar la calidad de tensión en los suministros de baja tensión a un bajo costo?

P2: ¿Cómo el regulador automático LMV, mejora la calidad de tensión en los suministros de baja tensión?

P3: ¿Cómo se definen las zonas de regulación para los suministros de baja tensión?

P4: ¿Cómo el regulador automático garantiza en todo momento el suministro de energía eléctrica a los clientes aun cuando puede fallar el sistema automático?

P5: ¿Cómo beneficia a los clientes y a las empresas distribuidoras los reguladores automáticos LMV?

1.3. Objetivos de la Investigación

1.3.1. Generales

Diseñar un regulador LMV y analizar su aplicación en los suministros de baja tensión con una deficiente calidad de tensión según la NTCSE.

1.3.2. Específicos

O1: Comprender las partes esenciales del diseño del regulador automático LMV, para mejorar la calidad de tensión en los suministros de baja tensión.

O2: Determinar el efecto que produce el regulador automático LMV, en la calidad de tensión en los suministros de baja tensión.

O3: Determinar las zonas de regulación para una eficiente regulación de tensión.

O4: Verificar el correcto funcionamiento del regulador automático LMV.

O5: Comparar precios de los reguladores automáticos con el regulador LMV

1.4. Justificación de la Investigación

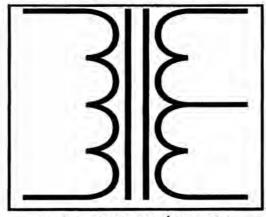
La presente investigación se enfoca en mejorar la calidad de tensión en los suministros de baja tensión mediante unos equipos automáticos llamados LMV, la cual incluye un novedoso diseño que permite controlar la tensión de una manera simple y eficaz. Además la fabricación de los equipos en mención son más económicos comparado con los que existen en el mercado.

1.5. Importancia de la Investigación

La investigación toma importancia debido a que satisface la necesidad de tener una buena calidad de tensión aguas abajo de un transformador de distribución. Esta necesidad es tanto por las empresas distribuidoras, para poder ofrecer un buen servicio. Y la necesidad de los suministros que al tener una tensión adecuada, se prolonga la vida de sus equipos eléctricos.

CAPÍTULO II : MARCO TEÓRICO

2.1. Transformador


El transformador es un dispositivo electromagnético estático que permite una tensión alterna conectada a su entrada, obtener otra tensión alterna mayor o menor que la anterior en la salida del transformador. Permiten así proporcionar una tensión adecuada a las características de los receptores. También son fundamentales para el transporte de energía eléctrica a largas distancias a tensiones altas, con mínimas perdidas y conductores de secciones moderadas.

2.1.1. Constitución y Funcionamiento

Constan esencialmente de un circuito magnético cerrado sobre el que se arrollan dos bobinados, de forma que ambos bobinados están atravesados por el mismo flujo magnético. El circuito magnético está constituido (para frecuencias industriales de 60 Hz) por chapas de acero de poco espesor apiladas, para evitar las corrientes parásitas.

El bobinado donde se conecta la corriente de entrada se denomina primario, y el bobinado donde se conecta la carga útil, se denomina secundario. La corriente alterna que circula por el bobinado primario magnetiza el núcleo de forma alternativa. El bobinado secundario está así atravesado por un flujo magnético variable de forma aproximadamente senoidal y esta variación de flujo engendra por la Ley de Lenz, una tensión alterna en dicho bobinado.

FIGURA Nº 01: TRANSFORMADOR CON NÚCLEO DE FERRITA

FUENTE: ELABORACIÓN PROPIA

2.2. Autotransformador

El autotransformador puede ser considerado simultáneamente como un caso particular del transformador o del bobinado con núcleo de hierro. Tiene un solo bobinado arrollado sobre el núcleo, pero dispone de cuatro bornes, dos para cada circuito, y por ello presenta puntos en común con el transformador. En realidad, lo que conviene es estudiarlo independientemente, pero utilizando las leyes que ya vimos para los otros casos, pues así se simplifica notablemente el proceso teórico.

En la práctica se emplean los autotransformadores en algunos casos en los que presenta ventajas económicas, sea por su menor costo o su mayor eficiencia. Pero esos casos están limitados a ciertos valores de la relación de transformación, como se verá en seguida. No obstante. Es tan común que se presente el uso de relaciones de transformación próximas a la unidad, que corresponde dar a los autotransformadores la importancia que tienen, por haberla adquirido en la práctica de su gran difusión.

Para entender su funcionamiento, primero debemos entender los transformadores con dos bobinados por separado, desde el punto de vista electromagnético, para obtener las relaciones entre las tensiones y las corrientes de sus secciones, ya que no se puede hablar de bobinados en plural. Luego veremos el diagrama vectorial, muy parecido al de transformadores, pero con diferencias que lo distinguen netamente. Y, también, haremos un estudio comparativo entre el autotransformador y el transformador de iguales condiciones de servicio.

2.3. Regulador de tensión.

Un regulador de tensión es fundamentalmente un equipo que recibe en la entrada una tensión que puede variar entre un valor mínimo y un valor máximo (denominado rango de tensión de entrada), obteniendo a la salida un tensión estabilizada que puede tener un valor dentro de un rango de la tensión de salida (denominado precisión de la tensión de salida, ó error de la mísma, valuado en un porcentaje). Ejemplo: Rango de la tensión de entrada: de 170 Volts a 250 Volts.

Tensión de salida: 220V +/- 5 % (entre más 5%: 231V y menos 5%: 209V), el error de la tensión de salida es en este caso de 5 % para arriba o 5 % para abajo.

La precisión queda conceptualmente definida por el error. Cuando menor es el error, mejor será la precisión. Existen en la actualidad una gran cantidad de marcas y modelos de Estabilizadores de Tensión. Aunque todos ellos fueron diseñados y construidos con el propósito de entregar una tensión estable a su salida, a partir de una tensión de entrada que puede variar dentro de determinados límites, no todos

utilizan el mismo principio de funcionamiento, o son adecuados a los diferentes tipos de cargas.

La razón de ser de los estabilizadores de tensión, se basa en el hecho de que, aún con los últimos adelantos técnicos y mejoras de los servicios en el área energética, no se han podido suprimir las frecuentes caídas o elevaciones de tensión en las redes de alimentación de energía eléctrica. Tampoco ha sido posible eliminar disturbios comunes como picos transitorios de alta tensión, interferencias de media y alta frecuencia y / o ruidos eléctricos en general, que pueden provocar, no sólo un funcionamiento errático de los modernos equipos electrónicos, sino también su destrucción total. Cuanto más sofisticado y costoso es un equipo electrónico, tanto más sensible pareciera a los problemas de la tensión de la red. Es por ello que la mayoría de los usuarios de equipos de computación, o similares, han adoptado como regla de seguridad intercalar un estabilizador de tensión en la línea de alimentación de sus equipos.

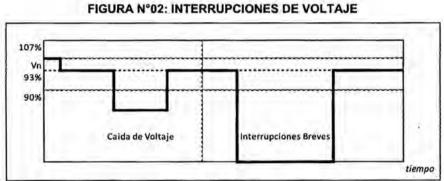
2.4. Fluctuaciones de Voltaje

Son producidas por variaciones periódicas o serie de cambios aleatorios producidas en el voltaje de la red eléctrica, cuya duración va desde los milisegundos hasta los diez segundos y cuya magnitud no excede el ±10 % del valor nominal. Las fluctuaciones se clasifican en cuatro tipos:

TABLA Nº01: FORMAS DE FLUCTUACIÓN DE VOLTAJE

TIPO	DEFINICIÓN	GRÁFICA	CAUSAS
A	Variaciones de voltaje en forma rectangular con periodo constante.	TEMPO	Conmutación de cargas resistivas monofásicas.
В	Escalones de voltaje que se presentan de forma irregular en el tiempo y cuya magnitud varía tanto en sentido positivo como negativo.	TIEMPO	Conmutación de cargas múltiples.
c	Cambios en el voltaje claramente separados que no siempre llevan aparejados escalones de voltaje.	TENSION	Originadas por acoplamiento de cargas resistivas
D	Series de fluctuaciones esporádicas o repetitivas.	TENSION 1/4/Aufangnamman Arandymananan	Cambios cíclicos o aleatorios de cargas.

FUENTE: UMNDP - FACULTAD DE INGENIERÍA, PROF. JUAN ANTONIO SUÁREZ


2.5. Caídas e Interrupciones Breves de Voltaje

Una caída o hueco de voltaje es una reducción súbita del voltaje en un punto del sistema eléctrico seguido por una recuperación del mismo.

El cambio de voltaje está determinado por dos variables: la amplitud y el tiempo de duración, la amplitud se encuentra definida por la diferencia entre el voltaje durante la disminución y el voltaje nominal; la reducción puede estar entre el 10 y 90 % del voltaje nominal. La

duración se presenta en cortos periodos de tiempo, en un rango de medio ciclo a unos pocos segundos. Por otro lado, las interrupciones de voltaje se la definen como la desaparición parcial en un tiempo muy corto que no excede el minuto.

La siguiente figura interpreta estos dos efectos:

FUENTE: ELABORACIÓN PROPIA

2.6. Desbalance de voltaje

En un sistema trifásico balanceado se tiene las tres fases con magnitud igual y desfasadas en 120°, un desbalance de voltaje es una condición del sistema donde las tres fases son distintas en magnitud y no están desfasadas en 120°, lo que provoca una circulación de corriente por el neutro del sistema. Un desbalance de voltaje se produce por varios motivos:

- En redes de bajo voltaje: cargas monofásicas mal distribuidas ente las tres fases.
- Componentes asimétricas en generación, transmisión y distribución.

Los efectos producidos por el desbalance del voltaje en el sistema son:

- Elevación de temperatura en motores de inducción, debido a corrientes desequilibradas.
- Actuación de equipos de protección.
- En los conversores polifásicos, en el lado de la corriente continua causan rizado "ripple" no deseado, y en el lado de la corriente alterna causan armónicos no característicos.

2.7. Medición de Armónicos

Las formas de ondas periódicas no sinusoidales requieren un análisis, para ello es útil el estudio de Series de Fourier para la representación de dichas ondas.

El teorema de Fourier establece que cualquier función periódica de frecuencia angular (w) puede ser descompuesta en una suma de funciones sinusoidales de frecuencia múltiplos enteros de la frecuencia fundamental. Esta función puede expresarse de la siguiente manera:

$$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nwt + b_n \sin nwt)$$
....(1)

Donde:

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(wt) dwt$$
....(2)

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(wt) \cos(nwt) \, dwt$$
....(3)

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(wt) \sin(nwt) dwt$$
 (4)

Donde:

a₀→ Componente continúa.

 $A_n = \sqrt{a_n^2 + b_n^2} \rightarrow \text{Amplitud de los armónicos}.$

En general es bastante dificil predecir problemas de armónicos sin realizar mediciones, dado que el flujo y las respuestas del sistema pueden variar sustancialmente de un sistema a otro con pequeñas desviaciones tales como tolerancias de los equipos, desbalances, etc.

Muchos problemas de armónicos pueden ser fácilmente resueltos reubicando equipos, instalando filtros, o limitando algunos pasos de la compensación del factor de potencia. Sin embargo, antes de llegar a una solución viable se deben identificar plenamente las distorsiones armónicas y sus fuentes, lo cual puede hacerse con base en modelos de flujo de armónicos o midiendo directamente en la instalación.

THD distorsión armónica total de voltaje, proporciona una medida porcentual del contenido armónico respecto a la fundamental.

$$THD_{\nu} = \frac{\sqrt{\sum_{h=2}^{h=\infty} v_h^2}}{v_1} = \frac{\sqrt{v_2^2 + v_3^2 + v_4^2 + \cdots}}{v_1} \%. \tag{6}$$

Donde:

 V_h = Valor de la componente armónica individual (rms).

h = Orden de la armónica.

 V_1 = Voltaje nominal fundamental del sistema (rms)

$$V_1 = \sqrt{\frac{1}{T} \int_0^T v(t)^2 dt}...(7)$$

$$V_1 = \sqrt{V_1^2 + V_2^2 + \dots + V_n^2}$$
....(8)

Para el caso de una distorsión de corriente definida como TDD, distorsión total de demanda:

$$TDD = \sqrt{\frac{\sum_{h=2}^{h=\infty} I_h^2}{I_L^2}} \%...(9)$$

Donde:

 I_h = Valor de la componente armónica individual (rms).

h = Orden de la armónica.

