UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA QUÍMICA UNIDAD DE INVESTIGACIÓN

INFORME FINAL DEL PROYECTO DE INVESTIGACIÓN

"MODELAMIENTO Y SIMULACIÓN DEL PROCESO DE ELABORACIÓN DE CONSERVA DE FRUTAS USANDO EL LENGUAJE SIMIO"

ANA MARÍA REYNA SEGURA

ESTUDIANTES DE APOYO: CARMEN JHENY HUARACA SANTIVAÑES

PERIODO DE EJECUCIÓN: Del 01 de agosto del 2019 al 31de julio del 2020

Resolución Rectoral Nº 854-2019-R

Callao, 2020

DEDICATORIA

A Dios porque ha estado conmigo a cada paso que doy, cuidándome y dándome fortaleza para continuar.

A mi familia quienes han sido motivo de inspiración dándome siempre todo su amor y apoyo, permitiéndome saber que en medio de tantas pruebas, todo se puede lograr.

AGRADECIMIENTO

Mi agradecimiento al Ing Alberto Cossa a quien me gustaría expresar mi más profundo agradecimiento, por hacer posible la realización de este estudio.

Además de agradecer su paciencia, tiempo y dedicación para que todo saliera de manera exitosa.

INDICE

				Pág.
	-	TABLA	3	
	I	NDICE	3	
	I	NDICE	4	
	I	RESUN	6	
	/	ABSTR	ACT	7
	I	NTRO	DUCCIÓN	8
CA	PITU	JLO I:F	PLANTEAMIENTO DEL PROBLEMA	10
	1.1	Descri	10	
	1.2	Formu	ılación del problema	10
		1.2.1	Problema general	11
		1.2.2	Problema específico	11
	1.3	Objeti	vos	11
		1.3.1	Objetivo general	11
		1.3.2	Objetivos específicos	11
	1.4	Limita	ciones de la investigación	11
		1.4.1	Limitante teórico	12
		1.4.2	Limitante temporal	12
		1.4.3	Limitante espacial	12
CA	PITU	JLO II:I	MARCO TEÓRICO	13
	2.1	Antece	edentes	13
		2.1.1	Antecedentes internacionales	13
		2.1.2	Antecedentes nacionales	18
	2.2	Marco		18
		2.2.1	Marco teórico	18
			Marco Conceptual	35
			ción de términos Básicos	37
CAPITULO III: HIPOTESIS Y VARIABLES				39
	3.1	Hipóte		39
			Hipótesis general	39
		3.1.2	Hipótesis específica	39

3.2	Definición conceptual de variables	39
3.3	Operacionalización de variables	40
CAPITU	JLO IV: DISEÑO METODOLÓGICO	41
4.1	Tipo y diseño de la investigación	41
4.2	Método de investigación	41
4.3	Población y muestra	42
4.4	Lugar de estudio y periodo de desarrollo	42
4.5	Técnicas e instrumentos para la recolección de la información	43
	4.5.1 Formulación de Modelo y Resolución de Modelos	43
4.6	Análisis y procesamiento de datos	45
	4.6.1 Desarrollo del experimento.	54
CAPITU	JLO V: RESULTADOS	82
5.1	Resultados descriptivos	82
5.2	Resultados inferenciales	85
CAPITU	JLO VI: DISCUSION DE RESULTADOS	92
6.1	Contratación y demostración de la hipótesis con los resultados	92
6.2	Contrastación de los resultados con otros estudios similares	93
6.3	Responsabilidad ética	96
CONCL	USIONES	97
RECON	MENDACIONES	99
REFER	ENCIAS BIBLIOGRÁFICAS	100
ANEXC	os estados esta	106
Matriz o	le Consistencia	106
Resulta	dos del Experimento de Simulación	107

TABLAS DE CONTENIDO

INDICE DE TABLAS

		Pág.
Tabla 1	Caracterización de la fruta	32
Tabla 2	Valores de entrada	58
Tabla 3	Cuadro de distribuciones	59
Tabla 4	Tipos de recursos para cada actividad	73
Tabla 5	Tabla de Mermas	83
Tabla 6	Utilización en cada etapa de procesos	85
Tabla 7	Cantidad de materia prima	85
Tabla 8	Resumen de los resultados del experimento	89

INDICE DE FIGURAS

		Pág.
Figura 1	Elementos para una tipología de modelos científicos	24
Figura 2	Procesos de la elaboración de conserva de fruta.	29
Figura 3	Diagrama para un Proyecto de Simulación	45
Figura 4	Proceso para la fabricación de conservas de frutas.	51
Figura 5	Densidad de entrada: evacuación y sellado	63
Figura 6	Densidad ajustada: evacuación y sellado	63
Figura 7	Densidad de ajuste de 3 a 6	65
Figura 8	Densidad ajustada: pesado, lavado.	66
Figura 9	Densidad de Ajuste de 6 a 12	68
Figura 10	Densidad ajustada: pelado, trozado.	69
Figura 11	Densidad de Ajuste de 15 a 30	72
Figura 12	Densidad ajustada: Pasteurización	73
Figura 13	Vista complete del Modelo en 2D	74
Figura 14	Etapa de Selección y Clasificación	75
Figura 15	Etapa de pesado	75
Figura 16	Etapa de lavado y desinfección	75
Figura 17	Etapa de pesado 1	75
Figura 18	Etapa de trozado	76
Figura 19	Etapa de Pre cocción	76
Figura 20	Etapa de Preparación de almíbar	76
Figura 21	Orden de Preparación de almíbar	76
Figura 22	Etapa de Escaldado	77
Figura 23	Etapa de llenado	77
Figura 24	Etapa de Adicionar almíbar	77
Figura 25	Etapa de Evacuación	77
Figura 26	Etapa de Sellado	78
Figura 27	Etapa de Pasteurización	78
Figura 28	Etapa de Enfriado	78
Figura 29	Etapa de Almacenamiento	78
Figura 30	Vista en 3D del modelo inicial	79

Figura 31	Vista del modelo final de simulación	80
Figura 32	Vista en 3D del modelo final de simulación	81
Figura 33	Reporte de una sola iteración	84
Figura 34	Resultado de 10 replicaciones	86
Figura 35	Calculo para cada indicador	87
Figura 36	Calculo para cada indicador	88

RESUMEN

Los profesionales y alumnos, egresados o estudiantes de nuestras universidades presentan grandes problemas, el cual es mantenerse actualizado con lo último en tecnología informática, que es necesario para ser competitivo en el mercado laboral, de allí que en la presente investigación el objetivo fue elaborar un modelo de simulación en SIMIO que estandarice los procesos de elaboración de una conserva de frutas.

El cual se desarrolló con una metodología de un estudio descriptivo, transversal, diseño experimental, la cual se diseñó en siete etapas, considerando de todas las posibilidades de procesos de la elaboración de conserva de frutas, escoger el método de muestreo direccional por ello se seleccionó los procesos de elaboración de conserva de futas como: el durazno, piña, aguaymanto, mango, respecto a los modelos y simulación desarrollados.

La validación se realizó a través de la comparación de producción entregada por el modelo y producciones reales, obteniéndose resultados satisfactorios considerando que en el 85% de los casos las diferencias no superaron el 5% y en el 15% restante las diferencias no superaron el 10%.

Por lo tanto, los resultados obtenidos del estudio computacional, muestran que el método propuesto es factible y efectivo para el problema de planificación en la elaboración de conserva de frutas.

Palabras claves: Simulación, informática, proceso de elaboración, modelo de simulación.

ABSTRACT

Professionals and students, graduates or students of our universities present

great problems, which is keeping up-to-date with the latest in computer technology,

which is necessary to be competitive in the labor market, hence the objective of this

research was to develop a SIMIO simulation model that standardizes the processes of

making a fruit can.

Which was developed with a methodology of a descriptive, cross-sectional study,

experimental design, which was designed in seven stages, considering of all the

possibilities of processes for the elaboration of fruit preserves, choosing the directional

sampling method, therefore it was selected the production processes of canned fruits

such as: peach, pineapple, aguaymanto, mango, with respect to the models and

simulations developed.

The validation was carried out through the comparison of production delivered by

the model and actual productions, obtaining satisfactory results considering that in 85%

of cases the differences did not exceed 5% and in the remaining 15% the differences

did not exceed 10 %.

Therefore, the results obtained from the computational study show that the

proposed method is feasible and effective for the planning problem in the preparation of

fruit preserves.

Key words: Simulation, informatics, elaboration process, simulation model.

7

INTRODUCIÓN

El avance de la ciencia y la tecnología a nos lleva a diseñar nuevos procesos en la industria de alimentos, a generar nuevas alternativas como las que nos permitan identificar las más adecuadas para conseguir los fines deseados, sin interrumpir líneas de producción y sin tener que diseñar ni construir prototipos.

La herramienta que se propone en este trabajo y nos lleve a lograr este objetivos es la simulación de procesos con modelos matemáticos, la que constituye una alternativa más viable y flexible con la que se evita construir un prototipo o interferir en los ciclos de fabricación.

El presente trabajo de investigación tiene como objetivo elaborar un modelo de simulación en SIMIO que estandarice los procesos de elaboración de una conserva de frutas.

La elaboración de conservas es un proceso, ende debe estandarizarse. Tener una línea base para las conservas de todo tipo y permitir algunos "acomodos" específicos para cada tipo en particular.

Para hacer la simulación del proceso de dentro de los lenguajes de simulación se ha elegido SIMIO, para modelar y simular el proceso de elaboración de conservas de

frutas; las razones de la elección es la gran aceptación que ha tenido en el mundo académico.

Con este trabajo, introduciremos la simulación, con tecnología de punta, en los procesos de manufactura química, lo que permitirá incrementar la gama de las aptitudes adquiridas por nuestros profesionales en ingeniería química.

CAPITULO I

PLANTEAMIENTO DEL PROBLEMA

1.1 Descripción de la realidad problemática.

Desde mucho antes de la revolución industrial, la producción real ha sufrido de dos males: costosa e irrepetible. Lo costoso se plasma desde el punto de vista del uso de recursos que afectan la economía, y lo irrepetible en el sentido de que el producto terminado no puede deshacerse para reparar fallas ocurridas en su fabricación.

La mente humana ha intentado menguar estos males de la producción: pasando por una mano de obra barata (esclavitud) hasta la producción a gran escala.

En la industria quimica ya sea comercial o artesanal, se trabaja con procesos, los cuales se pueden optimizar mediante el modelamiento y la simulación.

Se encuentran diferentes lenguajes de simulación para estos procesos pero para ello haremos uso del lenguaje SIMIO que es amigable para el desarrollo de los mismos, el cual nos permitira estandarizar los procesos industriales.

1.2 Formulación del problema.

Para dar respuesta al problema descrito de cómo elaborar un modelo de simulación en SIMIO, para la estandarización del proceso de elaboración de una conserva de frutas, formulamos:

1.2.1 Problema General.

¿Un modelo de simulación de procesos permitirá estandarizar los procesos de elaboración de conserva de frutas?

1.2.2 Problemas Específicos.

- ¿Puede determinarse un proceso estándar para la elaboración de conserva de frutas?
- ¿La simulación en simio, determinara el mejor proceso estándar en la elaboración de conserva de frutas?

1.3 Objetivos.

1.3.1 Objetivo general.

Elaborar un modelo de simulación en SIMIO que estandarice los procesos de elaboración de una conserva de frutas.

1.3.2 Objetivos específicos.

- Determinar un proceso estándar para la elaboración de conserva de frutas.
- Simular en SIMIO un proceso estándar para la elaboración de conserva de frutas.

1.4 Limitantes de la investigación.

Las condiciones limitantes que afectan a la investigación son:

1.4.1 Limitante teórico.

La investigación sobre la simulación de procesos como la elaboracion de conserva de frutas usando el lenguaje SIMIO, la información obtenida se ha basado en los datos que se han recolectado en los laboratorios de la universidad.

1.4.2 Limitante temporal.

Los datos a utilizar en la simulación de la elaboracion de conserva de frutas usando el lenguaje SIMIO corresponden a un semetre académico.

1.4.3 Limitante espacial

El estudio de investigación solo se realizó en la Escuela profesional de Ingeniería Química de la Universidad Nacional del Callao.

CAPITULO II

MARCO TEÓRICO

2.1 Antecedentes

2.1.1 Antecedentes Internacionales

Puche Regaliza, Julio (2016). en su trabajo Simulación como herramienta de ayuda para la toma de decisiones empresariales. Un caso práctico; expone que la toma de decisiones empresariales es un factor crítico para la viabilidad de las empresas. En el actual escenario más dinámico, global y competitivo, este factor crítico abre espacio a requerimientos más amplios. El modelado y la simulación tradicionalmente han formado parte sustancial del juego de herramientas utilizadas para el soporte a la toma de decisiones.

Para reflejar el grado de complejidad de un problema empresarial, utilizaron el concepto de variedad o el número de posibles estados y comportamientos actuales o potenciales que podrían ocurrir ante una situación o problema dado (Ashby, 1956).

Existen dos caminos para llevar a cabo el estudio de un problema empresarial mediante técnicas experimentales, de forma general. Por una parte, se puede experimentar con el propio problema y, por otra, se puede experimentar con un modelo del problema, es decir, una representación fiable de la variedad requerida del problema empresarial. En esta segunda línea, el modelo utilizado para desarrollar un proceso de toma de decisiones puede ser de diversos tipos.

Una clasificación tradicional de modelos que representan la realidad, permite diferenciar entre:

- modelos mentales o representaciones que un individuo se crea en su propia mente sobre una realidad;
- (2) modelos físicos o representaciones tangibles de la realidad (esta representación puede ser analógica, icónica, etc.); y
- (3) modelos matemáticos, simbólicos o lógicos.

Entre estos últimos, podemos diferenciar entre modelos analíticos y modelos de simulación. Finalmente, los modelos de simulación pueden diferenciarse entre modelos de simulación continua y modelos de simulación discreta, en función del tipo de variables de tiempo que aparezcan en el problema (Hillier y Lieberman, 2008).

Los modelos de simulación permiten plantear problemas complejos, incluyendo aleatoriedad y lógica de comportamiento, y experimentar con ellos para analizar y comparar cuantitativamente posibles alternativas obteniendo de entre ellas una solución óptima en entornos multicriterio y con un tiempo de resolución razonable (Pritsker y Sigal, 1983).

Permiten responder a preguntas del tipo: ¿qué pasaría en la empresa si tomara una determinada decisión? Además, mediante la utilización de modelos de simulación, no habrá ningún daño en el problema real y ofrecen la libertad para probar cualquier idea en el modelo que puede descubrir alternativas atractivas que no habríamos sido capaces de poner en marcha trabajando con el problema real. Por lo tanto, con esta forma de estudiar un problema, partiremos del propio

problema real y de un problema simulado lo simulado imita las operaciones del problema real a lo largo del tiempo (Kelton et al.,2004).

Se aconseja la utilización de la simulación, por ejemplo, cuando no existe una completa formulación matemática del problema (líneas de espera, problemas nuevos, etc.), cuando el problema aún no existe (aviones, carreteras, etc.), cuando es necesario desarrollar experimentos pero su ejecución en la realidad es difícil o imposible (armas, medicamentos, campañas de marketing, etc.), cuando se requiere cambiar el periodo de observación del experimento (cambio climático, migraciones, población, etc.) o cuando no se puede interrumpir la operación del problema real (plantas eléctricas, hospitales, etc.). Por el contrario, es desaconsejable su utilización cuando el desarrollo de la simulación es costoso comparado con sus beneficios o cuando la simulación es imprecisa y no se puede medir su imprecisión (un análisis de sensibilidad puede mejorar esta desventaja) (Clemen y Reilly, 2013).

Prieto Renda Daniel (2015) en su tesis Integración de Modelos de Fabricación Mediante Simulación con Herramientas Informáticas y Lean Manufacturing. La orientación a lean manufacturing como un objetivo conceptual se basa en la aplicación de técnicas relacionadas con la flexibilidad de la planta de fabricación.

En el nuevo escenario en diferentes sectores productivos básicos en la economía como metalmecánico, automotriz, madera, alimentario, residuos, construcción

naval, bienes de equipo, maquinaria, etc. se pueden encontrar un conjunto de técnicas, herramientas, metodologías y filosofías que tratan de arreglar problemas, las veces de forma aislada. Si sólo se quiere tener en cuenta la aplicación de alguna de ellas caracterizadas como una receta, a problemas concretos, se puede perder el posible impacto más profundo que pudiera tener sí se hubieran orientado desde un punto de vista integrador y concurrente.

En este trabajo ha utilizado el programa Simio para modelar y simular diferentes escenarios con el fin empírico de cuantificar los impactos de los parámetros seleccionados como objeto de estudio.

Mejía Avila Heidy; Galofre Vásquez Marjorie (2008) Aplicación de software de simulación como herramienta en el rediseño de plantas de producción en empresas del sector de alimentos. Inicialmente se efectuó el diagnóstico de la situación inicial de la empresa analizando los factores que influyen en la distribución de planta; con base en estos criterios se identificó la problemática y se crearon varias alternativas de solución, las cuales se evaluaron por medio de un análisis Costo-Beneficio y un análisis Carga — Distancia, para así seleccionar la mejor; en el software de simulación Arena 10.0 Trading Mode se realizó la corrida de los modelos de la distribución actual y de la distribución propuesta, se comparó el desempeño de cada uno de estos modelos y se observó que la nueva distribución mejoró los criterios de tiempo de espera, unidades en el sistema y utilización de recursos.

Leal Saldivia Norma (2014) *Modelo de Planificación de Producción Basado en Simulación Aplicado a una Planta Procesadora de Mariscos en Conserva.*

En una empresa que fabrica mariscos en conservas, lo anteriormente expuesto es un tema que no se debe descuidar, más aún si sobre del 90 % de la producción está destinada a exportación de delikatessen, como es el caso de la empresa en estudio. La planta no cuenta con un modelo de gestión que apoye al proceso de toma de decisiones, por lo tanto, se necesita resolver la problemática existente, que consiste en el adecuado uso de herramientas para resolver el problema de planificación y programación de la producción en un horizonte de corto plazo (24 hrs.). Por condiciones propias del proceso, existe un gran de número de objetivos en conflicto y restricciones impuestas por el sistema productivo.

Las restricciones son, por ejemplo, el volumen de abastecimiento diario de materias primas, el cual está directamente relacionado con las condiciones climáticas de la zona de extracción, variable sobre la cual la empresa no tiene control. Así también, la asignación de recursos para llevar a cabo la producción con el personal de turno sin trabajar horas de sobretiempo. Además existen restricciones internas, que pueden ser, por ejemplo, tiempos de máximo de espera entre etapas, gramos de carne envasada, entre otros.

Ha desarrollado una herramienta basada en simulación que apoya la toma de decisiones en la gestión de producción de corto plazo, en particular para la producción del día siguiente.

2.1.2 Antecedentes Nacionales

Espinoza Gómez, Jorge César (2017), en el trabajo propuesta de mejora en el proceso productivo de una empresa dedicada a la fabricación de mermeladas. Se desarrolla un análisis de la situación actual, se elabora el diagnóstico y las propuestas de mejora que permita eliminar los despilfarros para lograr un proceso de producción de flujo continuo. Muestra en este trabajo que con la simulación realizada para un mes de operación se obtiene un incremento de la producción del 25,08% con respecto a la situación actual de la empresa Wenam EIRL

El resultado del análisis económico realizado a través del VAN y el TIR para la propuesta de mejora aplicable a la empresa Wenam EIRL demuestra que el proyecto de implementación de la metodología es viable.

2.2 Marco:

2.2.1 Marco teórico.

Los procesos en Ingeniería Química se pueden simular y para ello recurriremos muy superficialmente con la historia de la simulación, su definición y las áreas que abarca según expresado por. Scenna y col.. (1999).

La simulación de procesos, principalmente se basaba en circuitos que varían continuamente de valor en el transcurso del tiempo, utilizando los fenómenos de analogía. Así pues, la teoría de sistemas nos muestra que diversos principios físicos tienen asociados modelos matemáticos.

Historia simulación

Avendaño, (2011) Durante los últimos años los avances han posibilitado la utilización de la simulación en la investigación. Uno de los procedimientos de simulación más utilizados es el método de Monte Cario. Este método se aplica en la resolución de problemas matemáticos que resultan técnicamente inmanejables o cuya solución requiere un alto costo en términos de tiempo de trabajo, mediante la simulación de procesos aleatorios.

Una limitación de este procedimiento es que las conclusiones, por ser resultado de un procedimiento experimental, son relativas a los procesos utilizados en la simulación.

Los modelos aleatorios, generalmente en estadística se usan para simular fenómenos que poseen algún componente aleatorio. En el método de Monte Cario, el objeto de la investigación es el objeto en sí mismo; este método fue creado para resolver integrales que no se pueden resolver por métodos analíticos, para resolver estas integrales se usaron números aleatorios pero posteriormente utilizo para cualquier esquema que emplee numeros aleatorios usando variables.

El uso de la simulación durante la Guerra Fría se utilizo para resolver problemas de interés militar; trayectorias y dinámicas de satélites artificiales, guiar mísiles, etc. Muchos de estos problemas exigen la resolución de sistemas de ecuaciones diferenciales no lineales.

Para abordar estos problemas se utilizaron ordenadores analógicos que usaban elementos electrónicos para resolver las operaciones matemáticas: integración, suma, multiplicación, generación de funciones, etc.

En la década de los años 60 en el mercado aparecen programas de simulación de sistemas de acontecimientos discretos que poco a poco se empezaron a utilizar para resolver problemas de ámbito civil. Los más destacables fueron el GPSS de IBM (General Purpose System Simulator) y el SIMSCRIPT.

La revolución que se produjo en la informática a partir de los años 80, tiene un impacto importante en la simulación por ordenador. El uso de simuladores se generaliza en prácticamente todos los ámbitos de la ciencia y la ingeniería

En los últimos años, el uso de la simulación se ha ampliado al sector del ocio y ha entrado en el ámbito familiar con productos de software sofisticado, que utilizan todos los recursos del ordenador: gráficos potentes, bases de datos, computación intensiva, etc. Algunos de los simuladores más populares son MS Flight Simulator, NASCAR Racing, SimCity, Civilization, RollerCoaster Tycoon, y The Sims.

Características de los modelos de simulación

Según Regalado, A. (2008), Un modelo: es la representación abstracta de algún aspecto de la realidad. Su estructura está conformada por dos partes, la primera son todos aquellos aspectos que caracterizan la realidad modelizada, y la segunda no son más que las relaciones existentes entre los elementos antes mencionados. Científicos e Ingenieros usan al menos alguna de las tres metodologías para obtener las ecuaciones de un modelo las cuales se describen a continuación:

- Fundamental: Usa la teoría aceptada de la ciencia fundamental para obtener ecuaciones. En este caso, las teorías que se aceptan son los axiomas básicos en el proceso lógico de construcción de un modelo.
- Empírica: Hace uso de observación directa para desarrollar ecuaciones que describen los experimentos.
- 3. Analogía: Usar las ecuaciones que describen a un sistema análogo, con variables identificadas por analogía en una base uno a uno.

Además, un modelo matemático está basado en la lógica matemática, cuyos elementos son esencialmente variables y funciones, y las relaciones entre ellas, que vienen expresadas a través de relaciones matemáticas (ecuaciones, inecuaciones, operadores lógicos, etc.) que se empatan con las correspondientes relaciones del mundo real que modelizan (relaciones tecnológicas, leyes físicas, restricciones del mercado, etc.).

Una de las razones para obtener un modelo es la adecuación del cálculo del supuesto comportamiento de un proceso para determinadas condiciones, el cálculo depende de la aplicación; por ejemplo, un modelo de tratamiento de aguas debe ser usado para determinar la cantidad de contaminantes presentes para la limpieza parcial o total del agua tratada. De esta forma podemos mostrar que la importancia de los modelos matemáticos radica en que:

- Nos revela a veces relaciones que no son evidentes a primera vista.
- Una vez construido el modelo, es posible extraer de él propiedades y características de las relaciones que de otra forma permanecerían ocultas.
- En aquellas situaciones del mundo real en las que no es posible experimentar con la realidad, ofrecen un marco teórico para evaluar la toma de decisiones, así como sus consecuencias.

Los modelos pueden ser estáticos o dinámicos, en un modelo estático, la variable tiempo no desempeña un papel relevante, por el contrario, en un modelo dinámico, ya que alguno(s) de los elementos que intervienen en la modelización no permanecen constantes, sino que se consideran como funciones del tiempo, describiendo trayectorias temporales.

El análisis de un modelo dinámico tiene por objeto el estudio de la trayectoria temporal específica de alguno(s) de sus elementos. Generalmente todos los

modelos deterministas derivan ecuaciones diferenciales ya sean ordinarias o parciales, éstas se pueden resolver por métodos analíticos y/o métodos numéricos, ya que muchos de los problemas son prácticamente imposibles de resolver por métodos analíticos.

Los métodos numéricos se aplican a problemas de valores en la frontera o condiciones de inicio. Los métodos numéricos pueden transformar la ecuación diferencial (ordinaria o parcial), que se encuentra en tiempo continuo, en una ecuación en diferencias finitas, es decir en tiempo discreto. Según Rutherford (1976), se deben de tomar en consideración algunos pasos para obtener lo máximo de un modelo matemático, éstos se describen a continuación:

- Los problemas de la forma más elegante posible.
- Elegir la notación más simple, pero sin que ésta sea de gran importancia.
- Tratar de hacer las variables adimensionales.

Simulación por ordenador

(Oscar, 2006).- La simulación por ordenador se refiere a unos métodos para estudiar los modelos de los sistemas reales mediante una evaluación numérica usando un software designado para imitar las características y operaciones del sistema.

Desde un punto de vista práctico la simulación es el proceso de diseñar y crear un modelo computarizado de un sistema real propuesto para llevar a cabo experimentos numéricos, que nos proporcionarán un mejor entendimiento del comportamiento del sistema para unas condiciones dadas. Aunque se puede utilizar para estudiar sistemas simples, el verdadero poder de esta técnica se aplica en el estudio de los sistemas complejos.

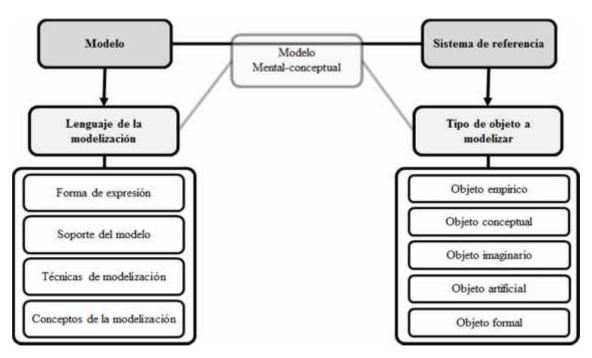


Figura 1. Elementos para una tipología de modelos científicos Fuente: Leonardo Rodríguez Zoya y Pascal Roggero (2014)

Conservas de frutas en almíbar

La fruta en almíbar es el producto elaborado a partir de frutas sanas y generalmente en un estado de madurez intermedio entre la madurez de consumo y la fisiológica de

tal modo que se encuentren relativamente firmes para soportar el manipuleo durante el procesamiento (cortado, pelado, blanqueado, tratamiento térmico).

Se requiere de fruta que se encuentre en un estado de madurez intermedia ("pintón"), es decir, que no haya llegado a su madurez completa ya que debe soportar todas las operaciones de manipuleo y tratamiento térmico. La textura debe ser firme y poseer un buen color y aroma. Estos requerimientos influirán directamente con la presentación final del producto.

Aunque el contenido de azúcar y ácido es característico de cada fruta, se recomienda que estas tengan un ° Brix por encima de 9 y un pH lo más ácido posible. Estas dos características son importantes y contribuyen con la calidad del producto final. Las frutas que tienen un significativo porcentaje de pectina, reducen los costos de procesamiento ya que requieren menos cantidad de espesante en la formulación, sin embargo, este componente no es un requerimiento indispensable para que la fruta pueda ser destinada al procesamiento de fruta en almíbar.

El azúcar se utiliza como un aditivo natural y eficaz para la conservación de diferentes frutas en forma de conservas en almíbar, mermeladas, jaleas y otros. La acidez de las frutas favorece la conservación. Cuando se sumerge la sección de una fruta en soluciones concentradas de azúcar (almíbares) se produce el fenómeno llamado osmótico. El azúcar de la solución de almíbar penetra en los tejidos de las frutas y se libera el agua de los tejidos de la fruta hacia el almíbar, hasta que se alcanza un equilibrio en las concentraciones de ambos. Así, como consecuencia de la pérdida de agua de la fruta, se reduce considerablemente el agua disponible del

alimento. La reducción será mayor a medida que aumente la concentración de azúcar en el almíbar.

Esta reducción de agua en los tejidos de las frutas impide el crecimiento microbiano y posibilita la conservación. Los microorganismos, por efecto de la presión osmótica, pierden agua y se produce una dislocación de los tejidos, lo que provoca la muerte de las células.

Adicionalmente, deben envasarse las frutas sin oxígeno para evitar el crecimiento de microorganismos aerobios como los hongos, para este efecto realizamos el exhausting con adición de vapor directo.

La preservación de frutas requiere que éstas no estén con alto nivel de deterioro, sobre todo si se van a conservar enteras, en tajadas o en trozos en almíbar.

a). Descripción del proceso de la conservación de frutas en almíbar.

Recepción: Consiste en cuantificar la fruta que entrará a proceso. La piña se recibe sin el penacho o corona para evitar el exceso de desechos dentro de la planta.

Lavado: las frutas se lavan con chorros de agua clorada. Para clorar el agua basta agregar cloro al agua de lavado en una proporción de dos partes de cloro por millón de agua (2 ppm).

Selección: se selecciona la fruta sana y con el grado de madurez adecuado. Se recomienda que la fruta este en un estado de 3/4 de maduración para que resista bien el tratamiento y contenga mayor acidez. Pelado y Descorazonado: la fruta se pela con cuchillos, primero se cortan los extremos y luego se quita toda la cáscara a si dejar ojos (semillas). La cáscara se recoge en recipientes limpios y se puede utilizar para obtener pulpa, vinagre o almíbar. Se elimina el corazón haciendo cortes rectos con el cuchillo o con un aparato tipo sacabocados.