 I_L = Corriente de carga de demanda máxima (rms).

La medición de armónicos permite:

- Verificar el cumplimiento de los niveles de distorsión armónica establecidos en las normas, tanto en equipos como en la red, de tal manera de asegurar la calidad de servicio eléctrico.
- Diagnosticar el nivel de armónicos presentes en la red para evaluarlos y orientarlos a su solución.

Para la elección adecuada de un equipo de medición se deberá considerar las características funcionales de cada uno y contar con la información necesaria del fenómeno a medir.

2.8. Calidad de Producto

Según la Norma Técnica de Calidad de los servicios en ahora llamamos NTCSE en el numeral 5 indica lo siguiente:

La Calidad de producto suministrado al cliente se evalúa por las transgresiones de las tolerancias en los niveles de tensión, frecuencia

y perturbaciones en los puntos de entrega. El control de la Calidad de Producto se lleva a cabo en períodos mensuales, denominados "Períodos de Control". De acuerdo a lo especificado en cada caso, con equipos de usos múltiples o individuales se llevan a cabo mediciones independientes de cada parámetro de la Calidad de Producto. El lapso mínimo de medición de un parámetro es de siete (7) días calendarios continuos, con excepción de la frecuencia cuya medición es permanente durante el Período de Control. A estos períodos se les denomina "Períodos de Medición". En cada Período de Medición, los valores instantáneos de los parámetros de la Calidad de Producto son medidos y promediados por intervalos de quince (15) minutos para la tensión y frecuencia, y diez (10) minutos para las perturbaciones. Estos períodos se denominan "Intervalos Medición".

2.9. Indicadores de Calidad y Compensación.

Según la Norma Técnica de Calidad de los servicios en ahora llamamos NTCSE en el numeral 5.1 indica lo siguiente:

El indicador para evaluar la tensión de entrega, en un intervalo de medición (k) de quince (15) minutos de duración, es la diferencia (ΔVk) entre la media de los valores eficaces (RMS) instantáneos medidos en el punto de entrega (Vk) y el valor de la tensión nominal (VN) del mismo punto.

Este indicador esta expresado como un porcentaje de la tensión nominal del punto:

Las tolerancias admitidas sobre las tensiones nominales de los puntos de entrega de energía, en todas las Etapas y en todos los niveles de tensión, es de hasta el ±5.0% de las tensiones nominales de tales

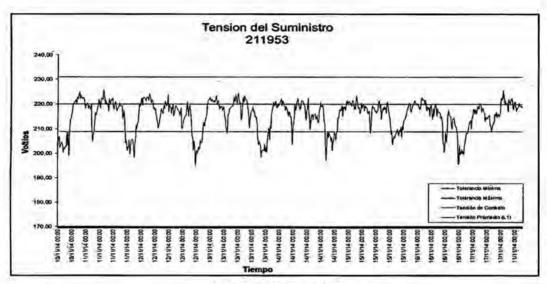
puntos. Tratándose de redes secundarias en servicios calificados como Urbano-Rurales y/o Rurales, dichas tolerancias son de hasta el ±7.5%. Se considera que la energía eléctrica es de mala calidad, si la tensión se encuentra fuera del rango de tolerancias establecidas en este literal, por un tiempo superior al cinco por ciento (5%) del período de medición.

Compensaciones por mala calidad de tensión.- Los Suministradores deben compensar a sus Clientes por aquellos suministros en los que se haya comprobado que la calidad del producto no satisface los estándares fijados en el numeral 5.1.2 de la Norma. Las compensaciones se calculan, para el Período de Medición, en función a la energía entregada en condiciones de mala calidad en ese Período, a través de las fórmulas que aparecen a continuación:

Compensaciones Por Variaciones De Tensión = ∑p a.Ap.E(p)..... (11)

Dónde:

P: Es un Intervalo de Medición en el que se violan las tolerancias en los niveles de tensión.


a: Es la compensación unitaria por violación de tensiones.

Primera Etapa: a = 0.00 y Segunda Etapa: a = 0.05 US \$ / kWh

2.10. Suministros de baja tensión con mala calidad de tensión.

Según lo indicado anteriormente un registro fuera de rango se considera cuando el promedio de un intervalo de 15 minutos se encuentra fuera del rango +/-5% de los 220. Y un suministro fuera de rango se considera cuando la cantidad de estos puntos supera el 5% de los 672 registros de tensión.

FIGURA Nº 03: GRAFICO DE TENSION DEL SUMINISTRO 211953

FUENTE: LUZ DEL SUR

2.11. Soluciones Tomadas por las Empresas Distribuidoras

En la actualidad se tienen 3 tipos de soluciones para poder subsanar los suministros que se encuentran con mala calidad de tensión.

2.11.1. Variación de perfiles en media tensión.

Este tipo de solución consiste en variar los perfiles de 10kV o 22,9kV en sub-estaciones de transmisión, dentro de esta solución encontramos 2 subtipos.

a) Variación de Perfiles de Tensión en Función de la Carga.

El perfil de tensión varia según el comportamiento de la intensidad de corriente en media tensión entre un máximo y mínimo. De esta manera se definen 2 valores, la amplitud del rango y la sensibilidad.

Ventajas:

- ·Aumenta la tensión en máxima demanda.
- Disminuye la tensión en horas de madrugada.
- Se obtiene un perfil adecuado según la carga.
- No tiene costo alguno.

Desventajas:

- ·Se coordina con las áreas encargadas y demora la atención.
- •Este tipo de solución no contempla los traslados de carga que existen con otras SET por lo tanto se modifica el perfil de tensión extremadamente alto o bajo.
- ·Responsabilidad del área ante cualquier incidente.
- Algunos reguladores están defectuosos.
- b) Variación de Perfiles de Tensión en función del tiempo.

Este tipo de variación se da cuando la carga es demasiado variable, se opta por esta solución.

Ventajas:

- Varía de hasta 200V en MT.
- No tiene costo alguno.

Desventajas:

- Se debe coordinar con otras áreas y las respuestas de las mismas son negativas al trabajo.
- •En la mayoría solo está permitido aumentar o disminuir 200V en MT.
- No todas las SETs tienen esta regulación.

2.11.2. Movimiento de Tap.

Para este tipo de solución se debe analizar el perfil de tensión de la subestación de distribución, ya que la misma puede salir fuera de rango según el comportamiento de la carga y la variación del perfil de media tensión.

Ventajas:

- ·No se coordina con otras áreas excepto las interrupciones.
- No tiene un costo significativo.
- ·Se realiza en aproximadamente 15 días.

Desventajas:

- ·La SED debe estar en buenas condiciones.
- •En algunas SEDs no se puede mover el tap por diferentes razones, (tap trabado, condiciones inseguras, tap robado, etc.)
- En algunas ocasiones no aceptan el pedido de interrupción.

2.11.3. Reformas de baja tensión

Dentro de las reformas de baja tensión se tiene 4 sub tipos:

a) Reforma de redes. Esta acción consiste en hacer un cambio de conductores menor sección por otros de mayor o hacer un traslado de carga de una subestación de distribución a otra.

Ventajas:

- ·Mejora la red de distribución.
- •Disminuye la caída de tensión a mayor carga.

Desventaja:

- •El costo de la ejecución de la obra es muy elevado comparado con la compra de un equipo regulador LMV
- ·Solo mejora la calidad de tensión por sub-tensión.
- Demora en la ejecución de las obras (meses).
- b) Instalación de reguladores de salto fijo. En esta parte se opta por instalar un equipo elevador de tensión (+2,5 / 5 / 7,5V). Este tipo de elevador es estático.

Ventajas:

- ·Es de menor costo que una reforma propiamente dicha.
- Sirve para deficiencias de tensión por sub-tensión o sobre-tensión pero no para ambos.

Desventajas:

- Demora en la ejecución de la obra.
- No es viable para deficiencias mixtas.
- c) Instalación de regulador de tensión automático. Comparado con el anterior, este tipo de autotransformador, es dinámico y varía de acuerdo a la tensión de entrada.

Ventajas:

•Este tipo de solución se adapta a cualquier tipo de deficiencia de tensión.

Desventajas:

Demora en la ejecución de la obra.

 Los reguladores automáticos nacionales tienen una vida útil más bajo de lo esperado, además necesita de constante mantenimiento.

 d) Cambio de transformador. Esta solución consta de instalar un nuevo transformador de mayor potencia.

Ventaja:

·Mayor capacidad en horas de máxima demanda.

Desventaja:

·Costo demasiado elevado.

CAPÍTULO III: VARIABLES E HIPÓTESIS

3.1. Variables de la Investigación

Para la presente Tesis, tenemos las siguientes variables:

Variable independiente

X: Regulador de tensión LMV.

Variable dependiente

Y: Calidad de tensión.

Variable interviniente

Z: NTCSE (Calidad de Producto).

3.1.1. Tabla de operacionalización de las Variables

TABLA N°02: OPERACIONALIZACIÓN DE VARIABLES

Variables	Indicadores	Valores Finales	Dimensionalidad y Tipo de Variable
	Sensibilidad	+/-1V	Multidimensional Continua
Regulador		205	
de	Tensión de Actuación	211	
Tensión LMV	Tension de Actuación	228	
LIVIV		235	
	Tiempo de Actuación	15 minutos	
Calidad	Makes	Buena Calidad	Unidimensional Nominal
de Tensión	Voltaje	Mala Calidad	
N. Section	Tolerancia de Tensión	209	Multidimensional Continua
Norma Técnica	Totelancia de Tension	231	
W.F.C.	Tolerancia de Intervalos Fuera de Rango	33	Discreta

FUENTE: PROPIA

3.2. Hipótesis General e Hipótesis Específicas

Las hipótesis que definen el modelo de la presente investigación quedan expresadas en los siguientes términos:

3.2.1. Hipótesis General

HG: Mediante el diseño y análisis del regulador de tensión LMV, será posible controlar la tensión de los suministros en baja tensión y mejorar la deficiente calidad de tensión especificada según la norma NTCSE.

3.2.2. Hipótesis Específicas

H1: Mediante el diseño de un regulador automático de tensión LMV, será posible mejorar la calidad de tensión en los suministros de baja tensión.

H2: Mediante la determinación del efecto que produce el regulador automático LMV, será posible mejorar la calidad de tensión en los suministros.

H3: Una regulación eficiente se tiene mediante una tensión promedio.

H4: Se conecta en serie la carga del regulador, la fuente y la bobina del lado secundario del transformador.

H5: El regulador LMV es más robusto y de menor precio que los que existen en el mercado.

CAPÍTULO IV: METODOLOGÍA

4.1. Tipo de investigación

La Investigación propuesta es del tipo experimental y aplicada

4.2. Diseño de la investigación

- a) El diseño de la investigación es del tipo experimental.
- b) El diseño de la presente investigación es experimental y prospectivo.

4.3. Diagrama básico del regulador:

Este regulador se divide en 2 partes:

A) Potencia:

Esta parte está constituida por un transformador de potencia, de tipo reductor, cuya entrada es de 220V y 440V y salida es de 12V y 240W.

FIGURA N° 04: TRANSFORMADOR MONOFASICO REDUCTOR

FUENTE: ELABORACIÓN PROPIA

B) Control:

En la parte de control está compuesto por dos partes fundamentales una es el conjunto de relés y la otra es el circuito integrado programable. En la primera parte se puede ver la conexión de los relés con el transformador, esta conexión permite la versatilidad a la hora de aumentar o disminuir la tensión. En la segunda parte se puede ver el circuito integrado programable con 3 salidas una para cada relé y 2 entradas una para censar tensión y otra para temperatura.

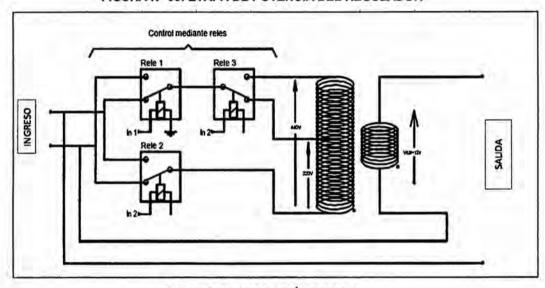


FIGURA N° 05: ETAPA DE POTENCIA DEL REGULADOR

FUENTE: ELABORACIÓN PROPIA

El detalle del circuito de control lo vemos en la siguiente gráfica, donde podemos observar que los relés están conectados al circuito integrado programable a través de los transistores BC548C los relés corresponden a los indicados en la gráfica anterior desde RL1 hasta RL3, además existen 2 relés más, la función del relé RL4 es hacer actuar un contactor cuando la temperatura del transformador sea mayor a 70°C ya que este transformador contara con un sensor de temperatura conectado al circuito integrado programable. De esta manera se protege el regulador.