Trozado: la fruta libre de cáscara y corazón se puede cortar de varias formas: en cubos de 2 cm de lado, en rodajas o en triángulos. Los trozos que no cumplen con el tamaño se procesan junto con las cáscaras y el corazón.

Preparación del almíbar de Ilenado: en una olla o marmita se prepara un almíbar simple de 30 - 35 ° Brix, mezclando agua y azúcar y calentando hasta 90 ° C para que todo el azúcar se disuelva. Se necesitan aproximadamente 2 Kg. de azúcar por cada 5 litros de agua. Se revisa la concentración del almíbar y de ser necesario se agrega un poco más de azúcar.

Cocción de la fruta: los trozos se ponen en una olla y se agrega una parte del almíbar preparado. Se calienta hasta 80-85 °C durante 5 minutos.

Lavado de envases: los frascos y sus tapas se lavan con agua y jabón y se esterilizan en agua caliente o vapor por 5 minutos.

Llenado de envases: los trozos de piña se acomodan en los frascos de procurando que queden acomodados para que quepa la mayor cantidad de ellos.

Adición del almíbar: Se agrega el almíbar en caliente hasta la boca del frasco. Se dejan en reposo por 5 minutos para que la temperatura se equilibre y, se eliminen las burbujas de aire. La relación de llenado debe ser 60% Pulpa y 40% almíbar. Se colocan las tapas y se cierran herméticamente.

Esterilizado: Los frascos se colocan de nuevo en el baño con agua y se calientan a ebullición durante 15 minutos. Es conveniente colocar una manta doblada en el fondo para evitar que los frascos se quiebren. El nivel del agua debe cubrir los frascos por completo.

Enfriamiento: Los frascos se enfrían primero con agua tibia y luego fría para evitar que el cambio de temperatura quiebre el vidrio.

Etiquetado y embalaje: Consiste en el pegado de etiquetas (con los requerimientos de la ley), y la puesta del producto en cajas.

Almacenado: Las cajas con el producto se estiban en la bodega de producto terminado que debe ser ventilada y seca.

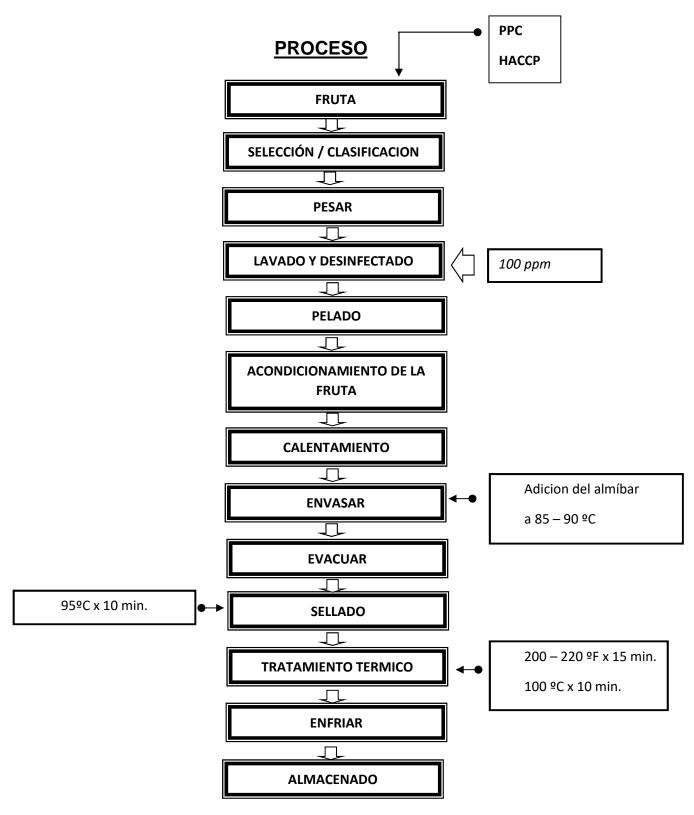


Figura 2. Procesos de la elaboración de conserva de fruta.

Fuente: Elaboración propia

b) Características de los materiales para la conservación de frutas en almíbar.

Fruta estado de madurez

Se requiere de fruta que se encuentre en un estado de madurez intermedia ("pintón"), es decir, que no haya llegado a su madurez completa ya que debe soportar todas las operaciones de manipuleo y tratamiento térmico. La textura debe ser firme y poseer un buen color y aroma. Estos requerimientos influirán directamente con la presentación final del producto.

Contenido de azúcar y ácido

Aunque el contenido de azúcar y ácido es característico de cada fruta, se recomienda que estas tengan un ° Brix por encima de 9 y un pH lo más ácido posible. Estas dos características son importantes y contribuyen con la calidad del producto final.

Contenido de pectina

Las frutas que tienen un significativo porcentaje de pectina, reducen los costos de procesamiento ya que requieren menos cantidad de espesante en la formulación, sin embargo, este componente no es un requerimiento indispensable para que la fruta pueda ser destinada al procesamiento de fruta en almíbar.

Textura

La textura de la materia prima es indispensable para obtener fruta en almíbar de calidad. Esta debe ser firme, de preferencia con células corchosas, de tal modo que penetre el edulcorante y otros componentes con facilidad.

Descripción del Flujo de Operaciones (de un producto como el mango)

 Recepción de la Materia Prima: previo control de calidad y peso de la fruta, se recepciona el mango y almacena hasta el momento de su elaboración.

El Peso Bruto WB = 7 000 g.

El °Bx INICIAL del juego a procesar fue de 2°Bx.

- Selección y Clasificación: En esta etapa se descartan las sobre maduras, y los que presentan daños físico químicos y biológicos. Se trabajó con toda la materia prima si no hubiese descarte de la fruta.
- Pesado: Como no hay descarte de la fruta se obtuvo el mismo peso de la materia prima.

El Peso Neto WN = 7000 g.

 Lavado/Desinfectado: se realiza con agua potable, sirve para eliminar las particulares extrañas adheridas a la fruta. Luego del lavado la fruta se desinfecta en una solución de agua potable a 100 ppm. Pelado: Esta etapa consiste en el pelado de la fruta, a fin de obtener la pulpa.
Se utiliza cuchillos. En esta operación se elimina la cáscara y pepas. En el caso del mango se realiza un pelado mecánico (Manual).

Tabla 1
Caracterización de la fruta

Calidad	Fruta	WB	WD/C	WD/P	WD	WN1
			(cáscara)	(pepa)		
Calidad						
Canada	MANGO	7 000 g	950 g	1 200 g	2 050 g	
А			9			4 850 g
Total		7 000 g	950 g	1 200 g	2 050 g	

Fuente: Elaboración propia

Recepción 400 g de la cáscara más fina para la preparación del almíbar.

- Acondicionamiento: el acondicionamiento de la fruta se realiza en agua helada, a fin de evitar su pardiamiento. Una vez obtenida la pulpa se procede a realizar un cortado de la pulpa en cubos homogéneo y se aplica un tratamiento en agua helada. Esta etapa es crítica pues debe de haber una neutralización de los cubos.
- Calentamiento: Aquí se somete a la fruta partida en cubos a una cocción o blanqueado, con el fin de eliminar microorganismos adheridos en el proceso.
- Envasado: en esta etapa se debe tener en cuenta los siguientes procesos.
 - a.) Esterilización de los envases.

b.) El almíbar a añadir debe estar a un temperatura de 90°C

c.) Realizar un envasado en una proporción de PULPA: ALMIBAR (60:40)

Estándar del Almíbar:

Se procede a la elaboración del almíbar teniendo en cuenta el siguiente estándar.

■ pH: 3.0 – 3.5

Regulación del pH por adición de ácido cítrico, el pH debe estar de 3.0 a 3.5 medido con un peachímetro, la relugalicion debe estar dada tomando en cuenta que el pH del mango esta en el rango de : 2.5 – 2.8 pH.

OBx:

La concentración del almíbar debe presentar un ºBx estandar de: 35 ºBx – 55 ºBx.

CMC

Se añadirá cmc en el porcentaje rango de : 0.08 % - 0.1 %

Sorbato de Potasio: 0.1 %

Preparación del Almíbar:

Agua: Se utilizara 4 000 ml de agua para la preparación del almíbar, esto

depende de la cantidad de pulpa a envasar.

Cáscara de Mango: utilizaremos 400 g de cáscara de mango a fin de

extraerle la sustancia y aroma.

· Azúcar: Para determinar al cantidad de azúcar a añadir se utilizara la

siguiente formula:

Alm

Cálculo de la cantidad de azúcar:

$$CANT.AZUC. = \frac{(a \cdot a - a \cdot a)}{100 - a \cdot a}$$

* Formula:

donde el = es la cantidad de agua a utilizar.

$$CANT.AZUC. = \frac{4000 \quad (40 - 0)}{100 - 40}$$

CANT.AZUC. = 2.66 Kg

 CMC: Se deducirá del porcentaje estándar, y obtenidos el resultado a añadir de 3.2.

Una vez obtenidos los cálculos, se llevarán todos los ingredientes a una concentración en la marmita, el almibar debe estar a 90°c de temperatura para proceder al envasado, primeramente se agrega la fruta y luego se agrega el almíbar tamizado, a fin de retener en el tamiz particulas adheridas, luego de esto se procederá a la siguiente etapa.

Evacuado: El evacuado consistirá en crear un vacio (Exauster), se realizara en un aproximado de 95°C x 10 min, con esta etapa se eliminará aire y gases, luego de esto se procederá al cerrado de los envases para proseguir con el tratamiento térmico.

- Sellado: Después de realizar el evacuado se efectuará el sellado de los envases,
 esta etapa es crítica para el control de calidad, de esto dependerá la calidad del producto.
- Tratamiento Térmico: Como el pH del almíbar estará concentrado a : 3.6 pH, se realizara una pasterización (100°C x 10 min).
- Enfriar: consistirá en dejar enfriar los productos, valiéndose de tinas con agua fría.
- Almacenado: Se realizará en anaqueles ubicados en lugares frescos y secos, hasta que la fruta haya absorbido el azúcar y alcance el equilibrio con el almíbar.
 Esto se reconoce cuando la fruta cae al fondo del envase.

2.2.2 Conceptual

Sistemas de Información

En la década del 90, el Data Warehouse fue un esquema de información que mantenía datos para efectos exclusivamente de análisis y estadísticos, con este avance en el almacén, los esfuerzos se centraron en utilizarlo y proveer de la información que necesitaba el ejecutivo.

Los primeros intentos se centraron en la incursión al mercado de soluciones con alarmas, instrumentos de consulta, sistemas expertos y mucho más, pero la evolución, es hacia alcanzar a colocar en una pantalla la mayor cantidad posible de datos para realizar análisis gráficos, visuales y rápidos basados en

técnicas básicamente de consolidación, agrupamiento y tendencia. Esto dio origen a los Sistemas de Información Ejecutiva (Bitam, 2002).

Lenguaje Simio

Simio es un lenguaje de simulación basado en objeto inteligente, y entrega diferencias con otro software de simulación en la perspectiva de la construcción del modelo. Por ejemplo, en el software Arena, se utiliza un solo tipo de patrón de modelamiento, llamado orientación a proceso, en el cual se trabaja en términos de un proceso lógico compuesto por bloques pasivos y que son activados ante la llegada de una entidad. Las entidades se mueven de bloque en bloque y cambian el estado del modelo en el tiempo. Los bloques representan acciones lógicas como aprovechar un recurso, realizar retardos en el tiempo, etc. Primero se debe crear el flujo de procesos para el modelo en forma de diagrama y luego se dibuja la animación en 2-D de forma separada y se enlaza con el proceso (Goldemberg 2011).

En Simio, los modelos se construyen típicamente basados en una orientación a objeto. Se insertan objetos en la ventana "Facility" (instalación) y se conectan en un ambiente en 3-D. La ventana "Proceso" es donde se define la lógica en forma de diagramas similares a los de Arena. Los objetos definen tanto la lógica como la animación del modelo, construyéndose ambos aspectos en un solo paso. A diferencia de Arena, en Simio se modela a

través de objetos físicos en el sistema, por ejemplo, máquinas, robots, cintas transportadoras, etc., que conforman el Sistema. (Goldemberg 2011).

2.3 Definición de términos básicos

Entidad. Objeto o componente de interés en un sistema, por ejemplo, un cliente, un servidor o una máquina.

Atributo. Denota propiedad de una entidad, por ejemplo, la prioridad de los clientes en la fila de espera.

Actividad. Todo proceso que provoque cambios en el sistema.

Estado del sistema. Colección de variables que contienen toda la información para la descripción de todas las entidades, los atributos y las actividades de acuerdo con su existencia en algún punto del tiempo.

Evento. Es un hecho que ocurre instantáneamente y que cambia el estado del sistema, como por ejemplo la llegada de un nuevo cliente a un banco. dentro del sistema Determinista. Es posible describir completamente el resultado de una actividad en términos de su entrada.

Estocástica. Cuando los efectos de la actividad aleatoriamente en distintas salidas.

Alimento enlatado

Es un alimento fresco, envasado en recipientes herméticamente cerrados, el cual se somete a un proceso de esterilización o pasteurización, a determinado tiempo

y temperatura, para poder conservar el alimento a temperatura ambiente hasta el momento de su consumo. (Amerling, 2001).

Autoclave.

Una autoclave es un recipiente metálico con cierre hermético. La forma en la que trabaja la autoclave es por medio de alta presión lo que permite que la temperatura del agua exceda el punto de ebullición, originando la coagulación de las proteínas de los microorganismos de los objetos que son depositados en el interior de la autoclave. Al coagular las proteínas esenciales para la vida y la reproducción de los microorganismos estos se destruyen (Cruz, 2014).

CAPITULO III

HIPOTESIS Y VARIABLES

3.1 Hipótesis

3.1.1 Hipótesis General

Con un el uso de un modelo de simulación en SIMIO, se puede estandarizar el proceso de elaboración de conserva de frutas

3.1.2 Hipótesis Específica

- Z Se puede determinar un proceso estándar de la elaboración de conserva de frutas.
- Z Se puede determinar el proceso estándar de la elaboración de conserva de frutas usando a simulación en SIMIO.

3.2 Definición conceptual de variables

La investigación que se va desarrollar se caracteriza por ser longitudinal estudiando la variable a lo largo del tiempo establecido, por ser este el determinante en la relación causa efecto.

Por su naturaleza, todas las variables identificadas son del tipo cualitativa y cuantitativa. Por su dependencia Z es dependiente, y las variables X_1 , X_2 son independientes.

Es decir:

 $Z = f(X_1, X_2)$

Z = Estandarización del proceso de elaboración de conserva de futas

X₁ = El modelo del proceso de elaboración de conserva de frutas

X₂= El lenguaje de simulación SIMIO para el proceso de elaboración de conserva de frutas.