El otro relé RL5 es de respaldo, para poder controlar otro tipo de acción ya sea un conexionado con capacitores o inductores según se requiera.

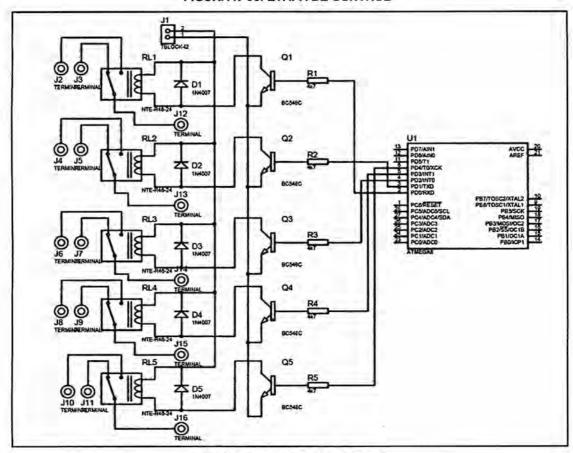


FIGURA Nº06: ETAPA DE CONTROL

FUENTE: ELABORACIÓN PROPIA

c) Programación:

En esta parte es donde se le indica al regulador automático que es lo que debe hacer, en qué momento lo debe hacer y como lo debe hacer. Este programa se graba en el circuito integrado programable Atmega8. En la figura N°7 podemos observar las órdenes para activar la conmutación de los relés, por ejemplo PORTB.1=0 quiere decir que el relé RL1 está en estado inactivo, y PORTB.2=1 quiere decir que el relé RL2 se encuentra activado.

FIGURA N°07: CIRCUITO DE CONTROL

```
Sregfile = "m8def.dat"
Scrystal = 4000000

Dim Volt As Single
Dim V As String = 4
Dim Auxl As Vord
Config PORTB = Output
PORTB = 0

Config Ledpin = Pin . Db4 = PORTD.4 . Db5 = PORTD.5
Config ADC = Single . Prescaler = Auto . Reference
Config Lcd = 16 = 2

Start ADC

Auxl = Getadc(1)
Volt = Auxl = 5.3
Volt = Volt / 1024
V = Fusing(volt . "#.##")
Lcd "V = " ' V

If Volt < 1 AND Volt >= 0 Then
PORTB.1 = 0
PORTB.2 = 0
PORTB.3 = 1
Else

If Volt < 2 AND Volt >= 1 Then
PORTB.1 = 0
PORTB.3 = 0
Else

If Volt < 3 AND Volt >= 2 Then
PORTB.3 = 0
Else

If Volt < 4 AND Volt >= 3 Then
PORTB.1 = 1
PORTB.2 = 1
PORTB.2 = 1
PORTB.3 = 0
Else

If Volt < 4 AND Volt >= 3 Then
PORTB.1 = 1
PORTB.3 = 0
```

FUENTE: ELABORACIÓN PROPIA

4.4. Etapas de la regulación.

El equipo regulador se diseñó en primera instancia para regular en 4 zonas llamadas zonas de regulación positiva y negativa.

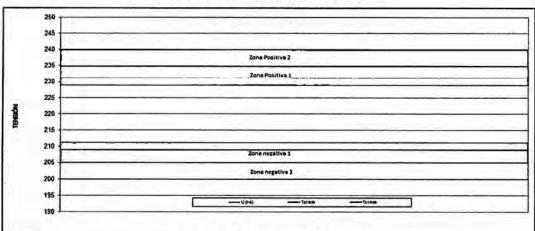


FIGURA Nº 08: ZONAS DE REGULACIÓN

4.4.1. Zona de regulación negativa 2

Esta zona de regulación se establece entre 2 valores de tensión según la inecuación:

$$200 \le ZN2 \le 205$$
 (12).

Según esta condición la tensión de red se conecta en lado del transformador de alta (220v) por lo tanto la tensión de salida será igual a la tensión de red más el incremento de 12v. Cabe señalar que si un valor de tensión se encuentra por debajo de esta zona, el equipo seguirá aumentando la tensión (+12v) sin embargo existe la posibilidad que la tensión regulación regulada sea menor que 209v.

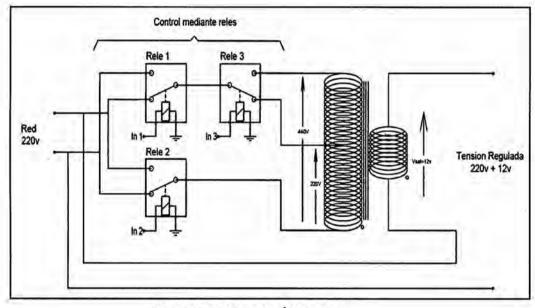


FIGURA N°09: DIAGRAMA PARA REGULAR LA ZONA NEGATIVA 2

FUENTE: ELABORACIÓN PROPIA

4.4.2. Zona de regulación negativa 1:

Esta zona de regulación se establece entre 2 valores de tensión:

$$205 < ZN2 \le 211$$
 (13)

Según esta condición la tensión de red se conecta en lado del transformador de alta en la bobina de (440v) por lo tanto la tensión de salida será igual a la tensión de red más el incremento de 6v.

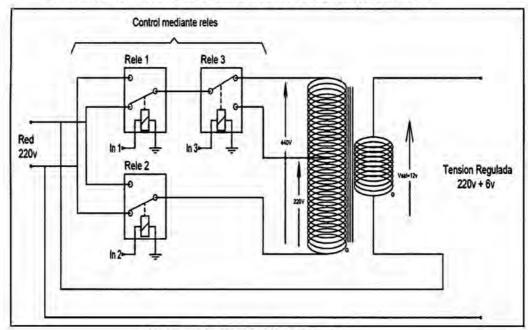


FIGURA Nº 10: DIAGRAMA PARA REGULAR LA ZONA NEGATIVA 1

FUENTE: ELABORACIÓN PROPIA

4.4.3. Zona de regulación positiva 1:

Esta zona de regulación se establece entre 2 valores de tensión:

$$228 \le ZN2 < 235$$
 (14)

Según esta condición la tensión de red se conecta de forma inversa al lado del transformador de alta en la bobina de (440v) por lo tanto la tensión de salida será igual a la tensión de red menos el incremento de 6v.

Control mediante reles

Reie 1

Reie 3

Tension Regulada
220v - 6v

FIGURA Nº 11: DIAGRAMA PARA REGULAR LA ZONA POSITIVA 1

FUENTE: PROPIA

4.4.4. Zona de regulación positiva 2:

Esta zona de regulación se establece entre 2 valores de tensión:

$$235 \le ZN2 < 240$$
 (15)

Según esta condición la tensión de red se conecta de forma inversa al lado del transformador de alta en la bobina de (220v) por lo tanto la tensión de salida será igual a la tensión de red menos el incremento de 12v.

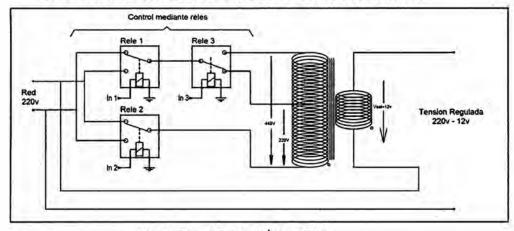


FIGURA Nº 12: DIAGRAMA PARA REGULAR LA ZONA POSITIVA 2

4.5. Simulación del transformador:

4.5.1. Estado estable:

Zona de regulación negativa 2

FIGURA Nº 13: SIMULACION DE LA NEGATIVA 1

FUENTE: ELABORACIÓN PROPIA

Zona de regulación negativa 1

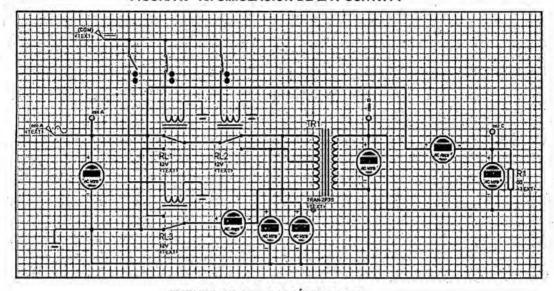



FIGURA Nº 14: SIMULACION DE LA NEGATIVA 2

Zona de regulación positiva 1


FIGURA Nº 15: SIMULACION DE LA POSITIVA 1

FUENTE: ELABORACIÓN PROPIA

Zona de regulación positiva 2

FIGURA Nº 16: SIMULACION DE LA POSITIVA 2

4.5.2. Estado de transición:

Conmutación de los 3 relés al mismo tiempo:

En el preciso momento en que los relés cambian de estado, se tiene que la corriente en los terminales de los tres relés es igual a cero, por lo tanto en el circuito aproximado se retira los tres relés para la correcta simulación.

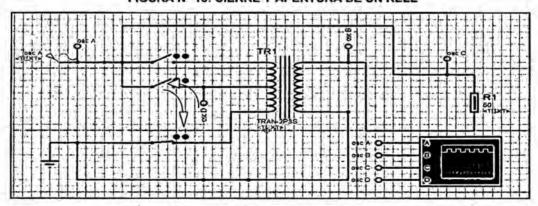
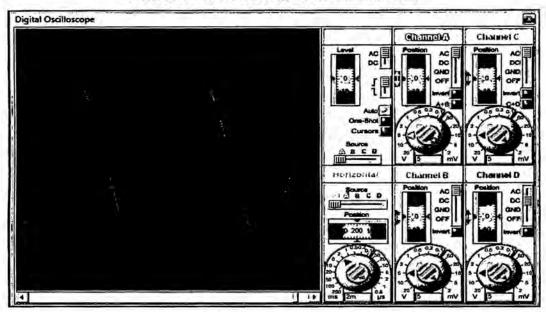
GEA O TRI

FIGURA Nº 17: FUNCIONAMIENTO DEL CIRCUITO SIN RELÉS.

FUENTE: ELABORACIÓN PROPIA

De esta manera demostramos la carga siempre está alimentada aun cuando cambian de estado los relés con una caída propia del devanado segundario del transformador.

Grafica de las tensiones en el osciloscopio:

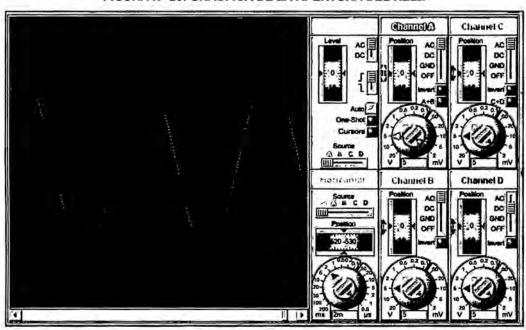

FIGURA Nº 18: CIERRE Y APERTURA DE UN RELE

FIGURA N° 19: GRACFICA DEL CIERRE DEL RELE

FUENTE: ELABORACIÓN PROPIA

FIGURA N° 20: GRACFICA DE LA APERTURA DEL RELE

4.6. Población y muestra

Etapas de la investigación

Primera etapa : Revisión del estado del arte.

Segunda etapa : Análisis de la información.

Tercera etapa : Desarrollo del proyecto.

Resultados de la Investigación

Cuarta etapa : Discusión y contrastación de resultados.

4.6.1. Población de Estudio

Nuestra población será los suministros que tienen mala calidad de tensión en Lima Sur correspondiente a la concesión de Luz del Sur. La población es de 972 casos fuera de rango actualizado al mes de Abril 2016.

4.6.2. Muestra de estudio

Para el cálculo del tamaño de la muestra, dentro del marco de muestreo aleatorio simple, partimos de la formula básica.

$$n_0 = \frac{Z^2 * (p * q)}{e^2} \qquad ...(16)$$

Dónde:

 n_0 : Tamaño de la muestra.

Z: Factor probabilístico dado por el nivel de confianza que se decida trabajar.

pyq: varianza de la proporción.

e: error máximo permitido.

Para el presente trabajo de investigación necesitamos un nivel de confianza del 95% de esta manera "Z" toma el valor de 1,96 además se ha considerado un error máximo de 0,04. El valor de "p" se encuentra entre los valores 0,4 y 0,6 por lo tanto optamos por el valor de 0,5. Al conocer el valor de "p" automáticamente encontramos el valor de "q" que es 0,5.

Se tiene:

$$n_0 = \frac{1,96^2 * (0,5 * 0,5)}{0,04^2}$$
$$n_0 = 600,25$$

Dado que se conoce el tamaño de la población que es 972 casos fuera de rango, entonces ajustamos al tamaño de la muestra:

$$n' = \frac{n_0}{1 + \frac{n_0 - 1}{N}} \qquad ...(17)$$

Donde:

n': Tamaño ajustado de la muestra.

N: Tamaño de la población.

$$n' = \frac{600,25}{1 + \frac{600,25 - 1}{972}}$$

$$n' = 371$$

Por lo tanto, la muestra ajustada que se debe tomar es de 371 casos.

CAPÍTULO V : DISCUSIÓN DE RESULTADOS

5.1. Contrastación de hipótesis con los resultados

5.1.1. Análisis del Perfil de Tensión.

El día 17 de mayo del 2016 se instaló el regulador de tensión LMV en el suministro 911953. Luego de la instalación a las 17:15 se colocó un equipo registrador FLUKE. Equipo autorizado por OSINERGMIN. El equipo se colocó a la entrada y salida del regulador LMV.

El equipo se retiró el 24 de mayo del 2016, se analizó el archivo exportado y los resultados fueron los siguientes:

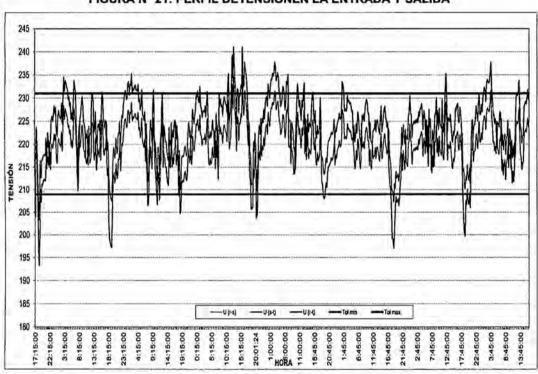


FIGURA N° 21: PERFIL DETENSIÓNEN LA ENTRADA Y SALIDA

FUENTE: EQUIPO FLUKE

Se observa que fuera de las zonas críticas la tensión regulada aún queda fuera de los límites permitidos. Además se observa que el aumento de

tensión o la disminución de la misma se dan en una proporción diferente debido a la relación de transformación del transformador.

5.1.2. Relación de tensión.

El promedio de la relación que existe entre la tensión de salida con respecto a la entrada es la siguiente:

Regulación de la zona positiva 2: 0,949

Regulación de la zona positiva 1:0,976

Regulación de la zona negativa 1: 1,042

Regulación de la zona negativa 2: 1,064

5.1.3. Discusión Sobre la Base de la H1 e H2

H1: Mediante el diseño de un regulador automático de tensión LMV, será posible mejorar la calidad de tensión en los suministros de baja tensión.

H1 se corrobora con los resultados obtenidos debido a que si es factible diseñar un regulador automático de bajo costo para mejorar la calidad de tensión en los suministros. Como lo demuestra la gráfica de tensión.

H2: Mediante la determinación del efecto que produce el regulador automático LMV, será posible mejorar la calidad de tensión en los suministros de baja tensión.

H2 versus los resultados anteriores, radica en que sí es factible mejorar los niveles de tensión atacando de manera directa los problemas de tensión de manera eficiente.

Por consiguiente la **HG**: Mediante el diseño y análisis del regulador de tensión LMV, será posible controlar la tensión de los suministros en baja tensión y mejorar la deficiente calidad de tensión especificada según la NTCSE que establece en esta materia de investigación versus a los resultados anteriores obtenidos nos permite validar la idea que se ha tenido desde el principio.

CAPÍTULO VI: CONCLUSIONES

- El regulador automático LMV controla la tensión del suministro a través de una combinación de relés utilizando un solo transformador reductor.
- 6.2. El regulador automático en ningún momento deja fuera de servicio a los suministros aguas abajo. Esto ocurre debido a que en las conexión internas la carga siempre está conectada al transformador reductor en el lado segundario.
- 6.3. El costo del regulador automático para una potencia máxima de 3kW es la siguiente:

TABLA Nº 03: Precios de los Componentes Utilizados

Componentes Utilizados	Precio
Transformador de 220, 440 / 12v 110w	5/.140,00
5 Relés de 10 Amp.	\$/.12,00
Armazón	5/.25,00
CIP, Diodos, resistencias, transistores, etc.	\$/.30,00
Placa	\$/.5,00
Cables	\$/.5,00
Otros	S/.5,00
Total	S/.222,00

6.4. El precio del regulador automático LMV trifásico para 50kW es de S/. 5000,00 nuevos soles aprox. que comparado con un costo promedio de S/. 13000,00 nuevos soles de otros reguladores automáticos nacionales, el ahorro es de S/. 8000 nuevos soles.

TABLA Nº 04: costo del regulador automático de 50Kw

Componentes Utilizados	Precio
Transformador de 220, 440 / 12v 110W	S/.2.500,00
Protecciones	\$/.1.200,00
15 Relés de 40 amp.	\$/.650,00
Armazón	\$/.350,00
Diodos, resistencias, transistores, etc	S/.120,00
placa	S/.15,00
cables	\$/.20,00
Otros	S/.25,00
Total	S/.4.880,00

- 6.5. Se puede concluir que el regulador de tensión internamente controla el flujo magnético de acuerdo a la necesidad. Este control lo hace con 4 pasos de tensión.
- 6.6. Se estima que la vida útil del regulador automático LMV es de 5 años debido a que la parte más delicada es la conmutación de los relés y la vida útil del circuito integrado programable.
- 6.7. El Regulador automático LMV resulta ser más confiable que los reguladores tradicionales debido a que no tienen una escobilla que se desgasta con el tiempo y maneja la corriente de carga, mientras que el nuevo regulador LMV solo lo hace en pocos pasos.

CAPÍTULO VII: RECOMENDACIONES

- 7.1. El transformador reductor debe ser diseñado de tal manera que en lado segundario soporte la corriente de carga.
- 7.2. La carga está conectada en todo momento hasta en el cambio o transición de una zona a otra, por ello debemos colocar un interruptor termomagnetico ante cualquier evento no deseado.
- 7.3. Se debe analizar la tensión deficiente para poder establecer con mayor criterio las 4 zonas de regulación.
- 7.4. Si se desea prolongar la vida útil del regulador LMV se puede establecer con una mejor programación y otra manera de evaluar la tensión.
- 7.5. Para mayor confiabilidad, se debe comprar otro tipo de relés y hacer un programa más simple.

CAPÍTULO VIII: REFERENCIAS

[1]Chapman, S. (2012). Máquinas eléctricas. España: McGraw-Hill.

[2] Charles I. Hubert (1985). Circuitos Eléctricos CA/CC. Mc.Graw-Hill.

[3]Daniel W Hart(2001), Electrónica de Potencia. España: Prentice Hall.

[4]Fraile, J. (2008). Máquinas Eléctricas. España: McGraw-Hill.

[5] Hayt, Jr & J.E. Kemmerly (1988). Análisis de Circuitos en Ingeniería.
Mc.Graw -Hill

[6]Landau y Lifshitz (1975). Electrodinámica de los medios continuos. España: Editorial Reverté (1975).

[7]MEM (2010). Norma Técnica de Calidad de los Servicios Eléctricos (NTCSE) Perú: El Peruano.

[8]MEM (2010). Norma Técnica de Calidad de los Servicios Eléctricos Rurales (NTCSER) Perú: El Peruano.

[9]Mohan (1995). Electrónica de Potencia. 2da edición. México: McGraw-Hill.

[10]Navarro S. Maquinas Eléctricas. España: McGraw Hill.

[11]ROLDAN (1975). Manual de medidas eléctricas. España: CEAC.

[12]SOBREVILA (1967). Introducción a la electrotecnia. Buenos Aires: Librería y Editorial Alsina.

[13]Sanz Feito, J (2002). Maquinas Eléctricas. España: Editorial Prentice.

[14]Staff, E.E (1980). Circuitos Magnéticos y Transformadores. Argentina: Editorial Reverté.

[15]Salvador Acha Daza (1985). Solución transitoria de circuitos RLC U.M.S.N.H.

ANEXOS

Anexo 1: Matriz de Consistencia.

Anexo 2: Datos registrados de tensión del regulador LMV.

Anexo 3: Imágenes de las pruebas realizadas.

Anexo 4: Hoja de Datos del CIP Atmega8.

Anexo 5: Imagen de la Placa.

Anexo 6: Código Utilizado.

Anexo 1: Matriz de Consistencia "DISEÑO DE UN REGULADOR AUTOMÁTICO LMV, EN SUMINISTRO DE BAJA TENSIÓN SEGÚN LA NORMA NTCSE."

PLANTEAMIENTO DEL PROBLEMA	OBJETIVOS	HIPOTESIS	VARIABLES DIMENSIONALES E INDICADORES	TECNICAS E INSTRUMENTOS	METODOLOGIA	LOGIA
El objeto de estudio a ser investigado es el impacto que produce el regulador hibrido flamado LMV en los suministros de baja tensión con una deficiente calidad según	Los siguientes objetivos corresponden a nuestra propuesta:	Las hipótesis que definen el modelo de la presente investigación quedan expresadas en los términos siguientes:	Las variables que definen el modelo de la presente investigación quedan expresadas en los términos siguientes:	de datos: de datos: Mediante la recolección de datos de lensión, se construirá gráficas de perfiles	TIPO Y DISEÑO DE LA INVESTIGACION	POBLACION Y MUESTRAS
NTCSE. 1Problema General:	1Objetivo general:	1Hipòtesis General:	X: Regulador de tensión LMV.	en la entrada y salida del regulador lineal	Se contrastaran los resultados de la presente investidación.	Nuestra población será los suministros que tienen mala
¿De que manera un regulador automático LMV, tiene impacto en los suministros de baja tensión según la NTCSE?	Diseñar un regulador LMV y analizar su aplicación en los suministros de baja tensión según la NTCSE.	Mediante el diseño y análisis del regulador de tensión LMV, será posible controlar la tensión de los suministros en baja tensión y mejorar la deficiente calidad de tensión	Variable dependiente Y: Calidad de tensión,	2. Técnica de evaluación delos resultados cuantítativos de los métodos convencionales Mediante la aplicación de esta	Tipo de investigación La investigación propuesta es del tipo experimental y aplicada	calidad de tensión en Lima Sur correspondiente a la concesión de Luz del Sur. La población es de 972 casos fuera de rango actualizado al mes de Abril 2016.
2Problemas Específicos.	2Objetivos específicos:	especificada según la noma NTCSE. 2 Hipótesis especificas:	Variable Interviniente	técnica se contrastarán y compararán las gráficas obtenidas.	Diseño de la investigación El diseño de la investigación es del tino experimental	hallamos nuestra muestra.
P1: ¿Que comprende el diseño de un regulador automático LMV, para mejorar la calidad de tensión en los suministros de baja tensión e un bajo costo?	O1: Comprender las partes esenciales del diseño del regulador automático LMV, para mejorar la calidad de tensión en los suministros de baia tensión.	H1: Mediante el diseño de un regulador automático de tensión LMV, será posible méjorar la calidad de tensión en los suministros de baja ensión.	Operacionalización de las	3Evaluación técnica y económica del proyecto: Mediante la evaluación denica y económica demostrarenos el abonte de	El diseño de la presente investigación es del experimental y prospectivo Etapas de la investigación	$n_0 = \frac{1.75 - 0.97}{0.04^2}$ $n_0 = 600.25$
P2: ¿Cómo el regulador automático LMV, mejora la calidad de tensión en los suministros de baja tensión?	O2: Determinar el efecto que produce el regulador automático. LMV, en la calidad de tensión en los suministros de baja lensión.	H2: Mediante la determinación del efecto que produce el regulador automático LMV, será posible mejora la calidad de tensión en los sumilistros.	Indicadores: X1: Sensibilidad. X2: Tensión de actuación. X3: Tiempo de actuación.	nuestro equipo regulador en la solución de casos que tienen una maia calidad de tensión.	0	Ajustamos el tamaño de la muestra debido a que conocernos el tamaño de la población.
P3: ¿Cómo se definen las zonas de regulación para los suministros de baja tensión?	O3: Determinar las zonas de regulación para una eficiente regulación de tensión.	H3: La regulación eficiente se liene mediante una lensión promedio.	71: voluejo 21: Tolerancia de tensión. 22: Tolerancia de intervalos fuera de rango.	resultados: Se compara los datos obtenidos mediante la superposición de datos, para	Percera etapa: Uesamolio del proyecto. Resultados de la Investigación Cuarta etapa : Discusión y	$n' = \frac{0.05,2.5}{1 + \frac{600,25-1}{972}}$
P4: ¿Cómo el regulador automático garantiza en todo momento el suministro de energia electrica a los cientas aun cuando puede fallar el sistema automático?	O4: Verificar el correcto funcionamiento del regulador automático LMV.	H4: Se conecte en serie la carga del regulador, la fuente y la bobina del lado secundano del transformador.		Focus estimates a macajo den regulador automático. 5 Instrumento para la recolección de datos: Para la obtención de datos se militar da conicio Dobatez 7	de res	n=3/1 Se concluye que debemos tomar una muestra de 371 casos.
P5: ¿Cómo beneficia a los clientes y a las empresas distribuldoras los reguladores automáticos LMV?	O5: Comparar los precios de los reguladores automáticos con el regulador automático LMV	H5: El regulador LMV es de menor precio que los que existen en el mercado.				