3.3 Operacionalización de variables

VARIABLE DEPENDIENTE	DIMENSIONES	INDICADOR	INDICE	TÉCNICAS ESTADISTICAS	MÉTODO
Y=Estandarización del proceso de elaboración de conserva de frutas	Normas del proceso de elaboración de conserva de frutas	Simbología, Flujogramas, BPM, ISO	Mediciones de elaboración de conserva de frutas	Analítica y numérica	Comparación con los valores reportados en la literatura
VARIABLE INDEPENDIENTE	DIMENSIONES	INDICADOR	INDICE	TÉCNICAS ESTADISTICAS	MÉTODO
X₁ = El modelo del proceso de elaboración de conserva de frutas	Modelo matemático del proceso de producción	Son las unidades procesados en un día, su medición está en kilos	Mediciones de elaboración de conserva de frutas	Valores medios, varianza	Comparación con los valores reportados en la literatura
X ₂ = El lenguaje de simulación SIMIO para el proceso de elaboración de conserva de frutas	Incorporación de la interacción espacio temporal en los modelos derivados	Capacidad de generar datos esperados en concordancia con los reportados Valores numéricos obtenidos de los parámetros de operación	Variación (%) respecto al modelo básico	Estadística descriptiva. Correlación lineal y no lineal	Comparativo entre los modelos propuestos. Comparativo con los valores reportados

Fuente: Elaboración propia

CAPITULO IV

DISEÑO METODOLOGICO

4.1 Tipo y diseño de investigación

De acuerdo al propósito de la investigación, la naturaleza de los problemas y objetivos formulados en el presente trabajo reúne las características y condiciones suficientes para ser calificado como una investigación experimental de nivel descriptivo- analítico, por el nivel de conocimientos que se adquieren, es de tipo correlacional.

Descriptiva: Por resaltar las características, propiedades y restricciones y descripción de las variables, así como la relación entre variables.

4.2 Método de investigación

El presente trabajo de investigación se realizó cumpliendo el método científico conformado por las siguientes etapas:

Primera etapa: Estudio de todos los modelos de simulacion y procesos de elaboracion de conserva de frutas.

Segunda etapa: Selección de los modelos que describen los procesos de elaboración de conserva de futas (durazno, piña, aguaymanto, mango)

Tercera etapa: diagramación de los procesos de elaboración de conserva de frutas.

Cuarta etapa: Resolución de los modelos asociados a los procesos de los procesos

de elaboración de conserva de futas (durazno, piña, aguaymanto, mango)

Quinta etapa: Calibración de los modelos seleccionados

Sexta etapa: Análisis de los resultados y simulación para su optimización

4.3 Población y muestra

Población

La población estuvo constituida por todos los procesos relacionados a la

elaboración de conserva de frutas; por todas las empresas respecto a los procesos

establecidos para cada uno de ellos, estos procesos nos llevaron a establecer el

modelamiento y simulación mediante el lenguaje SIMIO.

Muestra

De todas las posibilidades de procesos de la elaboración de conserva de frutas, se

escogió el método de muestreo direccional por ello se seleccionó los procesos de

elaboración de conserva de futas como: el durazno, piña, aguaymanto, mango.

Respecto a los modelos y simulación, es el mismo que se señala en la población.

4.4 Lugar de estudio y periodo de desarrollo

La investigación se realizó en el campus de la Facultad de Ingeniería Química; para

tal efecto, se requirió de la adquisición de una buena base de datos y artículos de

42

investigación relacionados al tema, así como un software del lenguaje SIMIO y uno estadístico.

4.5 Técnicas e instrumentos para la recolección de la información

Para el modelamiento y simulación con lenguaje SIMIO del proceso de elaboración de conserva de frutas, se requirió básicamente de:

4.5.1 Formulación de Modelo y Resolución de Modelos Matemáticos

Procedimiento para el experimento de simulación

En el desarrollo del trabajo de investigación se consideró un experimento de simulación que permita determinar la eficiencia del uso de esta herramienta en la estandarización de los procesos de elaboración de una conserva de frutas.

Desde esta óptica, en la elaboración de este experimento, se tomó en cuenta cinco axiomas que devienen de la experiencia de los usuarios de la simulación en la solución de problemas empresariales reales.

Con estos axiomas se determinó el ámbito donde se desarrolló el experimento, desde su inicio hasta el final y los considerandos que se deben de tener en cuenta en el desarrollo mismo.

Aunque no existe un enunciado específico de estos axiomas, nos permitimos enunciarlos, en forma libre, de la siguiente manera:

- El modelar y simular un sistema involucran todos los procesos que devengan desde la formulación hasta la solución de un problema. Es decir, determinar los elementos que alimenten el modelo, limitar los alcances del mismo, racionalizar los resultados que se deseen obtener.
- El proceso de modelamiento es iterativo porque durante el acto de modelar se va revelando la información importante para la amplitud y profundidad del modelo.
- La información obtenida en el proceso de modelamiento apoya las acciones que hacen al modelo y sus medidas de salida más relevantes y exactas.
- Durante el proceso iterativo, las relaciones entre el sistema en estudio y el modelo son continuamente definidas y redefinidas.
- En el siguiente esquema (Figura 3) se presenta un diagrama que sugieren los pasos y la relación de orden entre ellos que debe seguirse para llevar a cabo un proyecto de simulación.

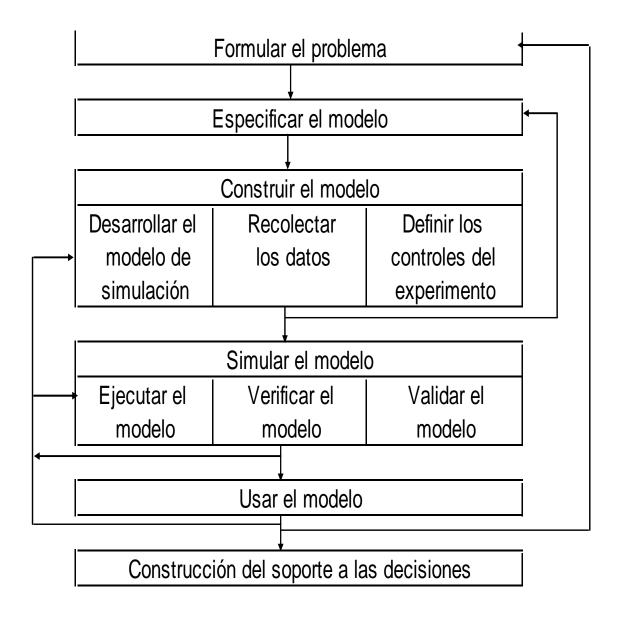


Figura 3. Diagrama para un Proyecto de Simulación – Traducción Libre Fuente. Elaboración propia.

4.6. Análisis y procesamiento de datos

Especificar el modelo

Las preguntas cruciales para la especificación del modelo se centran en:

- Las suposiciones razonables que permitan simplificar el modelo.
- Que elementos deben ser incluidos en el modelo.
- Que interacciones ocurren entre los componentes.

Los modelos que son simulados son fácilmente cambiables, es decir es fácil realizar iteraciones entre el paso anterior (formulación del problema) y este paso (especificar el modelo)

Construir del Modelo

La construcción del modelo tuvo tres etapas:

- Desarrollar el modelo de simulación,
- Recolectar datos,
- Definir los controles del experimento.

a. Desarrollar el modelo de simulación:

La forma de construcción del modelo tuvo como característica la interactividad y ser gráfica. Esto dado que el modelo no solo hay que definirlo y desarrollarlo, sino que además a veces hay que refinarlo, otras actualizarlo, algunas veces modificarlo y en otras ocasiones ampliarlo, y a veces esto se hace de forma continua. Es por esto que la base de un buen desarrollo del modelo que se generó, se basó en:

- Desarrollar esquemas de entrada generalizados.
- Dividir el modelo en elementos lógicos relativamente pequeños.

- Hacer una buena diferenciación entre el movimiento físico y el movimiento de información dentro del modelo.
- Documentar claramente el modelo dentro de el mismo.
- Dejar alternativas en el modelo que permitan insertar extensiones o más detalles.

b. Recolectar los datos:

Los tipos de datos que se recopilaron estuvieron determinados por: datos que describen el sistema, dentro de los cuales se consideran los que determinan la estructura del sistema, las interacciones de los componentes y las operaciones del sistema y que permiten determinar los posibles estadios del sistema; datos que miden el rendimiento real del sistema y datos que describen las alternativas a evaluar.

c. Definir los controles del experimento

El ejecutar una simulación es un experimento donde se calcula y registra el estado del modelo desde un estado inicial hasta un estado final. La gran ventaja de la simulación es que los cambios del modelo están íntimamente relacionados con los cambios del sistema, con esto al evaluar las variables del modelo estamos evaluando las variables del sistema y finalmente las técnicas estadísticas que se aplican a las variables del sistema pueden utilizarse a las variables de modelo.

Para definir los controles se tuvo en cuenta la siguiente información:

- Título del proyecto e identificación del modelador.
- Momentos de inicio y finalización de la ejecución de la simulación, número de ejecuciones e información de control.
- Tipos de informas y la frecuencia deseada de ellos.
- El rendimiento que se desea de las variables de estado y la forma como deben presentarse los resultados.
- Valores iniciales para las variables de estado y ubicación inicial de las entidades en el modelo.
- Procedimientos de estimación estadística.
- Archivos o base datos donde existen datos de entrada y valores de salida que deben almacenarse.

Estas tres etapas son independientes pero interrelacionadas entre sí, el desarrollo del modelo de simulación necesita de los datos y estos del modelo, esto mismo ocurre con la definición de los controles.

Simular el modelo

Para simular el modelo, es necesario que existe al menos un prototipo obtenido mediante la construcción del modelo.

Este paso también tiene tres etapas: Ejecutar el modelo, verificar el modelo, validar el modelo

- a. Ejecutar el modelo: En esta etapa se hace avanzar el tiempo de acuerdo con el movimiento de las entidades a través de los nodos y actividades del modelo.
- b. Verificar el modelo: En esta etapa se debe demostrar que el modelo se ejecuta de acuerdo a sus especificaciones para que así se pueda utilizar en el apoyo de la toma de decisiones.
- c. Validar el modelo: En esta etapa se determina si los resultados obtenidos de la ejecución del modelo son los que se esperaban.

Estas etapas son independientes entre sí, pero necesitan la una de las otras, por ello están fuertemente relacionadas.

De igual manera este paso puede influenciar en el paso de construcción del modelo, por ello puede haber una iteración entre estos pasos, se terminan las iteraciones cuando la simulación del modelo de los resultados buscados en función de experiencias anteriores.

Usar el modelo

En este paso se usa el modelo para resolver los problemas que generaban la situación real, puede iterarse con el desarrollo y simulación del modelo, porque pueden existir circunstancias donde deban cambiarse de datos o mejorar una estructura del modelo.

Construcción de un soporte de decisiones

En este paso se implementa una interfaz, sobre la simulación del modelo, para su uso más eficaz y eficiente. Es un paso no obligatorio.

Formulación del problema en el contexto

Como se describió en el esquema teórico este paso se refiere a formular el problema entendiendo el contexto del mismo, y estableciendo funciones que guíen y vinculen el proyecto.

Así, se formula el presente proyecto en base los siguientes considerandos:

- Se busca un modelo que estandarice los diferentes procesos que se tienen para la elaboración de conserva de frutas.
- Los resultados obtenidos deben facilitar determinar los procesos de preparación de conservas de al menos 3 tipos de frutas: fresas, mango y durazno.
- En cada etapa de los procesos estarán bien determinado los recursos e insumos usados en cada uno de ellos.
- El proceso, desde la óptica del productor, abarcará desde la llegada del insumo, las frutas, hasta la salida del producto terminado, conserva de fruta, los demás insumos y recursos necesarios se considerarán de existencia infinita, es decir siempre existen y están a disposición al ser necesitados.

Especificación del modelo:

Para el desarrollo del modelo se determinaron las diferentes etapas requeridas en este tipo de procesos, como se muestran a continuación mediante un diagrama (Figura. 4) elaborado en base de lo experimentado en los laboratorios y lo leído en las diferentes bibliografías.

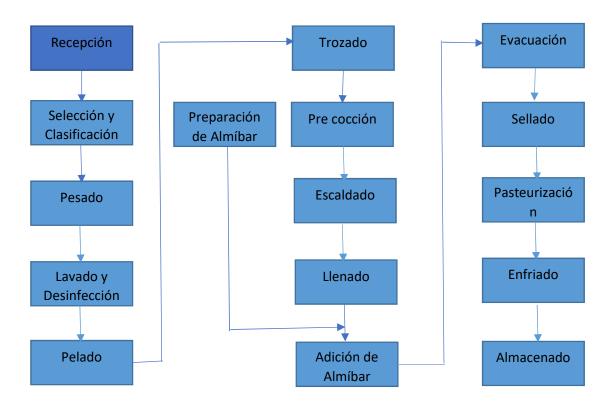


Figura 4 : Proceso para la fabricación de conservas de frutas- Creación Libre Fuente: Elaboración propia.

Las Etapas:

 Recepción: En esta etapa, la fruta es recepcionada con mucho cuidado, evitando los golpes que al momento de seleccionar generen una mayor merma.

- 2. Selección y Clasificación: Esta etapa conexa dos importantes sub etapas: la primera es la selección en la cual se descarta los frutos que estén golpeados, demasiado maduros o en estado de putrefacción quedando aquellos que presenten un buen estado; en la segunda, clasificación, se intenta agrupar de acuerdo a la madurez fisiológica y al tamaño, con la intención de obtener un producto terminado homogéneo.
- 3. Pesado: Una vez obtenida la fruta que se va a utilizarse hace la etapa de pesado con lo que se calculará la cantidad de insumos; azúcar, agua, etc.; que se tendrán que usar en su transformación a conserva.

Una definición:

Grado Brix (°BX): Son una unidad de cantidad, sirve para determinar el cociente total de materia seca (generalmente azúcares) disuelta en un líquido. Ejemplo: Una solución de 25 °bx, contiene 25 grs de sólido disuelto por 100 grs de disolución total.

- 4. Lavado y Desinfección: Una vez obtenida la fruta que se va a usar, se le debe eliminar las impurezas y microorganismos presentes en la cascara de la fruta, para esto se usa el lavado y la desinfección.
- 5. Pelado: En esta etapa hay que mondar la fruta, puede hacerse manualmente o químicamente. Dependiendo de la fruta esta etapa puede evitarse.

- 6. Trozado: Una vez pelada la fruta se le hace un lavado para quitar los residuos de cáscara, luego de ello se corta o no la fruta para alcanzar el tamaño que la presentación determina.
- 7. Preparación del Almíbar: Esta es una etapa que pue3de ejecutarse para lelamente a las demás, obviamente luego de haber calculado las cantidades de insumos necesarias, aquí se usa azúcar, agua, etc.
- 8. Pre cocción: Esta etapa puede hacerse usando agua simplemente o el almíbar preparado con anticipación.
- Escaldado: En esta etapa el producto que llega se cocina en agua hirviendo o en vapor.
- 10. Llenado: En esta etapa la parte sólida del producto se deposita en el envase, normalmente el envase se llena entre el 75% y el 80% de su capacidad.
- 11. Adición del almíbar: Una vez que la parte solida está en el envase, se agrega el almíbar a una temperatura adecuada que permita eliminar microorganismos existentes en el exterior de la boca del envase. Recordar que el envase no debe ser llenado completamente.