Anexo 2: Registros de tensión en la entrada y salida del regulador.

TABLA N°05: REGISTROS DE TENSIÓN

N°	Data	Time	Entrada	Salida
1	17/05/2016	17:15:00	204,0	213,7
2	17/05/2016	17:30:00	220,0	213,4
3	17/05/2016	17:45:00	218,0	223,5
4	17/05/2016	18:00:00	211,8	216,7
5	17/05/2016	18:15:00	199,0	208,9
6	17/05/2016	18:30:00	193,3	203,1
7	17/05/2016	18:45:00	200,0	209,9
8	17/05/2016	19:00:00	211,0	216,2
9	17/05/2016	19:15:00	207,3	211,8
10	17/05/2016	19:30:00	211,3	216,2
11	17/05/2016	19:45:00	211,0	216,4
12	17/05/2016	20:00:00	212,0	217,3
13	17/05/2016	20:15:00	212,3	217,5
14	17/05/2016	20:30:00	212,0	217,4
15	17/05/2016	20:45:00	212,0	216,5
16	17/05/2016	21:00:00	215,8	221,1
17	17/05/2016	21:15:00	220,5	214,4
18	17/05/2016	21:30:00	216,8	221,8
19	17/05/2016	21:45:00	215,5	220,1
20	17/05/2016	22:00:00	220,8	214,2
21	17/05/2016	22:15:00	220,0	213,4
22	17/05/2016	22:30:00	220,3	213,8
23	17/05/2016	22:45:00	225,3	218,5
24	17/05/2016	23:00:00	226,0	219,5
25	17/05/2016	23:15:00	225,0	218,8
26	17/05/2016	23:30:00	226,3	219,8
27	17/05/2016	23:45:00	228,3	221,7
28	18/05/2016	0:00:00	226,8	220,2
29	18/05/2016	0:15:00	228,0	221,5
30	18/05/2016	0:30:00	222,8	216,5
31	18/05/2016	0:45:00	221,8	215,3
32	18/05/2016	1:00:00	226,0	220,0
33	18/05/2016	1:15:00	227,3	220,6
34	18/05/2016	1:30:00	226,3	219,6
35	18/05/2016	1:45:00	225,8	218,8
36	18/05/2016	2:00:00	225,5	218,5
37	18/05/2016	2:15:00	228,8	222,6
38	18/05/2016	2:30:00	224,5	217,9
39	18/05/2016	2:45:00	230,3	224,1
40	18/05/2016	3:00:00	234,5	228,3
41	18/05/2016	3:15:00	231,5	225,0
42	18/05/2016	3:30:00	233,8	226,6

N°	Data	Time	Entrada	Salida
43	18/05/2016	3:45:00	233,3	226,4
44	18/05/2016	4:00:00	232,3	226,1
45	18/05/2016	4:15:00	232,0	225,5
46	18/05/2016	4:30:00	229,8	222,7
47	18/05/2016	4:45:00	230,3	224,0
48	18/05/2016	5:00:00	228,3	221,4
49	18/05/2016	5:15:00	229,0	222,4
50	18/05/2016	5:30:00	225,5	219,5
51	18/05/2016	5:45:00	226,8	220,0
52	18/05/2016	6:00:00	225,3	218,4
53	18/05/2016	6:15:00	229,3	223,0
54	18/05/2016	6:30:00	233,8	227,0
55	18/05/2016	6:45:00	232,3	225,1
56	18/05/2016	7:00:00	230,8	223,9
57	18/05/2016	7:15:00	225,5	218,7
58	18/05/2016	7:30:00	214,5	219,5
59	18/05/2016	7:45:00	209,8	214,3
60	18/05/2016	8:00:00	215,8	220,6
61	18/05/2016	8:15:00	218,3	223,6
62	18/05/2016	8:30:00	225,5	218,7
63	18/05/2016	8:45:00	226,5	220,4
64	18/05/2016	9:00:00	228,8	221,7
65	18/05/2016	9:15:00	230,3	223,2
66	18/05/2016	9:30:00	228,0	221,9
67	18/05/2016	9:45:00	224,8	218,0
68	18/05/2016	10:00:00	224,3	217,9
69	18/05/2016	10:15:00	223,0	216,5
70	18/05/2016	10:30:00	216,5	221,7
71	18/05/2016	10:45:00	215,8	220,6
72	18/05/2016	11:00:00	217,3	222,9
73	18/05/2016	11:15:00	221,3	214,5
74	18/05/2016	11:30:00	218,3	223,5
75	18/05/2016	11:45:00	221,8	214,9
76	18/05/2016	12:00:00	222,3	215,8
77	18/05/2016	12:15:00	224,0	217,6
78	18/05/2016	12:30:00	230,5	223,7
79	18/05/2016	12:45:00	230,8	223,6
80	18/05/2016	13:00:00	229,0	222,9
81	18/05/2016	13:15:00	222,5	215,7
82	18/05/2016	13:30:00	223,5	216,8
83	18/05/2016	13:45:00	227,0	220,8
84	18/05/2016	14:00:00	220,3	214,4
85	18/05/2016	14:15:00	222,0	215,7
86	18/05/2016	14:30:00	217,8	222,6

N°	Data	Time	Entrada	Salida
87	18/05/2016	14:45:00	218,8	223,4
88	18/05/2016	15:00:00	217,3	221,9
89	18/05/2016	15:15:00	219,3	224,7
90	18/05/2016	15:30:00	222,5	215,9
91	18/05/2016	15:45:00	226,5	220,5
92	18/05/2016	16:00:00	231,3	224,3
93	18/05/2016	16:15:00	229,8	222,6
94	18/05/2016	16:30:00	224,3	218,3
95	18/05/2016	16:45:00	223,5	217,5
96	18/05/2016	17:00:00	225,3	218,8
97	18/05/2016	17:15:00	224,8	218,2
98	18/05/2016	17:30:00	219,3	224,1
99	18/05/2016	17:45:00	213,3	218,4
100	18/05/2016	18:00:00	214,8	220,4
101	18/05/2016	18:15:00	202,8	212,8
102	18/05/2016	18:30:00	199,3	208,8
103	18/05/2016	18:45:00	198,3	208,2
104	18/05/2016	19:00:00	197,5	207,1
105	18/05/2016	19:15:00	197,3	207,4
106	18/05/2016	19:30:00	207,3	212,0
107	18/05/2016	19:45:00	212,3	216,9
108	18/05/2016	20:00:00	213,8	218,9
109	18/05/2016	20:15:00	211,5	216,1
110	18/05/2016	20:30:00	212,5	217,4
111	18/05/2016	20:45:00	215,8	220,5
112	18/05/2016	21:00:00	212,5	217,1
113	18/05/2016	21:15:00	213,0	217,9
114	18/05/2016	21:30:00	216,8	221,6
115	18/05/2016	21:45:00	216,8	222,0
116	18/05/2016	22:00:00	219,0	224,5
117	18/05/2016	22:15:00	220,3	213,6
118	18/05/2016	22:30:00	223,5	216,8
119	18/05/2016	22:45:00	226,3	219,3
120	18/05/2016	23:00:00	225,8	219,4
121	18/05/2016	23:15:00	228,3	221,2
122	18/05/2016	23:30:00	230,0	223,9
123	18/05/2016	23:45:00	231,5	225,1
124	19/05/2016	0:00:00	231,5	225,2
125	19/05/2016	0:15:00	229,8	223,0
126	19/05/2016	0:30:00	230,0	223,1
127	19/05/2016	0:45:00	233,3	226,1
128	19/05/2016	1:00:00	233,5	227,0
129	19/05/2016	1:15:00	230,8	224,1
130	19/05/2016	1:30:00	233,0	226,3

N°	Data	Time	Entrada	Salida
131	19/05/2016	1:45:00	232,8	226,5
132	19/05/2016	2:00:00	235,3	228,0
133	19/05/2016	2:15:00	231,3	224,1
134	19/05/2016	2:30:00	232,0	224,9
135	19/05/2016	2:45:00	231,8	225,1
136	19/05/2016	3:00:00	232,5	226,3
137	19/05/2016	3:15:00	232,8	226,5
138	19/05/2016	3:30:00	231,8	225,0
139	19/05/2016	3:45:00	231,8	224,8
140	19/05/2016	4:00:00	231,5	224,9
141	19/05/2016	4:15:00	233,0	225,9
142	19/05/2016	4:30:00	229,3	222,3
143	19/05/2016	4:45:00	229,8	223,4
144	19/05/2016	5:00:00	227,5	220,6
145	19/05/2016	5:15:00	228,5	221,8
146	19/05/2016	5:30:00	231,8	224,9
147	19/05/2016	5:45:00	226,5	220,3
148	19/05/2016	6:00:00	226,0	219,9
149	19/05/2016	6:15:00	225,3	218,9
150	19/05/2016	6:30:00	227,0	221,0
151	19/05/2016	6:45:00	222,3	216,3
152	19/05/2016	7:00:00	218,8	223,8
153	19/05/2016	7:15:00	213,3	218,7
154	19/05/2016	7:30:00	206,5	211,7
155	19/05/2016	7:45:00	207,0	211,4
156	19/05/2016	8:00:00	213,3	218,3
157	19/05/2016	8:15:00	221,8	215,2
158	19/05/2016	8:30:00	225,3	218,4
159	19/05/2016	8:45:00	223,5	217,6
160	19/05/2016	9:00:00	220,5	214,4
161	19/05/2016	9:15:00	228,0	221,5
162	19/05/2016	9:30:00	231,8	225,2
163	19/05/2016	9:45:00	224,8	217,8
164	19/05/2016	10:00:00	215,0	219,9
165	19/05/2016	10:15:00	213,0	218,3
166	19/05/2016	10:30:00	209,5	214,6
167	19/05/2016	10:45:00	206,8	211,6
168	19/05/2016	11:00:00	213,8	218,5
169	19/05/2016	11:15:00	213,5	218,2
170	19/05/2016	11:30:00	207,8	212,4
171	19/05/2016	11:45:00	214,0	219,4
172	19/05/2016	12:00:00	216,5	222,1
173	19/05/2016	12:15:00	227,8	220,8
174	19/05/2016	12:30:00	231,0	224,8

N°	Data	Time	Entrada	Salida
175	19/05/2016	12:45:00	220,8	214,1
176	19/05/2016	13:00:00	218,3	223,6
177	19/05/2016	13:15:00	217,3	222,1
178	19/05/2016	13:30:00	215,0	220,0
179	19/05/2016	13:45:00	215,0	220,2
180	19/05/2016	14:00:00	213,0	218,1
181	19/05/2016	14:15:00	211,5	216,1
182	19/05/2016	14:30:00	211,0	215,8
183	19/05/2016	14:45:00	218,0	223,1
184	19/05/2016	15:00:00	221,0	214,8
185	19/05/2016	15:15:00	220,8	214,8
186	19/05/2016	15:30:00	219,0	224,5
187	19/05/2016	15:45:00	221,0	215,2
188	19/05/2016	16:00:00	223,0	217,0
189	19/05/2016	16:15:00	221,5	215,3
190	19/05/2016	16:30:00	224,8	217,8
191	19/05/2016	16:45:00	225,3	218,9
192	19/05/2016	17:00:00	219,0	223,7
193	19/05/2016	17:15:00	215,5	220,7
194	19/05/2016	17:30:00	218,3	223,5
195	19/05/2016	17:45:00	221,8	215,2
196	19/05/2016	18:00:00	208,8	213,4
197	19/05/2016	18:15:00	213,0	218,4
198	19/05/2016	18:30:00	204,8	209,3
199	19/05/2016	18:45:00	205,5	210,6
200	19/05/2016	19:00:00	211,3	215,7
201	19/05/2016	19:15:00	212,0	217,2
202	19/05/2016	19:30:00	211,8	216,3
203	19/05/2016	19:45:00	212,0	217,2
204	19/05/2016	20:00:00	213,5	218,5
205	19/05/2016	20:15:00	214,0	219,5
206	19/05/2016	20:30:00	212,5	217,6
207	19/05/2016	20:45:00	212,0	217,3
208	19/05/2016	21:00:00	213,8	218,4
209	19/05/2016	21:15:00	217,8	222,4
210	19/05/2016	21:30:00	219,0	224,1
211	19/05/2016	21:45:00	216,0	221,1
212	19/05/2016	22:00:00	217,3	222,1
213	19/05/2016	22:15:00	222,0	215,7
214	19/05/2016	22:30:00	221,5	215,7
215	19/05/2016	22:45:00	227,5	220,6
216	19/05/2016	23:00:00	226,0	220,0
217	19/05/2016	23:15:00	224,5	218,3
218	19/05/2016	23:30:00	226,3	219,4

N°	Data	Time	Entrada	Salida
219	19/05/2016	23:45:00	227,5	220,6
220	20/05/2016	0:00:00	230,5	223,9
221	20/05/2016	0:15:00	230,3	223,6
222	20/05/2016	0:30:00	231,5	225,3
223	20/05/2016	0:45:00	229,5	222,4
224	20/05/2016	1:00:00	229,0	222,4
225	20/05/2016	1:15:00	232,5	225,5
226	20/05/2016	1:30:00	228,3	221,8
227	20/05/2016	1:45:00	227,8	221,2
228	20/05/2016	2:00:00	225,8	219,6
229	20/05/2016	2:15:00	227,0	220,0
230	20/05/2016	2:30:00	227,3	221,0
231	20/05/2016	2:45:00	227,0	220,3
232	20/05/2016	3:00:00	228,3	221,7
233	20/05/2016	3:15:00	226,0	219,6
234	20/05/2016	3:30:00	228,8	222,6
235	20/05/2016	3:45:00	231,5	224,8
236	20/05/2016	4:00:00	226,3	219,5
237	20/05/2016	4:15:00	221,8	215,7
238	20/05/2016	4:30:00	221,3	215,3
239	20/05/2016	4:45:00	222,8	216,0
240	20/05/2016	5:00:00	221,5	215,3
241	20/05/2016	5:15:00	222,3	216,2
242	20/05/2016	5:30:00	225,3	218,9
243	20/05/2016	5:45:00	223,3	217,1
244	20/05/2016	6:00:00	223,0	216,5
245	20/05/2016	6:15:00	217,3	222,9
246	20/05/2016	6:30:00	220,5	214,2
247	20/05/2016	6:45:00	226,8	220,0
248	20/05/2016	7:00:00	223,0	216,9
249	20/05/2016	7:15:00	218,5	223,3
250	20/05/2016	7:30:00	212,3	216,8
251	20/05/2016	7:45:00	231,0	224,3
252	20/05/2016	8:00:00	228,3	221,6
253	20/05/2016	8:15:00	229,8	222,8
254	20/05/2016	8:30:00	228,3	222,2
255	20/05/2016	8:45:00	228,5	222,5
256	20/05/2016	9:00:00	226,3	219,8
257	20/05/2016	9:15:00	229,0	223,0
258	20/05/2016	9:30:00	230,3	224,1
259	20/05/2016	9:45:00	229,5	223,0
260	20/05/2016	10:00:00	228,8	221,8
261	20/05/2016	10:15:00	228,5	221,8
262	20/05/2016	10:30:00	226,8	220,1

N°	Data	Time	Entrada	Salida
263	20/05/2016	10:45:00	232,8	225,5
264	20/05/2016	11:00:00	235,3	228,6
265	20/05/2016	11:15:00	225,0	218,2
266	20/05/2016	11:30:00	226,0	219,0
267	20/05/2016	11:45:00	227,8	221,4
268	20/05/2016	12:00:00	232,0	225,4
269	20/05/2016	12:15:00	239,3	232,7
270	20/05/2016	12:30:00	233,8	227,5
271	20/05/2016	12:45:00	241,0	234,1
272	20/05/2016	13:00:00	237,0	230,3
273	20/05/2016	13:15:00	233,0	226,5
274	20/05/2016	13:30:00	230,3	223,3
275	20/05/2016	13:45:00	224,5	218,2
276	20/05/2016	14:00:00	232,0	225,0
277	20/05/2016	14:15:00	231,8	224,6
278	20/05/2016	14:30:00	226,8	219,8
279	20/05/2016	14:45:00	230,8	224,3
280	20/05/2016	15:00:00	230,5	224,3
281	20/05/2016	15:15:00	232,8	226,6
282	20/05/2016	15:30:00	232,0	225,5
283	20/05/2016	15:45:00	241,0	234,4
284	20/05/2016	16:00:00	233,5	226,7
285	20/05/2016	16:15:00	232,5	225,7
286	20/05/2016	16:30:00	237,8	230,6
287	20/05/2016	16:45:00	236,3	229,1
288	20/05/2016	17:00:00	235,0	227,8
289	20/05/2016	17:15:00	233,0	226,9
290	20/05/2016	17:30:00	228,5	222,5
291	20/05/2016	17:45:00	225,8	219,6
292	20/05/2016	18:00:00	219,0	224,2
293	20/05/2016	18:15:00	212,8	218,1
294	20/05/2016	18:30:00	211,8	216,7
295	20/05/2016	18:45:00	205,8	210,5
296	20/05/2016	19:00:00	205,8	211,0
297	20/05/2016	19:15:00	206,3	211,5
298	20/05/2016	19:30:00	214,8	219,4
299	20/05/2016	19:45:00	212,8	217,4
300	20/05/2016	20:00:00	216,8	222,3
301	20/05/2016	20:01:24	220,3	213,4
302	20/05/2016	20:15:00	203,8	214,2
303	20/05/2016	20:30:00	204,5	208,8
304	20/05/2016	20:45:00	210,5	215,0
305	20/05/2016	21:00:00	216,8	221,5
306	20/05/2016	21:15:00	218,5	223,7

N°	Data	Time	Entrada	Salida
307	20/05/2016	21:30:00	216,5	221,8
308	20/05/2016	21:45:00	219,8	224,9
309	20/05/2016	22:00:00	223,5	217,2
310	20/05/2016	22:15:00	225,5	218,7
311	20/05/2016	22:30:00	224,8	218,2
312	20/05/2016	22:45:00	227,5	220,7
313	20/05/2016	23:00:00	225,5	219,4
314	20/05/2016	23:15:00	228,5	222,1
315	20/05/2016	23:30:00	230,0	223,5
316	20/05/2016	23:45:00	230,3	223,1
317	21/05/2016	0:00:00	228,3	221,5
318	21/05/2016	0:15:00	233,0	226,1
319	21/05/2016	0:30:00	231,5	224,3
320	21/05/2016	0:45:00	230,0	222,9
321	21/05/2016	1:00:00	232,5	225,7
322	21/05/2016	1:15:00	234,0	227,9
323	21/05/2016	1:30:00	234,0	227,3
324	21/05/2016	1:45:00	235,3	228,1
325	21/05/2016	2:00:00	234,8	228,1
326	21/05/2016	2:15:00	235,5	229,0
327	21/05/2016	2:30:00	237,8	230,7
328	21/05/2016	2:45:00	236,8	230,2
329	21/05/2016	3:00:00	233,8	226,9
330	21/05/2016	3:15:00	234,5	227,5
331	21/05/2016	3:30:00	235,5	228,5
332	21/05/2016	3:45:00	234,5	228,2
333	21/05/2016	4:00:00	231,3	224,7
334	21/05/2016	4:15:00	230,8	224,2
335	21/05/2016	4:30:00	228,3	221,9
336	21/05/2016	4:45:00	228,8	222,5
337	21/05/2016	5:00:00	230,0	223,6
338	21/05/2016	5:15:00	232,5	225,6
339	21/05/2016	5:30:00	232,3	225,3
340	21/05/2016	5:45:00	230,3	224,1
341	21/05/2016	6:00:00	227,5	221,3
342	21/05/2016	6:15:00	229,0	222,8
343	21/05/2016	6:30:00	233,5	226,5
344	21/05/2016	6:45:00	233,0	226,4
345	21/05/2016	7:00:00	235,0	228,4
346	21/05/2016	7:15:00	219,5	224,8
347	21/05/2016	7:30:00	219,5	224,2
348	21/05/2016	7:45:00	219,3	224,6
349	21/05/2016	8:00:00	221,5	214,8
350	21/05/2016	8:15:00	219,0	224,6

N°	Data	Time	Entrada	Salida
351	21/05/2016	8:30:00	218,3	223,5
352	21/05/2016	8:45:00	216,8	222,4
353	21/05/2016	9:00:00	213,5	219,1
354	21/05/2016	9:15:00	213,5	218,5
355	21/05/2016	9:30:00	220,3	213,8
356	21/05/2016	9:45:00	224,8	218,6
357	21/05/2016	10:00:00	229,0	222,2
358	21/05/2016	10:15:00	233,0	226,2
359	21/05/2016	10:30:00	231,3	224,6
360	21/05/2016	10:45:00	228,3	221,6
361	21/05/2016	11:00:00	229,5	222,6
362	21/05/2016	11:15:00	227,0	220,7
363	21/05/2016	11:30:00	225,3	219,0
364	21/05/2016	11:45:00	229,5	223,0
365	21/05/2016	12:00:00	228,0	222,0
366	21/05/2016	12:15:00	230,5	223,4
367	21/05/2016	12:30:00	233,3	227,0
368	21/05/2016	12:45:00	223,8	217,2
369	21/05/2016	13:00:00	219,8	225,4
370	21/05/2016	13:15:00	222,5	216,0
371	21/05/2016	13:30:00	219,5	224,3
372	21/05/2016	13:45:00	226,5	219,6
373	21/05/2016	14:00:00	222,8	215,9
374	21/05/2016	14:15:00	224,8	218,5
375	21/05/2016	14:30:00	224,0	217,4
376	21/05/2016	14:45:00	223,8	217,7
377	21/05/2016	15:00:00	227,8	220,9
378	21/05/2016	15:15:00	230,5	224,4
379	21/05/2016	15:30:00	231,3	224,4
380	21/05/2016	15:44:10	226,3	219,9
381	21/05/2016	15:45:00	224,8	218,2
382	21/05/2016	16:00:00	227,3	220,4
383	21/05/2016	16:15:00	222,0	215,3
384	21/05/2016	16:30:00	221,3	215,4
385	21/05/2016	16:45:00	224,0	217,4
386	21/05/2016	17:00:00	222,3	216,2
387	21/05/2016	17:15:00	222,8	216,6
388	21/05/2016	17:30:00	223,8	217,3
389	21/05/2016	17:45:00	230,0	223,5
390	21/05/2016	18:00:00	223,3	216,6
391	21/05/2016	18:15:00	211,8	216,4
392	21/05/2016	18:30:00	211,3	215,9
393	21/05/2016	18:45:00	209,3	213,9
394	21/05/2016	19:00:00	208,0	212,6