- 12. Evacuación: Existen diferentes formas de hacerlo, la intención de esta etapa es lograr expulsar todo el aire que existe en el envase.
- 13. Sellado: Con el envase libre de aire, se prosigue a sellarlo para poder realizar la pasteurización.
- 14. Pasteurización: El envase sellado se coloca en agua y se calienta durante aproximadamente 15 minutos a temperatura de ebullición.
- 15. Enfriado: Esto debe realizarse inmediatamente luego de la pasteurización, con el objetivo de lograr un shock térmico que elimine los microorganismos sobrevivientes a la pasteurización.
- 16. Almacenamiento: Una vez terminado el enfriado se tiene el producto terminado, lo que viene después es su comercialización, el tiempo quede nada para ello el producto debe estar almacenado en un lugar fresco para evitar su deterioro.

4.6.1 Desarrollo del Experimento

Se debe dejar en claro que el modelo de simulación está realizado desde la óptica de un observador desde fuera del proceso mismo. Esto quiere decir que solo ver a la transformación de la fruta desde que llega como tal hasta que sale envasada.

No se está considerando la óptica del nutricionista que tendrían que ver las condiciones óptimas de los componentes de la conserva para no incurrir en acciones que vayan contra la salud pública.

Tampoco se considera el trabajo del ingeniero químico en lo que corresponde al control de calidad de los insumos a usar, pero si en lo concerniente al control de proceso productivo.

Con estas observaciones iniciaremos la descripción del modelo, en el detallaremos el análisis de los datos de entrada, la descripción del modelo mismo y la interpretación de los resultados.

Análisis de datos de entrada.

Debe resaltarse que todos los datos de entrada han sido determinados en forma empírica, gracias a la valiosa experiencia de los alumnos que han tenido al realizar este proceso en la sección de post grado de la Universidad Nacional del Callao y la buena voluntad de algunos pequeños empresarios dedicados a este rubro de la economía.

Los datos de entrada para el modelo se refieren a:

- Cantidad de fruta que se va a procesar.
- Tipo de fruta a procesar.
- Tiempos necesarios para cada actividad del proceso.
- Tipo y cantidad de recursos para cada actividad del proceso.

Cantidad de fruta a procesar:

Se determino entre 90 y 120 kilos diarios, considerando que por hora ingresaran entre 15 y 20 kilos, y que la empresa recibe la fruta entre las 8 de la mañana y las 5 de la tarde, con una cantidad de 6 recibos diarios.

Tipo de frutas a procesar:

El estudio se ha basado en el proceso para tres tipos de frutas: melocotones, kiwi y peras. Pero es la intención dejar un modelo que pueda servir para modelar la preparación de conservas de cualquier tipo de fruta, siempre y cuando exista la posibilidad de hacerlo.

Tiempos necesarios para cada actividad:

Los tiempos necesarios en cada actividad, dentro del proceso para la fabricación de conservas, no son constantes, pero de la experiencia que se ha podido extraer de los dos ciclos que se han llevado a cabo durante el año pasado, en la maestría de la Universidad Nacional del Callao, se rescatan muestras de los tiempos necesarios para llevar a cabo cada una de estas actividades (consideradas en el diagrama de un proceso genérico para la fabricación de conservas de frutas, presentado como figura 2 del capítulo procedimiento para el experimento de simulación):

En cada semestre se formaron seis grupos, cada grupo debió preparar 3 tipos de conservas, lo que se obtienen 18 procesos por ciclo, durante los dos ciclos se obtuvieron data de 36 procesos, depurando esta data se obtuvo 30 procesos de

donde se obtuvieron los valores para los tiempos de cada actividad. Se tomaron los 30 datos por que la teoría dice que con 30 datos se considera una muestra suficientemente grande para poder usar el teorema del límite central. Estos datos se muestran a continuación, los datos están en minutos:

Tabla 2 Valores de entrada

Activ./Obser.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Recepción	6	4	4	5	3	4	4	5	3	5	3	5	6	3	5	3	6	6	5	4	6	4	3	6	6	6	4	4	6	6
Selección y Clasificación	2	1	1	2	2	1	2	2	1	2	1	2	1	2	2	2	2	2	2	1	2	1	1	1	2	1	2	2	2	1
Pesado	1	2	2	1	1	2	2	1	2	2	2	2	1	1	2	1	2	1	1	1	2	2	1	1	1	2	1	2	1	1
Lavado y Desinfección	5	4	5	3	6	4	4	5	4	4	4	3	5	4	4	6	4	5	3	6	5	6	5	4	5	6	3	6	5	4
Pelado	8	9	9	12	11	10	7	12	7	9	12	8	12	8	10	10	8	8	10	9	11	8	12	9	12	8	8	9	7	7
Trozado	11	9	12	7	12	8	11	6	8	10	12	8	9	10	8	12	10	12	12	10	8	9	7	9	7	7	10	11	9	7
Precocción	8	11	6	10	10	8	11	8	6	11	11	10	9	9	10	11	12	8	8	11	8	12	6	12	8	10	9	7	9	11
Escaldado	12	9	9	7	9	6	10	12	7	10	12	12	10	12	8	12	11	9	10	6	6	10	12	10	9	6	7	8	6	12
Llenado	5	4	4	4	3	4	3	5	3	3	4	6	4	5	4	5	4	3	3	6	6	4	3	4	5	5	6	4	5	4
Adición de almibar	4	3	4	6	5	4	3	5	4	3	6	6	5	3	3	4	5	4	3	5	6	6	4	3	6	5	3	3	6	3
Evacuación	2	3	2	2	3	3	3	3	2	2	2	2	3	3	2	2	3	3	2	2	3	3	2	3	3	3	2	2	2	3
Sellado	3	3	3	3	2	3	2	3	2	3	2	2	3	2	3	3	2	3	2	3	3	3	2	2	2	3	3	2	3	3
Pasteurización	16	20	20	27	30	26	23	29	29	17	20	27	18	23	22	20	15	25	23	24	23	22	24	23	28	18	25	26	26	29
Enfriado	6	4	3	3	5	3	5	6	3	4	6	3	3	3	5	5	3	3	5	4	6	4	3	6	3	6	4	4	5	6
Preparación de almibar	8	9	9	9	11	8	11	9	8	8	9	12	10	11	11	9	11	10	10	11	9	11	8	9	8	11	11	8	11	12

Fuente: Elaboración propia. (software Excel).

Haciendo uso del software STATFIT, se logró obtener una distribución de probabilidades para cada una de estas muestras:

Tabla 3. Cuadro de distribuciones

Actividad	Distribución
Recepción	Uniforme(1,2) minutos
Selección y	Uniforme(1,2) minutos
Clasificación	
Pesado	Uniforme(3,6) minutos
Lavado y	Uniforme(3,6) minutos
Desinfección	•
Pelado	Uniforme(6,12) minutos
Trozado	Uniforme(6,12) minutos
Pre cocción	Uniforme(6,12) minutos
Escaldado	Uniforme(6,12) minutos
Llenado	Uniforme(3,6) minutos
Adición de Almíbar	Uniforme(3,6) minutos
Evacuación	Uniforme(1.5,3) minutos
Sellado	Uniforme(1.5,3) minutos
Pasteurización	Uniforme(15,30) minutos
Enfriado	Uniforme(3,6) minutos
Preparación de	Uniforme(8,12) minutos
Almíbar	•
_	_

Fuente: Elaboración propia.

Análisis para obtener las distribuciones realizado con el software STATFIT:

) Para Evacuación y Sellado

Bondad de ajuste de 1.5 minutos a 3 minutos

data points 30
estimates maximum likelihood estimates
accuracy of fit 3.e-004
level of significance 5.e-002
summary

	Kolmogorov Ander	son
distribution	Chi Squared Smirnov	Darling
Exponential	12.4 (3) 0.363 4	.86
Lognormal	5.47 (3) 0.154	0.908
Uniform	13.2 (3) 0.276	2.32
detail		

Exponential

minimum = 1. [fixed]

beta = 1.17095

Chi Squared

total classes 4

interval type equal probable

net bins

chi**2 12.4

degrees of freedom 3

alpha 5.e-002

chi**2(3,5.e-002) 7.81

p-value 6.13e-003

result REJECT

Kolmogorov-Smirnov

data points 30

ks stat 0.363

alpha 5.e-002

ks stat(30,5.e-002) 0.242

p-value 4.79e-004

result REJECT

Anderson-Darling

data points 30

ad stat 4.86

alpha 5.e-002

ad stat(30,5.e-002) 2.49

p-value 3.36e-003

result REJECT

Lognormal

minimum = 1. [fixed]

mu = 7.04057e-002

sigma = 0.429455

Chi Squared

total classes 4

interval type equal probable

net bins 4

chi**2 5.47

degrees of freedom 3

alpha 5.e-002

chi**2(3,5.e-002) 7.81

p-value 0.141

result DO NOT REJECT

Kolmogorov-Smirnov

data points 30

ks stat 0.154

alpha 5.e-002

ks stat(30,5.e-002) 0.242

p-value 0.428

result DO NOT REJECT

Anderson-Darling

data points 30

ad stat 0.908

alpha 5.e-002

ad stat(30,5.e-002) 2.49

p-value 0.409

result DO NOT REJECT

Uniform

minimum = 1. [fixed]

maximum = 2.9144

Chi Squared

total classes 4

interval type equal probable

net bins 4

chi**2 13.2

degrees of freedom 3

alpha 5.e-002

chi**2(3,5.e-002) 7.81

p-value 4.22e-003

result REJECT

Kolmogorov-Smirnov

data points 30

ks stat 0.276

alpha 5.e-002

ks stat(30,5.e-002) 0.242

p-value 1.66e-002

result REJECT

Anderson-Darling

data points 29

ad stat 2.32

alpha 5.e-002

ad stat(29,5.e-002) 2.49

p-value 6.15e-002

result DO NOT REJECT

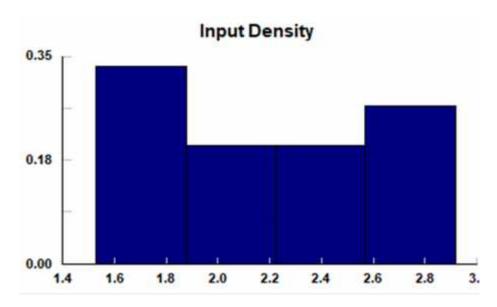


Figura 5. Densidad de entrada: Evacuación y Sellado.

Fuente: software STATFIT

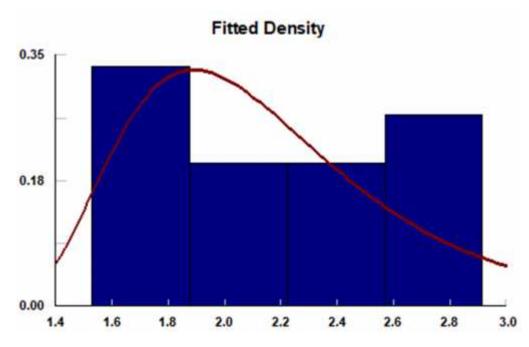


Figura 6. Densidad Ajustada: Evacuación y Sellado

Fuente: software STATFIT

Para: Pesado, Lavado y Desinfección, Llenado, Adición de Almíbar,

Enfriado

> Bondad de ajuste de 3 a 6

data points 30

estimates maximum likelihood estimates

accuracy of fit 3.e-004

level of significance 5.e-002

summary

Kolmogorov Anderson

distribution Smirnov Darling

Lognormal 0.208 1.72

Uniform 0.103 0.31

detail

Lognormal

minimum = 3. [fixed]

mu = 0.146538

sigma = 0.878068

Kolmogorov-Smirnov

data points 30

ks stat 0.208

alpha 5.e-002

ks stat(30,5.e-002) 0.242

p-value 0.127

result DO NOT REJECT

Anderson-Darling

data points 30

ad stat 1.72

alpha 5.e-002

64

ad stat(30,5.e-002)	2.49
p-value	0.131
result	DO NOT REJECT

Uniform

 $\begin{array}{lll} \text{minimum} & = & 3. \text{ [fixed]} \\ \text{maximum} & = & 5.96818 \end{array}$

Kolmogorov-Smirnov

 data points
 30

 ks stat
 0.103

 alpha
 5.e-002

 ks stat(30,5.e-002)
 0.242

 p-value
 0.874

result DO NOT REJECT

Anderson-Darling

 data points
 29

 ad stat
 0.31

 alpha
 5.e-002

 ad stat(29,5.e-002)
 2.49

 p-value
 0.931

 result
 DO NOT REJECT

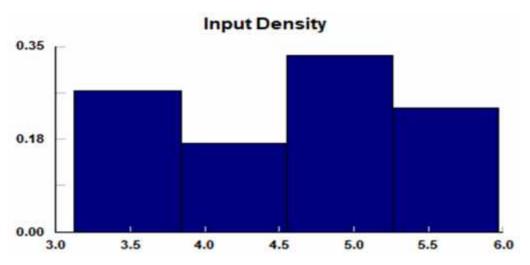


Figura 7. Densidad de ajuste de 3 a 6.

Fuente, software STATFIT

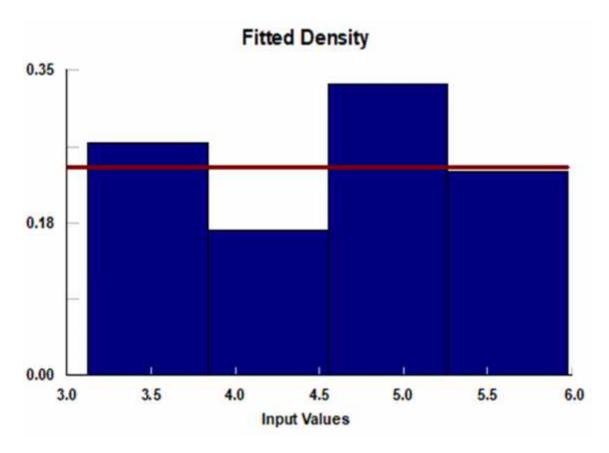


Figura 8. Densidad Ajustada: Pesado, lavado.