N°	Data	Time	Entrada	Salida
395	21/05/2016	19:15:00	208,3	213,1
396	21/05/2016	19:30:00	210,3	215,6
397	21/05/2016	19:45:00	211,5	216,2
398	21/05/2016	20:00:00	210,5	215,2
399	21/05/2016	20:15:00	213,8	219,1
400	21/05/2016	20:30:00	215,0	220,4
401	21/05/2016	20:45:00	215,3	220,7
402	21/05/2016	21:00:00	215,8	220,4
403	21/05/2016	21:15:00	216,0	221,5
404	21/05/2016	21:30:00	217,0	221,8
405	21/05/2016	21:45:00	216,5	221,5
406	21/05/2016	22:00:00	216,8	221,5
407	21/05/2016	22:15:00	217,8	222,4
408	21/05/2016	22:30:00	219,5	224,6
409	21/05/2016	22:45:00	221,5	214,6
410	21/05/2016	23:00:00	223,5	217,4
411	21/05/2016	23:15:00	222,8	216,2
412	21/05/2016	23:30:00	224,3	218,1
413	21/05/2016	23:45:00	225,0	218,5
414	22/05/2016	0:00:00	225,5	219,5
415	22/05/2016	0:15:00	226,8	219,8
416	22/05/2016	0:30:00	225,5	219,4
417	22/05/2016	0:45:00	225,5	219,4
418	22/05/2016	1:00:00	227,3	220,7
419	22/05/2016	1:15:00	233,5	226,6
420	22/05/2016	1:30:00	232,8	226,3
421	22/05/2016	1:45:00	231,5	225,0
422	22/05/2016	2:00:00	227,3	220,5
423	22/05/2016	2:15:00	227,8	221,4
424	22/05/2016	2:30:00	227,3	221,2
425	22/05/2016	2:45:00	227,3	220,8
426	22/05/2016	3:00:00	230,5	223,6
427	22/05/2016	3:15:00	229,3	222,5
428	22/05/2016	3:30:00	229,5	223,3
429	22/05/2016	3:45:00	228,8	222,2
430	22/05/2016	4:00:00	229,0	222,2
431	22/05/2016	4:15:00	228,3	222,2
432	22/05/2016	4:30:00	227,0	220,8
433	22/05/2016	4:45:00	227,3	220,8
434	22/05/2016	5:00:00	220,0	214,0
435	22/05/2016	5:15:00	224,0	217,6
436	22/05/2016	5:30:00	220,5	214,2
437	22/05/2016	5:45:00	221,8	215,7
438	22/05/2016	6:00:00	224,5	218,5

N°	Data	Time	Entrada	Salida
439	22/05/2016	6:15:00	222,5	216,3
440	22/05/2016	6:30:00	227,0	220,5
441	22/05/2016	6:45:00	226,3	220,2
442	22/05/2016	7:00:00	223,5	217,1
443	22/05/2016	7:15:00	221,5	215,3
444	22/05/2016	7:30:00	220,5	213,9
445	22/05/2016	7:45:00	218,8	223,5
446	22/05/2016	8:00:00	226,3	219,9
447	22/05/2016	8:15:00	225,3	218,6
448	22/05/2016	8:30:00	226,5	220,5
449	22/05/2016	8:45:00	225,0	218,5
450	22/05/2016	9:00:00	227,5	221,0
451	22/05/2016	9:15:00	229,0	222,5
452	22/05/2016	9:30:00	229,8	223,2
453	22/05/2016	9:45:00	229,0	222,3
454	22/05/2016	10:00:00	226,8	220,5
455	22/05/2016	10:15:00	226,8	220,2
456	22/05/2016	10:30:00	221,3	215,0
457	22/05/2016	10:45:00	224,8	218,8
458	22/05/2016	11:00:00	220,8	214,6
459	22/05/2016	11:15:00	220,5	214,2
460	22/05/2016	11:30:00	220,0	213,7
461	22/05/2016	11:45:00	222,8	216,9
462	22/05/2016	12:00:00	223,3	217,3
463	22/05/2016	12:15:00	223,3	216,8
464	22/05/2016	12:30:00	225,3	218,5
465	22/05/2016	12:45:00	222,8	216,3
466	22/05/2016	13:00:00	225,3	219,2
467	22/05/2016	13:15:00	225,3	219,1
468	22/05/2016	13:30:00	224,0	217,4
469	22/05/2016	13:45:00	223,0	216,3
470	22/05/2016	14:00:00	222,3	215,4
471	22/05/2016	14:15:00	225,8	219,6
472	22/05/2016	14:30:00	228,3	222,3
473	22/05/2016	14:45:00	222,8	216,1
474	22/05/2016	15:00:00	224,0	217,1
475	22/05/2016	15:15:00	226,0	219,3
476	22/05/2016	15:30:00	227,5	220,4
477	22/05/2016	15:45:00	228,3	222,2
478	22/05/2016	16:00:00	225,8	219,4
479	22/05/2016	16:15:00	225,3	218,9
480	22/05/2016	16:30:00	223,8	217,2
481	22/05/2016	16:45:00	224,8	218,2
482	22/05/2016	17:00:00	217,8	222,5

N°	Data	Time	Entrada	Salida
483	22/05/2016	17:15:00	213,3	218,2
484	22/05/2016	17:30:00	211,0	216,2
485	22/05/2016	17:45:00	210,0	214,7
486	22/05/2016	18:00:00	205,3	210,1
487	22/05/2016	18:15:00	199,3	208,9
488	22/05/2016	18:30:00	199,0	209,4
489	22/05/2016	18:45:00	197,0	206,6
490	22/05/2016	19:00:00	200,8	211,1
491	22/05/2016	19:15:00	205,0	210,0
492	22/05/2016	19:30:00	208,5	213,3
493	22/05/2016	19:45:00	207,3	212,0
494	22/05/2016	20:00:00	207,5	212,3
495	22/05/2016	20:15:00	208,0	213,4
496	22/05/2016	20:30:00	206,5	211,2
497	22/05/2016	20:45:00	208,3	213,3
498	22/05/2016	21:00:00	211,5	216,9
499	22/05/2016	21:15:00	213,0	218,2
500	22/05/2016	21:30:00	218,0	223,5
501	22/05/2016	21:45:00	214,3	219,7
502	22/05/2016	22:00:00	218,5	223,7
503	22/05/2016	22:15:00	216,8	222,2
504	22/05/2016	22:30:00	214,5	219,7
505	22/05/2016	22:45:00	217,5	222,6
506	22/05/2016	23:00:00	222,0	215,2
507	22/05/2016	23:15:00	221,5	215,2
508	22/05/2016	23:30:00	221,0	214,7
509	22/05/2016	23:45:00	226,0	219,8
510	23/05/2016	0:00:00	226,8	219,7
511	23/05/2016	0:15:00	230,5	224,3
512	23/05/2016	0:30:00	226,8	220,2
513	23/05/2016	0:45:00	226,5	219,7
514	23/05/2016	1:00:00	221,5	215,0
515	23/05/2016	1:15:00	224,3	218,4
516	23/05/2016	1:30:00	224,5	218,1
517	23/05/2016	1:45:00	225,0	218,8
518	23/05/2016	2:00:00	224,5	218,4
519	23/05/2016	2:15:00	225,3	218,5
520	23/05/2016	2:30:00	224,8	218,8
521	23/05/2016	2:45:00	225,5	218,7
522	23/05/2016	3:00:00	224,8	218,8
523	23/05/2016	3:15:00	227,0	220,2
524	23/05/2016	3:30:00	226,0	219,4
525	23/05/2016	3:45:00	227,5	221,3
526	23/05/2016	4:00:00	228,0	221,6

N°	Data	Time	Entrada	Salida
527	23/05/2016	4:15:00	228,8	222,7
528	23/05/2016	4:30:00	227,0	220,1
529	23/05/2016	4:45:00	223,3	216,5
530	23/05/2016	5:00:00	227,3	220,9
531	23/05/2016	5:15:00	226,5	219,8
532	23/05/2016	5:30:00	224,0	217,8
533	23/05/2016	5:45:00	219,5	225,2
534	23/05/2016	6:00:00	225,3	219,3
535	23/05/2016	6:15:00	218,3	223,0
536	23/05/2016	6:30:00	221,0	214,6
537	23/05/2016	6:45:00	227,5	221,0
538	23/05/2016	7:00:00	219,5	224,9
539	23/05/2016	7:15:00	219,8	225,3
540	23/05/2016	7:30:00	220,3	213,8
541	23/05/2016	7:45:00	213,8	218,3
542	23/05/2016	8:00:00	217,5	222,5
543	23/05/2016	8:15:00	215,0	219,7
544	23/05/2016	8:30:00	221,0	214,6
545	23/05/2016	8:45:00	226,5	219,6
546	23/05/2016	9:00:00	226,5	219,6
547	23/05/2016	9:15:00	230,0	223,5
548	23/05/2016	9:30:00	224,0	217,4
549	23/05/2016	9:45:00	227,3	220,2
550	23/05/2016	10:00:00	223,3	217,3
551	23/05/2016	10:15:00	227,8	220,8
552	23/05/2016	10:30:00	224,3	218,2
553	23/05/2016	10:45:00	224,0	217,1
554	23/05/2016	11:00:00	223,5	216,7
555	23/05/2016	11:15:00	229,8	223,3
556	23/05/2016	11:30:00	223,3	216,6
557	23/05/2016	11:45:00	222,5	216,1
558	23/05/2016	12:00:00	226,5	219,8
559	23/05/2016	12:15:00	231,5	225,0
560	23/05/2016	12:30:00	235,3	228,8
561	23/05/2016	12:45:00	230,5	224,0
562	23/05/2016	13:00:00	222,5	216,2
563	23/05/2016	13:15:00	225,8	219,8
564	23/05/2016	13:30:00	225,5	218,6
565	23/05/2016	13:45:00	225,0	218,2
566	23/05/2016	14:00:00	226,5	219,7
567	23/05/2016	14:15:00	224,3	217,7
568	23/05/2016	14:30:00	221,8	214,9
569	23/05/2016	14:45:00	220,5	214,0
570	23/05/2016	15:00:00	222,8	216,7

N°	Data	Time	Entrada	Salida
571	23/05/2016	15:15:00	222,0	215,5
572	23/05/2016	15:30:00	223,5	216,8
573	23/05/2016	15:45:00	227,8	221,7
574	23/05/2016	16:00:00	227,3	220,9
575	23/05/2016	16:15:00	228,5	222,1
576	23/05/2016	16:30:00	228,8	222,6
577	23/05/2016	16:45:00	225,0	219,1
578	23/05/2016	17:00:00	224,8	217,8
579	23/05/2016	17:15:00	228,0	221,7
580	23/05/2016	17:30:00	226,5	220,4
581	23/05/2016	17:45:00	224,8	217,9
582	23/05/2016	18:00:00	216,8	222,1
583	23/05/2016	18:15:00	208,8	214,0
584	23/05/2016	18:30:00	204,0	214,6
585	23/05/2016	18:45:00	200,5	210,6
586	23/05/2016	19:00:00	199,8	209,8
587	23/05/2016	19:15:00	207,5	212,7
588	23/05/2016	19:30:00	206,8	211,3
589	23/05/2016	19:45:00	210,0	215,2
590	23/05/2016	20:00:00	207,3	212,6
591	23/05/2016	20:15:00	206,8	212,0
592	23/05/2016	20:30:00	209,3	214,1
593	23/05/2016	20:45:00	206,0	211,1
594	23/05/2016	21:00:00	213,8	218,9
595	23/05/2016	21:15:00	218,5	223,9
596	23/05/2016	21:30:00	219,5	224,9
597	23/05/2016	21:45:00	222,3	215,9
598	23/05/2016	22:00:00	224,3	217,3
599	23/05/2016	22:15:00	224,3	217,7
600	23/05/2016	22:30:00	225,5	218,7
601	23/05/2016	22:45:00	228,3	222,1
602	23/05/2016	23:00:00	226,8	220,5
603	23/05/2016	23:15:00	225,0	218,5
604	23/05/2016	23:30:00	228,8	222,4
605	23/05/2016	23:45:00	231,0	224,9
606	24/05/2016	0:00:00	226,5	219,9
607	24/05/2016	0:15:00	226,5	220,4
608	24/05/2016	0:30:00	228,5	222,3
609	24/05/2016	0:45:00	227,0	220,8
610	24/05/2016	1:00:00	230,0	223,4
611	24/05/2016	1:15:00	231,3	224,8
612	24/05/2016	1:30:00	232,3	225,6
613	24/05/2016	1:45:00	231,8	225,7
614	24/05/2016	2:00:00	229,3	222,1