Fuente. software STATFIT

Para: Pelado, Trozado, Pre cocción, Escaldado

> Bondad de ajuste de 6 a 12

data points 30

estimates maximum likelihood estimates

accuracy of fit 3.e-004

level of significance 5.e-002

summary

Kolmogorov Anderson

distribution Smirnov Darling

Lognormal 0.207 1.7

Uniform 0.127 0.407

detail

Lognormal

minimum = 6. [fixed]

mu = 0.85757

sigma = 0.974437

Kolmogorov-Smirnov

data points 30

ks stat 0.207

alpha 5.e-002

ks stat(30,5.e-002) 0.242

p-value 0.133

result DO NOT REJECT

Anderson-Darling

data points 30

ad stat 1.7

alpha 5.e-002

ad stat(30,5.e-002) 2.49

p-value 0.135

result DO NOT REJECT

Uniform

minimum = 6. [fixed]

maximum = 11.88

Kolmogorov-Smirnov

data points 30

ks stat 0.127

alpha 5.e-002

ks stat(30,5.e-002) 0.242

p-value 0.675

result DO NOT REJECT

Anderson-Darling

data points	29
ad stat	0.407
alpha	5.e-002
ad stat(29,5.e-002)	2.49
p-value	0.842
result	DO NOT REJECT

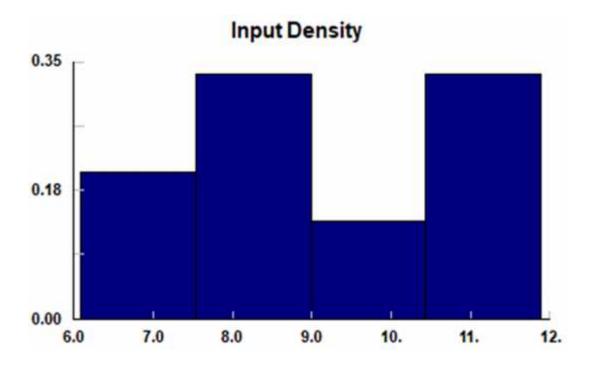


Figura 9. Densidad de Ajuste de 6 a 12

Fuente: software STATFIT

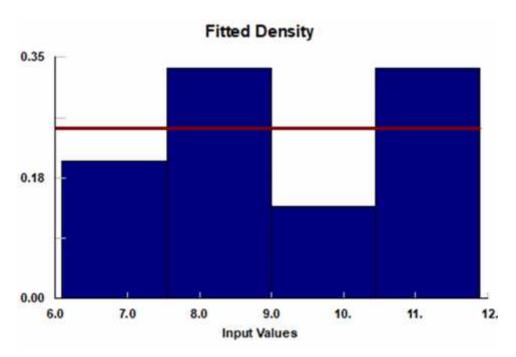


Figura 10. Densidad de Ajustada

Fuente: software STATFIT

Para: Pasteurización

> Bondad de ajuste de 15 a 30

data points 30

estimates maximum likelihood estimates

accuracy of fit 3.e-004

level of significance 5.e-002

summary

Kolmogorov Anderson

distribution Smirnov Darling

Exponential 0.128 0.8

Alm

Lognormal 0.163 1.51

Uniform 0.185 1.55

detail

Exponential

minimum = 20. [fixed]

beta = 4.36879

Kolmogorov-Smirnov

data points 30

ks stat 0.128

alpha 5.e-002

ks stat(30,5.e-002) 0.242

p-value 0.663

result DO NOT REJECT

Anderson-Darling

data points 30

ad stat 0.8

alpha 5.e-002

ad stat(30,5.e-002) 2.49

p-value 0.481

result DO NOT REJECT

Lognormal

minimum = 20. [fixed]

mu = 0.956676

sigma = 1.34389

Kolmogorov-Smirnov

data points 30

ks stat 0.163

alpha 5.e-002

ks stat(30,5.e-002) 0.242

p-value 0.363

result DO NOT REJECT

Anderson-Darling

data points 30

ad stat 1.51

alpha 5.e-002

ad stat(30,5.e-002) 2.49

p-value 0.175

result DO NOT REJECT

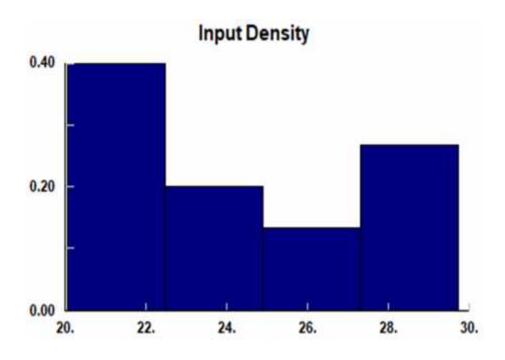
Uniform

minimum = 20. [fixed]

maximum = 29.7438

Kolmogorov-Smirnov

data points 30


ks stat 0.185

alpha 5.e-002

ks stat(30,5.e-002) 0.242 p-value 0.225 result DO NOT REJECT Anderson-Darling data points 29 ad stat 1.55 alpha 5.e-002 ad stat(29,5.e-002) 2.49 p-value 0.165

result

DO NOT REJECT

Figura 11. Densidad de Ajuste de 15 a 30

Fuente: software STATFIT

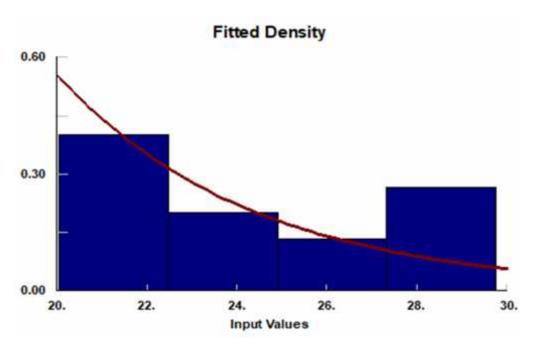


Figura 12. Densidad Ajustada: Pasteurización.

Fuente: software STATFIT

Como restricción en este trabajo, se consideró que existe una cantidad de recursos suficiente para una producción continua.

Tabla 4
Tipos de recursos para cada actividad

Tipos de recursos para cada a	
Actividad	Recurso
Recepción	Horas hombre
Selección y Clasificación	Horas Máquina – Horas hombre
Pesado	Horas Máquina – Horas hombre
Lavado y Desinfección	Horas Máquina – Horas hombre
Pelado	Horas Máquina – Horas hombre
Trozado	Horas Máquina – Horas hombre
Pre cocción	Horas Máquina – Horas hombre
Escaldado	Horas Máquina – Horas hombre
Llenado	Horas Máquina – Horas hombre
Adición de Almíbar	Horas Máquina – Horas hombre
Evacuación	Horas Máquina – Horas hombre
Sellado	Horas Máquina – Horas hombre
Pasteurización	Horas Máquina – Horas hombre
Enfriado	Horas Máquina – Horas hombre
Preparación de Almíbar	Horas Máquina – Horas hombre

Fuente: Elaboración propia.

4.6.2 Construcción del Modelo

Para la construcción del modelo se trabajó usando el lenguaje de simulación SIMIO. Las generalidades de este lenguaje se presentan en la sección correspondiente.

La primera versión del modelo, como se dijo en la teoría debemos seguir refinándolo e implementarle la data necesaria.

A continuación, se presenta vistas del modelo, con su estructura de datos inicial: Todas las figuras han sido tomadas directamente de la pantalla de SIMIO.

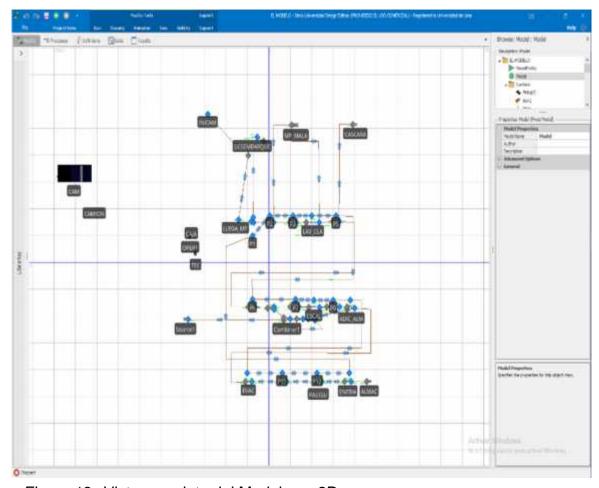


Figura 13. Vista complete del Modelo en 2D

Fuente: Elaboración en software Simio

Alm

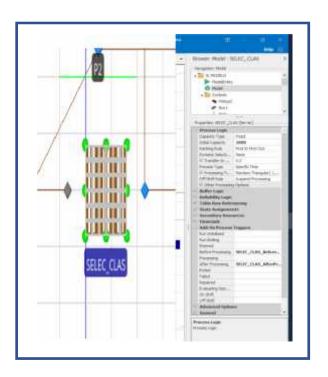


Figura 14. Etapa de Selección y Clasificación. Fuente: Elaboración en software Simio

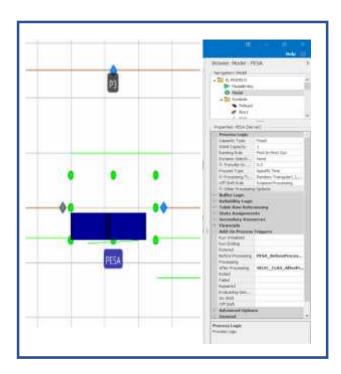


Figura 15. Etapa de pesado. Fuente: Elaboración en software Simio

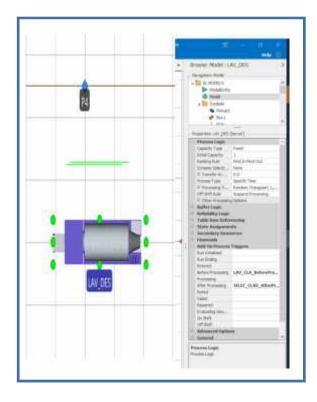


Figura 16. Etapa de lavado y desinfección. Fuente: Elaboración en software Simio

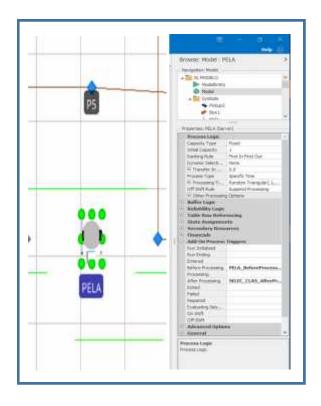


Figura 17. Etapa de pesado 1. Fuente: Elaboración en software5

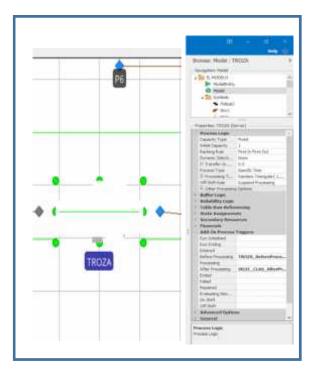


Figura 18. Etapa de Trozado Fuente: Elaboración en software Simio

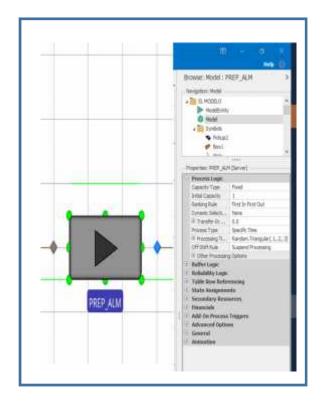


Figura 20. Etapa de Preparación de almíbar

Fuente: Elaboración en software Simio

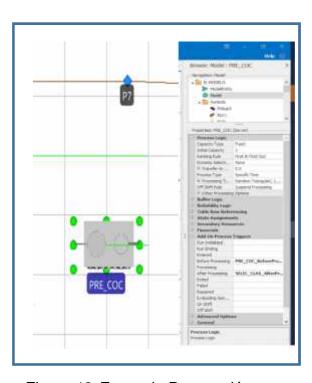


Figura 19. Etapa de Pre cocción. Fuente: Elaboración en software Simio

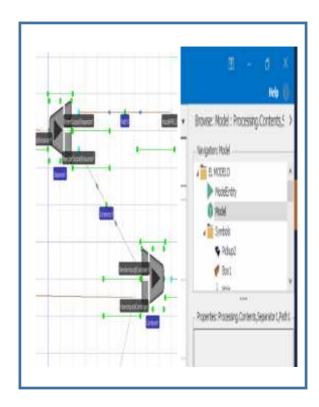


Figura 21. Orden de preparación de almíbar.

Fuente: Elaboración en software Simio

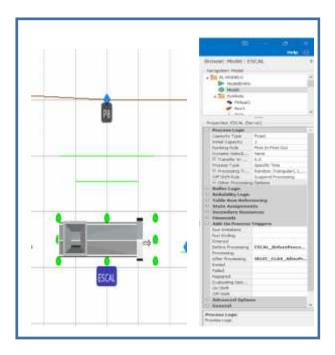


Figura 22. Etapa de Escaldado Fuente: Elaboración en software Simio

Figura 23. Etapa de llenado. Fuente: Elaboración en software Simio

Street, Market (ACMC, BLM)

| Street, Market (ACMC, BLM) | Street, Market

Figura 24. Etapa de Adicionar almíbar. Fuente: Elaboración en software Simio

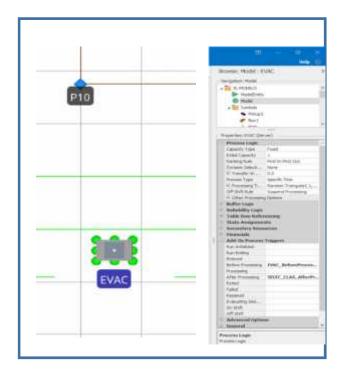


Figura 25. Etapa de Evacuación Fuente: Elaboración en software Simio

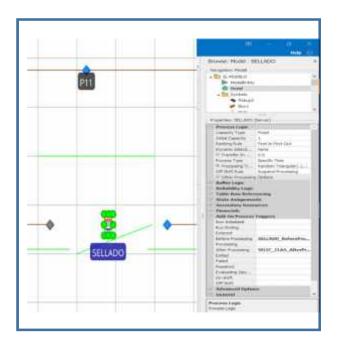


Figura 26. Etapa de Sellado Fuente: Elaboración en software Simio

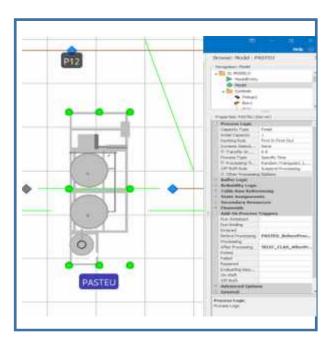


Figura 27. Etapa de Pasteurización Fuente: Elaboración en software Simio

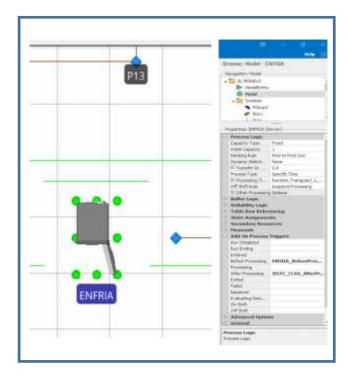


Figura 28. Etapa de Enfriado Fuente: Elaboración en software Simio

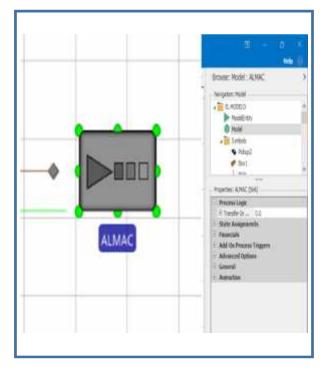


Figura 29. Etapa de Almacenamiento Fuente: Elaboración en software Simio

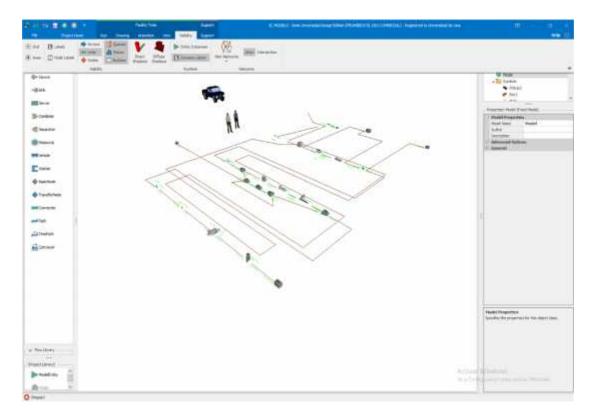


Figura 30. Vista en 3D del modelo inicial.

Fuente: Elaboración en software Simio

Características generales:

- a.- Todas las etapas, salvo las etapas de recepción y almacenamiento, fueron modeladas por medio de módulos server, pues en cada una de ella se necesitan al menos un recurso: hombre y/o máquina además de un tiempo de ejecución.
- b.- La etapa de recepción ha sido modelada por un módulo Source junto con un Timepath y un vehicle debido a la naturaleza de su trabajo.
- c.- La etapa de almacenamiento fue sido modelada por un módulo Sink, debido a que consideramos que en este momento el producto ya está terminado y hasta allí hemos limitado nuestro proyecto.

d.- Todas las conexiones entre las etapas fueron sido modeladas por elementos Timepath, por en cada uno de ellos se requiere un tiempo de traslado.

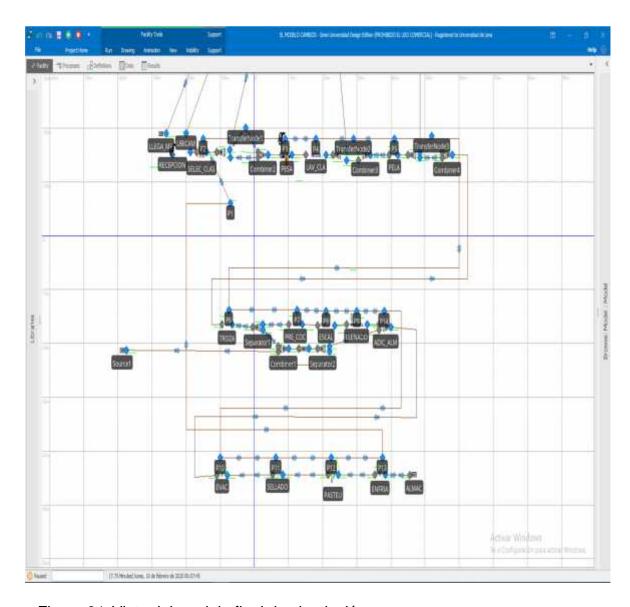


Figura 31. Vista del modelo final de simulación

Fuente: Elaboración en software Simio

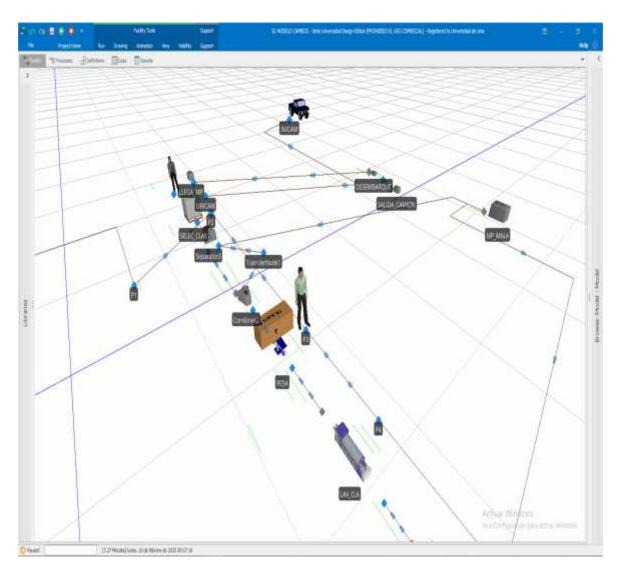


Figura 32. Vista en 3D del modelo final de simulación

Fuente: Elaboración en software Simio

CAPITULO V

RESULTADOS

5.1 Resultados descriptivos

El modelo de simulación está realizado desde la óptica de un observador desde fuera del proceso mismo, es decir la transformación de la fruta desde que llega como tal hasta que sale envasada.

Además de ello para centrar los resultados a los objetivos de la investigación se propone las siguientes restricciones:

La cantidad de materia prima (fruta) que llega para la preparación de las conservas, se ha considerado de la siguiente manera:

- Cada abastecimiento ocurre en intervalos de tiempo distribuidos exponencialmente con una media de una hora (60 minutos).
- Cada abastecimiento abastece con una cantidad de fruta distribuido uniformemente entre 15 y 21 kilos.
- Se han considerado 6 abastecimientos por día.

Por la información recabada, se entiende que en el proceso de fabricación de las conservas hay mermas en las etapas de: selección y clasificación, lavado y pelado, en los siguientes niveles aproximadamente, como se muestra en la tabla 5 a continuación:

Tabla 5
Tabla de Mermas

Etapa	Merma
Selección y clasificación	5% del total de fruta que llega
Lavado	5% de la cantidad de fruta que queda, en el proceso, después de la etapa de selección y clasificación.
Pelado	10% de la cantidad de fruta que queda, en el proceso, después de la etapa de lavado

Fuente: Elaboración propia.

Para ejecutar la simulación se ha considerado, por la naturaleza del problema, una simulación de estado terminal, es decir la duración de una replicación es todo el tiempo necesario para la producción de un día, desde que llega el primer abastecimiento hasta que sale el último kilo envasado.

Para poder comprobar la validez, del modelo presentado, hemos considerado los siguientes indicadores:

- Total, de materia prima (fruta) recibida en un día de trabajo (en kilos).
- Merma total para un día de trabajo (en kilos).
- Producción diaria de conservas (en kilos).
- Utilización promedio (en porcentaje) de cada una de las etapas del proceso: Recepción, selección y clasificación, pesado, lavado, trozado, pre cocción, escaldado, llenado, adición de almíbar, sellado, pasteurización, enfriado y preparación de almíbar.

Al terminar de elaborar el modelo y hacer las pruebas iniciales, obtiene el reporte que otorga el software SIMIO.

El reporte completo (30 páginas) se presenta en los anexos; aquí hemos resumido el reporte a los indicadores que buscamos.

El reporte corresponde a una sola iteración:

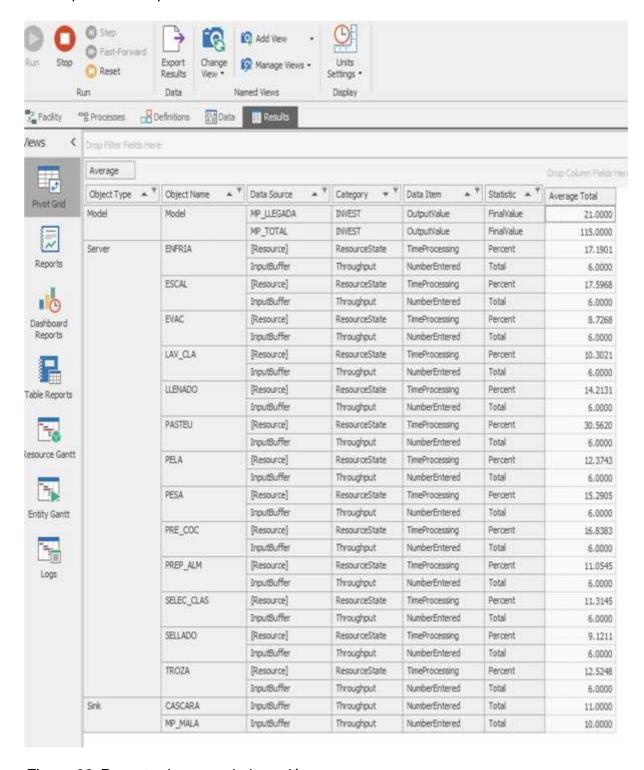


Figura 33. Reporte de una sola iteración.

Fuente: Software Simio.

En él se puede observar:

- La utilización de cada uno de las etapas del proceso:

Tabla 6 Utilización en cada etapa de procesos

Etapa	Utilización (%)		
Selección y Clasificación	11.31		
Pesado	15.29		
Lavado	10.30		
Pelado	12.37		
Trozado	12.52		
Pre cocción	16.83		
Escaldado	17.59		
Llenado	14.21		
Evacuación	8.72		
Sellado	9.12		
Pasteurizar	30.56		
Enfriado	17.19		
Preparación de almíbar	11.05		

Fuente: Elaboración propia

- Cantidad de materia prima (fruta)

Tabla 7

Cantidad de materia prima

Cantidad de materia prima				
Concepto	Cantidad (Kg.)			
Total de materia prima entrante (A)	115			
Total de merma (B)	21			
Producción (A – B)	94			

Fuente: Elaboración propia

5.2 Resultados inferenciales

Estos datos, pertenecieron a una replicación, para poder inferenciar, debimos tener una muestra, para ello se necesita de un número de replicaciones, la forma de calcular este número es haciendo una prueba piloto.

Para realizar esta prueba piloto se elige un número, pequeño, de replicaciones; hemos elegido 10, a continuación, se presentan, en un cuadro, los resultados para estas 10 replicaciones.

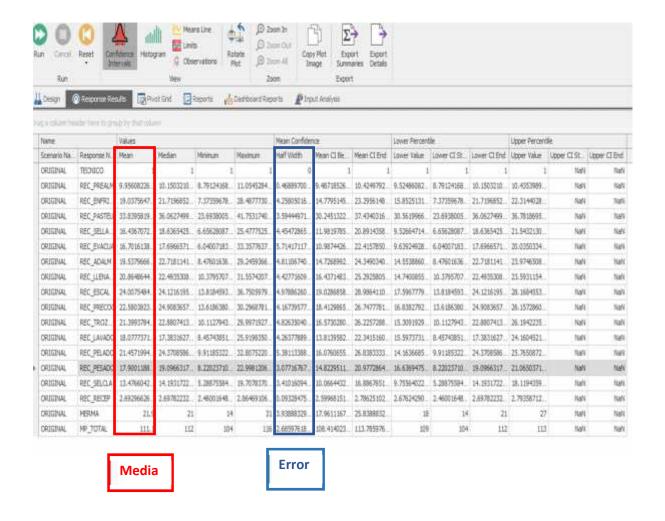


Figura 34. Resultado de 10 replicaciones

Fuente: Software Simio.

En él se puede apreciar la media obtenida para cada indicador, así como el error, aproximado, cometido al usar las 10 replicaciones.

Ahora debemos calcular el número de replicaciones que deseamos hacer para un máximo de error que queramos que nuestra investigación tenga.

Para ello usaremos la fórmula:

$$n = n_0 \frac{n_0^2}{n^2}$$

Donde:

n = Número de replicaciones buscado.

 n_0 = Número de replicaciones de la corrida piloto.

h = error buscado.

 h_0 = error encontrado en la corrida piloto.

El cálculo para cada indicador se muestra en la figura adjunta.

Indicador	h ₀	n ₀	h	n
Selección y Clasificación	3.4102	10	1	116.2946
Pesado	3.0772	10	1	94.6916
Lavado	4.2638	10	1	181.7999
Pelado	5.3812	10	1	289.5731
Trozado	4.8264	10	1	232.9414
Pre cocción	4.1674	10	1	173.6722
Escaldado	4.9789	10	1	247.8945
Llenado	4.4278	10	1	196.0541
Evacuación	5.7142	10	1	326.5208
Sellado	4.4573	10	1	198.6752
Pasteurizar	3.5945	10	1	129.2043
Enfriado	4.2581	10	1	181.3142
Preparación de almíbar	0.4689	10	1	2.198672
Recepción	0.0933	10	1	0.087049
Adicionar Almíbar	4.8111	10	1	231.4668
Técnico	0	10	1	0
MP_Total	2.686	10	1	72.14596
Merma	3.9388	10	1	155.1415

Figura 35. Calculo para cada indicador

Fuente: Resultados Excel-elaboración propia

Para determinar el número de replicaciones necesarias elegimos el mayor de los encontrados y redondeamos obteniendo: 327 replicaciones.

Ejecutamos la simulación con 327 replicaciones y obtenemos los resultados que se muestran en la figura 31.

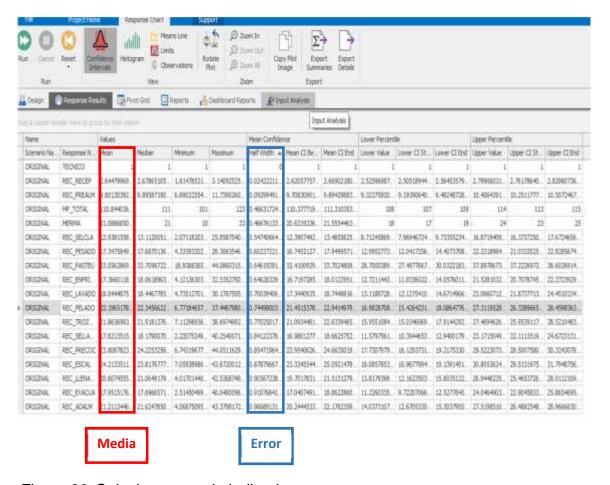


Figura 36. Calculo para cada indicador

Fuente: Simulación con Simio

Allí se muestra que:

- Las medias son más estables.
- El error se ha reducido, ninguno de ellos supera el 1%.

Tabla 8
Resumen de los resultados del experimento

Indicador	Intervalo de confianza al 95%
Selección y Clasificación	<12.39; 13.49>
Pesado	<16.74; 17.95>
Lavado	<17.34; 18.74>
Pelado	<21.45;22.94>
Trozado	<21.09; 22.63>
Pre cocción	<22.95;24.66>
Escaldado	<23.35; 25.09>
Llenado	<19.70;21.51>
Evacuación	<17.04; 18.80>
Sellado	<16.98; 18.66>
Pasteurizar	<32.41; 33.70>
Enfriado	<16.72; 18.01>
Preparación de almíbar	<9.71; 9.89>
Recepción	<2.62; 2.67>
Adicionar Almíbar	<20.24; 22.18>
Técnico	1
MP_Total	<110.38; 111.31>
Merma	<20.62; 21.55>

Fuente: elaboración propia

J Interpretación de los resultados del experimento

Como en todo experimento de investigación, la interpretación se realiza en función de los intervalos de confianza, por ello, a continuación, interpretaremos los intervalos de confianza obtenidos:

Para "N"días de producción:

Para la materia prima (fruta)

El 95% de los días, la cantidad de materia prima (fruta) que sea abastecida diariamente estará entre 110.38 kilos y 111.31 kilos.

El 95% de los días, la cantidad de merma de la materia prima (fruta) obtenida diariamente variará entre 20.62 kilos y 21.55 kilos.

Para las etapas:

El 95% de los días, la etapa de recepción es utilizada entre el 2.62% y el 2.67%.

El 95% de los días, la etapa de selección y clasificación es utilizada entre el 12.39% y el 13.49%.

El 95% de los días, la etapa de pesado es utilizada entre el 16.74% y el 17.95%.

El 95% de los días, la etapa de lavado es utilizada entre el 17.34% y el 18.74%.

El 95% de los días, la etapa de pelado es utilizada entre el 21.45% y el 22.94%.

El 95% de los días, la etapa de trozado es utilizada entre el 21.09% y el 22.63%.

El 95% de los días, la etapa de pre cocción es utilizada entre el 22.95% y el 22.66%.

El 95% de los días, la etapa de escaldado es utilizada entre el 23.35% y el 25.09%.

El 95% de los días, la etapa de llenado es utilizada entre el 19.70% y el 21.51%.

El 95% de los días, la etapa de adicionar almíbar es utilizada entre el 20.24% y el 22.18%.