N°	Data	Time	Entrada	Salida
615	24/05/2016	2:15:00	232,8	225,6
616	24/05/2016	2:30:00	234,0	227,4
617	24/05/2016	2:45:00	233,5	226,8
618	24/05/2016	3:00:00	233,3	227,0
619	24/05/2016	3:15:00	233,5	226,6
620	24/05/2016	3:30:00	235,5	229,1
621	24/05/2016	3:45:00	237,8	230,8
622	24/05/2016	4:00:00	232,0	225,0
623	24/05/2016	4:15:00	230,0	222,9
624	24/05/2016	4:30:00	226,3	220,3
625	24/05/2016	4:45:00	226,5	220,2
626	24/05/2016	5:00:00	224,5	218,3
627	24/05/2016	5:15:00	225,5	219,2
628	24/05/2016	5:30:00	224,0	217,1
629	24/05/2016	5:45:00	219,3	224,1
630	24/05/2016	6:00:00	224,8	218,7
631	24/05/2016	6:15:00	224,5	217,6
632	24/05/2016	6:30:00	223,8	217,7
633	24/05/2016	6:45:00	227,0	221,0
634	24/05/2016	7:00:00	226,8	220,4
635	24/05/2016	7:15:00	219,8	224,5
636	24/05/2016	7:30:00	214,3	219,6
637	24/05/2016	7:45:00	216,5	221,8
638	24/05/2016	8:00:00	213,3	218,8
639	24/05/2016	8:15:00	216,0	221,4
640	24/05/2016	8:30:00	216,5	221,2
641	24/05/2016	8:45:00	212,3	217,3
642	24/05/2016	9:00:00	215,8	220,9
643	24/05/2016	9:15:00	216,3	221,8
644	24/05/2016	9:30:00	219,3	224,4
645	24/05/2016	9:45:00	220,8	214,9
646	24/05/2016	10:00:00	217,5	223,2
647	24/05/2016	10:15:00	216,8	222,4
648	24/05/2016	10:30:00	220,5	214,3
649	24/05/2016	10:45:00	215,3	220,8
650	24/05/2016	11:00:00	211,5	216,4
651	24/05/2016	11:15:00	214,0	218,7
652	24/05/2016	11:30:00	211,8	216,4
653	24/05/2016	11:45:00	214,8	219,7
654	24/05/2016	12:00:00	223,3	216,4
655	24/05/2016	12:15:00	230,0	223,9
656	24/05/2016	12:30:00	231,0	224,1
657	24/05/2016	12:45:00	230,5	224,2
658	24/05/2016	13:00:00	231,0	224,3

N°	Data	Time	Entrada	Salida
659	24/05/2016	13:15:00	233,8	227,3
660	24/05/2016	13:30:00	228,8	222,2
661	24/05/2016	13:45:00	224,0	217,6
662	24/05/2016	14:00:00	223,0	216,6
663	24/05/2016	14:15:00	220,3	213,9
664	24/05/2016	14:30:00	221,8	215,4
665	24/05/2016	14:45:00	222,0	215,6
666	24/05/2016	15:00:00	228,0	221,7
667	24/05/2016	15:15:00	228,8	222,1
668	24/05/2016	15:30:00	229,3	222,8
669	24/05/2016	15:45:00	228,8	222,6
670	24/05/2016	16:00:00	230,3	223,2
671	24/05/2016	16:15:00	231,8	224,7
672	24/05/2016	16:30:00	229,8	223,2

FUENTE: DATA DEL EQUIPO REGISTRADOR

Anexo 3: Fotos de las partes del estabilizador LMV.

FOTO 1: CONTRASTE DE LA TENSIÓN DE ENTRADA Y SALIDA DEL TRANSFORMADOR

FUENTE: ELABORACIÓNPROPIA

FOTO 2: RELACIÓN DE TRANSFORMACIÓN DEL TRANSFORMADOR

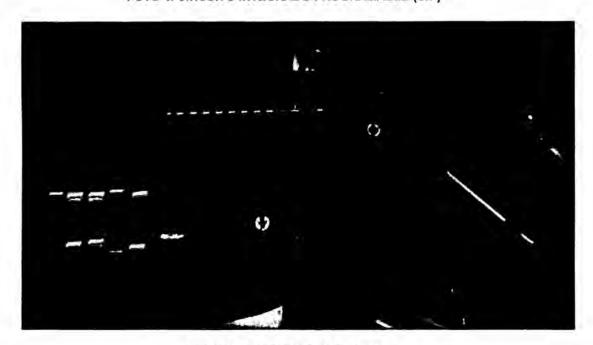


FOTO 3: TARJETA DE CONTROL

FUENTE: ELABORACIÓNPROPIA

FOTO 4: CIRCUITO INTEGRADO PROGRAMABLE (CIP)

Features

- High-performance, Low-power Atmet AVR® 8-bit Microcontroller
 Advanced RISC Architecture
- Advanced RISC Architecture

 130 Powerful Instructions Most Single-clock Cycle Execution

 32 x 8 General Purpose Working Registers

 Fully Static Operation

 Up to 16MPS Throughput at 16MHz

 On-chip 2-cycle Multiplior

 High Endurance Non-volatile Momony segments

 8Kbytes of In-System Self-programmable Flash program memory

 512Bytes EEPROM

 1Kbyte Internal SRAM

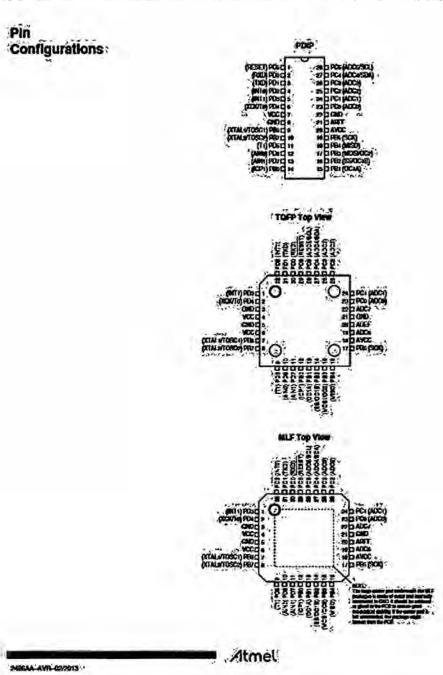
 Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
- - WriteFrase Cycles: 10,000 Flash/100,000 EEPROM
 Data rotention: 20 years at 85°C/100 years at 25°C⁽¹⁾
 Optional Boot Code Section with Independent Lock Bits
 - upriorie poor Code section with Independent Lock th-System Programming by On-chip Boot Program True Road-While-Write Operation
 Programming Lock for Software Security
 Peripheral Features
- - Two 8-bit Timer/Counters with Separate Prescaler, one Compare Mode
 One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
 - Real Time Counter with Separate Oscillator

 - Real Time Counter with Separate Oscillator
 Three PWM Channels
 Schannel ADC in TGFP and GFN/MLF package
 Eight Channels 10-bit Accuracy
 Schannel ADC in PDIP package
 Six Channels 10-bit Accuracy
 Byte-oriented Two-wire Serial Interface
 Programmable Serial Interface
 Programmable SM Serial Interface
 Programmable SM Serial Interface
 Programmable SM Serial Interface
- Programmable Watchdog Timer with Separate On-chip Oscillator
 On-chip Analog Comparator
 Special Microcontroller Features

- Power-on Reset and Programmable Brown-out Detection
 Internal Calibrated RC Oscillator
 External end Internal Interrupt Sources
 Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Fire Steep anders: size, ALC Notes Hedischon, For Standby
 VO and Packages
 23 Programmable NO Lines
 28-lead PDIP, 32-lead TQFP, and 32-pad QFN/MILF

- Operating Voltages
 2.7V 5.5V (ATmogašl.)
 4.5V 5.5V (ATmogašl.)
 - Speed Grades 0 SMHz (ATmega8L)
- - 0 16MHz (ATmegas)
- Power Consumption at Allhz, 3V, 25°C
 Active: 3.5mA
 Idle Mode: 1.0mA

 - Power-down Mode: 0.5µA



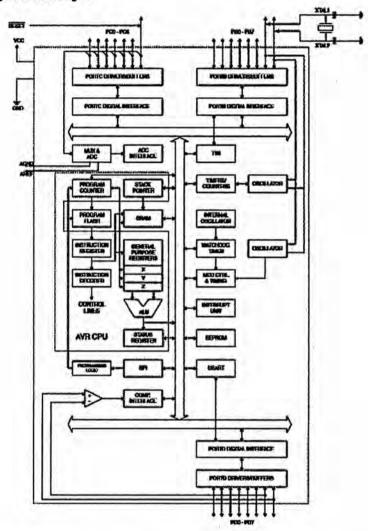
8-bit Atmel with 8KBytes In-System Programmable Flash

ATmega8 ATmega8L

Rev 2486AA-AVII-020013

Atmel

FUENTE: CATALOGO DE ATMEL

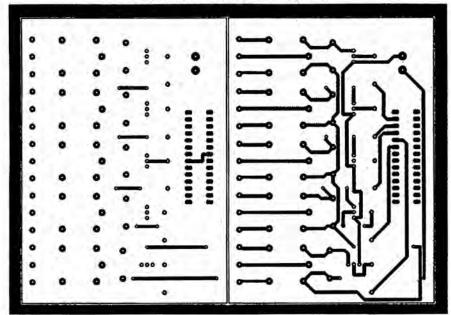

ATmega8(L)

Overview

The Atmel®AVP® ATmega8 is a low-power CMOS 8-bit microcontroller based on the AVP RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega8 achieves throughputs approaching 1MIPS per MHz, allowing the system designer to optimize power consumption versus processing speed.

Block Diagram

Figure 1. Block Diagram


Atmel

3

FUENTE: CATALOGO DE ATMEL

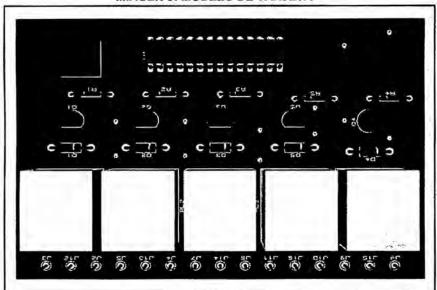
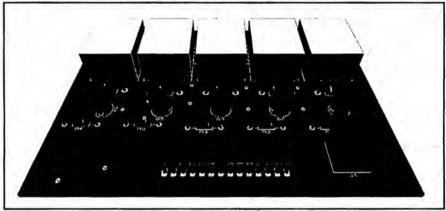

• Anexo 5: Imágenes del Procedo del Diseño de la Placa.

IMAGEN 2: PISTAS PARA IMPRIMIR



FUENTE: ELABORACIÓN PROPIA

IMAGEN 3: MODELO DE TARJETA

IMAGEN 4: VISTA CON PERSPECTIVA

FUENTE: ELABORACIÓN PROPIA

IMAGEN 5: PROYECCION DEL VOLUMEN

Anexo 6: Código Utilizado (BASCOM-AVR):

```
$regfile = "m8def.dat"
$crystal = 4000000
Dim Volt As Single
Dim V As String * 4
Dim Aux1 As Word
ConfigPortb = Output
Portb = 0
ConfigLcdpin = Pin , Db4 = Portd.4 , Db5 = Portd.5 , Db6 = Portd.6 ,
Db7 = Portd.7, E = Portd.0, Rs = Portd.1
ConfigAdc = Single ,Prescaler = Auto , Reference = Avcc 'config
ADC
ConfigLcd = 16 * 2
Start Adc
Do
 Aux1 = Getadc(1)
 Volt = Aux1 * 5.3
Volt = Volt / 1024
 V = Fusing(volt, "#.##") 'Redondea los decimales de un dato tipo
single y lo transforma en string
Lcd "V = " ; V
 If Volt < 1 And Volt >= 0 Then
 Portb.1 = 0
 Portb.2 = 0
 Portb.3 = 1
 Else
 If Volt < 2 And Volt >= 1 Then
 Portb.1 = 0
 Portb.2 = 0
 Portb.3 = 0
 Else
 If Volt < 3 And Volt >= 2 Then
 Portb.1 = 1
 Portb.2 = 0
```

Portb.3 = 0

Else

If Volt < 4 And Volt >= 3 Then

Portb.1 = 1

Portb.2 = 1

Portb.3 = 0

Else

If Volt < 5 And Volt >= 4 Then

Portb.1 = 1

Portb.2 = 1

Portb.3 = 1

End If

End If

End If

End If

End If

Wait 1

Cls

Loop

End