El 95% de los días, la etapa de evacuado es utilizada entre el 17.04% y el 18.80%.

El 95% de los días, la etapa de sellado es utilizada entre el 16.98% y el 18.66%.

El 95% de los días, la etapa de pasteurizar es utilizada entre el 32.41% y el 33.70%.

El 95% de los días, la etapa de enfriar es utilizada entre el 16.72% y el 18.01%.

El 95% de los días, la etapa de preparar almíbar es utilizada entre el 9.71% y el 9.89%.

CAPITULO VI

DISCUSION DE RESULTADOS

6.1 Contrastación y demostración de la hipótesis con los resultados

Hipótesis general

En concordancia con las técnicas y la metodología de la simulación por procesos, utilizadas en esta investigación nos permitió estandarizar del proceso de la elaboración de conservas de fruta, como se demuestra con los resultados de la misma.

Hipótesis especifica

Teniendo como base el modelo presentado en las figuras 13,14,15,16,17,18,19,20,21,22 y 23 muestra que la estandarización si es posible.

Simio es un lenguaje de Simulación y tiene todos los elementos necesarios para modelar y simular todos los elementos, acciones y transformaciones inmersas en un proceso. Esto fue aplicado de manera adecuada lo que se comprueba por los resultados obtenidos de la simulación.

A través de proceso de la elaboración conserva de frutas se se pudieron trabajar con los datos: diagrama de operaciones, los datos técnicos y las maquinas necesarios para la elaboración conserva de frutas, se puede elaborar el modelo de simulación en el lenguaje SIMIO

Los datos técnico de cada una de las operaciones de este proceso de producción, se realizó a través de un estudio de tiempo y movimentos, encontrándose los tiempos promedios por operación.

A través de software Simio, se determinaron los datos técnicos equivalentes al diagrama de operaciones, los datos técnicos del proceso y las maquinas, en la elaboración de conserva de fruta, se pudo elaborar el modelo de simulación en Simio.

Se encontró que las operaciones en la vida real, son equivalentes con los objetos en Simio, así como los comandos que se utilizan.

Se demuestra a través de estos resultados, que se valida la hipótesis específica

6.2 Contrastación de los resultados con otros estudios similares

La generación de modelos y la simulación ha ayudado al ser humano a mejorar el proceso de toma de decisiones al que se encuentra expuesto día a día, Puche Regaliza, Julio (2016), esto se ha comprobado con el trabajo de acuerdo al modelo establecido que sigue todos los procedimientos para la toma de decisiones a partir de nuestro modelo creado, comprobando asi lo establecido en su trabajo Simulación como herramienta de ayuda para la toma de decisiones empresariales.

- Prieto Renda Daniel (2015) en su tesis Integración de Modelos de Fabricación Mediante Simulación con Herramientas Informáticas y Lean Manufacturing, concluye que la orientación a lean manufacturing como un objetivo conceptual se basa en la aplicación de técnicas relacionadas con la flexibilidad de la planta de fabricación y utiliza el programa Simio para modelar y simular diferentes escenarios y con el trabajo desarrollado se logra cuantificar los impactos de los parámetros seleccionados tal como se considero como objeto de estudio.
- De acuerdo con el trabajo de Mejía Avila Heidy; Galofre Vásquez Marjorie (2008) Aplicación de software de simulación como herramienta en el rediseño de plantas de producción en empresas del sector de alimentos que

va encaminada al estudio de su cadena productiva, simulando la misma con un modelo dinámico, lo que se comprueba en el desarrollo del presente trabajo el estudio de la cadena de suministro para la elaboración del modelo matemático y luego trabajar con el lenguaje SIMIO para sus resultados y estudio estadístico, se establece una comparación directa.

Contrastando los resultados del trabajo con el de Leal Saldivia Norma (2014) Modelo de Planificación de Producción Basado en Simulación Aplicado a una Planta Procesadora de Mariscos en Conserva, donde desarrollo una herramienta basada en simulación que apoya la toma de

decisiones en la gestión de producción de corto plazo, en particular para la producción del día siguiente; se logra demostrar con este trabajo que también se ha logrado lograr una herramienta mediante el modelo construido que ayudara a los trabajos futuros a una toma de decisiones.

Consiguiendo una similitud respecto a:

- ✓ En esta parte de la simulación se aplicó en el trabajo una planta de producción, esta simulación se ejecutó utilizando el lenguaje SIMIO, lo cual nos muestra en un 90% la similitud de operación de lo ejecutado por la investigación con nuestra herramienta.
- ✓ En el estudio precedido como en el trabajo realizado debido a la funcionalidad de una aplicación de este tipo, es factible, a partir de ensayos de información de producción, proyectar el diseño de nuevos equipos y maquinaria en una unidad operativa de proceso.
- ✓ Se comprobó que ocurre en el análisis de información de cada unidad de proceso es posible, identificar probables problemas de diseño e inclusive planificar cambios para solucionarlos, lo cual se ejecutó durante el modelamiento. Al mantenerse un modelo que solucione el proceso de producción, es posible a partir del manejo de variables, constantes y particularidades del ciclo de producción, proyectar los volúmenes de producción y de pérdidas en un periodo establecido.
- ✓ Se trabajó con un banco de información generada a través de la experimentación y apoyada en corridas del sistema con datos reales, es posible, lo cual fue posible proporcionar a la dirección de una herramienta confiable para la toma de empresariales, como el leguaje SIMIO.

Los resultados obtenido en el trabajo y de acuerdo al trabajo de Espinoza Gómez, Jorge César (2017), en cual mostro que con la simulación realizada para un mes de operación se obtiene un incremento de la producción del 25,08% con respecto a la situación actual de la empresa, lo cual conseguimos coincidir en un incremento de la producción usando la herramienta de un <25,0%, 25,20%>.

6.3 Responsabilidad ética

El trabajo de investigación realizado durante este periodo cumple con lo estipulado en el código de ética de investigación de la universidad nacional del Callao, Resolución N° 210-2017-CU.

CONCLUSIONES

- a) Aplicando Simio se puede tener un modelo de estándar, es decir se pudo determinar un proceso estándar para la elaboración de conserva de frutas, se consigue que una planificación de corto plazo que optimice los recursos es necesaria para cumplir con la meta de productividad propuesta por cualquier empresa. Por lo tanto, disponer de una herramienta que apoye en forma eficiente el proceso de planificación de la producción, como la desarrollada en esta tesis se hace indispensable.
- b) Simular en SIMIO un proceso estándar para la elaboración de conserva de frutas, se ha desarrollado una herramienta basada en simulación que apoya la toma de decisiones en la gestión de producción de corto plazo, en particular para la producción del día siguiente.
- c) Esta herramienta de simulación es útil para definir la asignación de recursos como también entregar lineamientos respecto al uso de la capacidad de autoclaves a fin de no obtener producto rechazado por control de calidad.

Cabe mencionar también que a través de los resultados obtenidos de la simulación es posible identificar los cuellos de botella de la línea de producción, por lo tanto, se sabe dónde levantar las restricciones a fin de mejorar la productividad de la empresa.

Es importante destacar que quien use la herramienta de simulación, debe

Am

ser capaz de llevar a cabo la reprogramación en tiempo real, en orden a enfrentarse de manera efectiva con las incertezas del sistema. Una programación en tiempo real, por lo tanto, necesaria para apoyar el trabajo no sólo del responsable de la planificación, sino que también a los supervisores en la planta para regenerar re programaciones factibles cuando sean requeridas.

RECOMENDACIONES

- a) El modelo presentado esta limitado, para una cantidad de tipos de productos, pero podría usarse para cualquier tipo solo cambiando los parámetros.
- b) Continuar investigando sobre el modelamiento de lo referente a procesos químicos, ya que actualmente se tiene problemas de un trabajo no organizado y no se cumplen con los Valores admisibles.
- c) Se podría generar en base del modelo, escenarios que podrían contrastarse usando para mejorar la productividad. Esta herramienta para la toma de decisiones es nueva, en particular para las plantas de producción, por lo tanto, son los primeros pasos en el uso de la simulación para tomar decisiones respecto de situaciones futuras relativas a la planificación de la producción. Por este motivo, se recomienda para investigaciones futuras, extender este trabajo, incluyendo en el modelo los productos y formatos no considerados, de tal manera que la herramienta permita mayor flexibilidad en la confección del plan de producción.
- d) Podría agregarse a esta investigación, en el futuro, los elementos propios de nutrición para tener un estudio, más completo.
- e) Preparar proyectos productivos sobre procesos químicos, de alimentos y en todas las ramas de la ingeniería para optimizar los procesos.

REFERENCIAS BIBLIOGRÁFICAS

Ashby, R. 1956: An Introduction to Cybernetics. Chapman & Hall.

Albornoz, V., Contesse, L. 1999. *Modelos de optimización robusta para un problema de planificación agregada de la producción bajo incertidumbre en las demandas*. Investigación Operativa, Vol. 7(3):1-15.

Amerling, C. 2001. Tecnología de la carne. UNED. España.

Bitam. 2002. Business Intelligence. [en línea]. Consulta: Diciembre de 2019.

Charley, H.1987. *Tecnología de Alimentos*. Primera Edición. Editorial Limusa S.A.

Clemen, R. and Reilly, T. 2013: Making hard decisions with Decision Tools.

Cengage Learning.

Coss Bu, R. 2003: Simulación, un enfoque práctico. Editorial Limusa S.A.

Cruz, M. 2014. VI Latin American Congress on Biomedical Engineering

CLAIB 2014, pag.546. Editorial Springer. Paraná. Argentina.

Domínguez-Machuca, J., Álvarez, Ma. J. 1995: *Dirección de Operaciones- Aspectos estratégicos en la producción y los servicios*. Mc Graw Hill.México.

Ford A 1999: Modeling the Environment: An Introduction to System

Dynamics Models of Environmental Systems. Island Press.

.

Forrester J, 1961: Industrial Dynamics. Productivity Press.

- Goldemberg Marcos.2011. Desarrollo de un modelo de sistema de salud mediante un lenguaje de simulación orientado a objeto inteligente. Concepción. Chile.
- Giménez C., Sierra V., Rodon J. 2012: Sustainable operations: Their impact on the triple bottom line. ESADE Business School–University Ramon lull, Spain.
- Guevara, A. Cancino, K. 2015. *Elaboración de Fruta en Almíbar*. Recuperado (5 de noviembre de 2019) <u>file:///C:/Users/soporte/Downloads/Manual%20practicas%</u>

 20para%20el%20procesamiento%20de%20frutas.pdf
- Hillier, F.S. and Lieberman, G.J. 2008: *Introduction to Operations Research*, 9th edition. McGraw-Hill.
- Kelton, D.; Sadowski, R. and Sturrock, D. 2004: Simulation with Arena, edition.

 McGraw-Hill.

- Marc A.Rosen, Hossam A. Kishawy; 2012. Sustainable Manufacturing and Design: Concepts, Practices and Needs, Journal Sustainability, Vol.4. Canadá.
- Márquez R y Ramírez V, 2009: *Un modelo de simulación de la producción de quesos madurados,* Revista Agroalimentaria, Vol. 15, No. 28, pp. 107-122. Venezuela.
- Oscar. 2006. *Planificación y control de procesos productivos*. Recuperado el 19 de 09 de 2019, de BLOG: http://optimizacion.blogspot.com/2006/07/1-tcnicasde-simulacin-introduccin.html.
- Parra C, Pérez J y Torres D, 2006: Modelación y simulación computacional de un proceso productivo de una pequeña empresa usando dinámica de sistemas. Revista de la División de Ingeniería de la Universidad del Norte, No. 20, pp. 151-171.
- Pepsico A, 2009:, Basamentos teóricos en documentos digitales, Alimentos Pepsico. La Grita, Venezuela.
- Pernía Y, 2010: Un modelo de simulación del proceso de producción de la empresa Alimentos Pepsico S.A., Línea DTC-2000, Proyecto de Grado, Escuela de Ingeniería de Sistemas, Facultad de Ingeniería, ULA.

- Pritsker, A.A.B. and Sigal, C.E. 1983: *Management Decision making: A Network Simulation Approach*. Prentice-Hall.
- Rees, J. Y Bettinson, J. 1994. *Procesado Térmico y Envasado de los Alimentos.*Editorial Acribia. España.
- Regalado Alejandro.2008. *Temas de Ciencia y Tecnología* vol. 12 número 35 mayo agosto 2008 pp 9 18.
- Rodríguez A., Sampere, F., Poler, R. 2002: *Utilización de la simulación para el rediseño de montado y zona de expedición de una PYME* (Aux. Sector del Calzado), Il conferencia de Ingeniería de Organización, Vigo. España.
- Rodríguez Zoya L y Pascal Roggero. 2014. *Polis*, Revista Latinoamericana, Volumen 13, Nº 39, 2014, p. 417-440. Argentina.
- Rutherford Aris .1976. How to Get the Most Out of an Equation Without Really Trying, Chemical Engineering Education, 24(2), páginas.
- Scenna Nicolás J. y col. 1999. Modelado, Simulación y Optimización de Procesos

 Químicos. 1999, de ISBN Sitio web:

 http://www.edutecne.utn.edu.ar/modelado-proc-quim/modelado-procquim.pdf
- Shannon, R., 1997. Simulación de Sistemas, Ed. Trillas, México.

Salazar, O. Lopez, A. Manual de Prácticas para el procesamiento de frutas.

Recuperado (6 de noviembre de 2019) de:

file:///C:/Users/soporte/Downloads/Manual%20practicas%

20para%20el%20procesamiento%20de%20frutas%20(3).pdf

- Sterman, J, 2000: Business Dynamics: Systems Thinking and Modeling for a Complex World, McGraw-Hill, USA.
- Taha, H., Meza, G., Cruz, R., González V., 2004: Investigación de Operaciones:

 Una investigación, Pearson Education, México.
- UNED. 2008. Open Course Ware. Recuperado el 30 de 08 de 2019, de Open Course Wa re: http://ocw. innova.u ned .es/ocwun ive rsia/psicologia/ps icologiad iferencia !/glosario/
- Urenda, M., Bernedixen, J., Goienetxea, A. 2012. Diseño y análisis de sistemas productivos utilizando la optimización mediante simulación basada en internet. *Revista Ingeniería Industrial*, año 11 n° 1, 37-49.
- Viveros, R., Salazar, E. 2010. Modelo de Planificación de Producción para un Sistema Multiproducto con Múltiples líneas de Producción. Revista Ingeniería de Sistemas, vol n° 24.

ZeiglerKri B, 1984, Theory of Modeling and Simulation. Krieger Publishing Co, Melbourne FL, EEUU.

ANEXOS MATRIZ DE CONSISTENCIA

MODELAMIENTO Y SIMULACION DEL PROCESO DE ELABORACION DE CONSERVAS DE FRUTAS USANDO EL LENGUAJE DE SIMULACION SIMIO

PROBLEMA	OBJETIVOS	HIPÓTESIS	VARIABLES	INDICADORES	METODO
General	General	General	Dependiente		
¿Un modelo de simulación de procesos permitirá estandarizar los procesos de elaboración de frutas?	Elaborar un modelo de simulación en SIMIO que estandarice los procesos de elaboración de una conserva de fruta	Con el uso de un modelo de simulación en SIMIO, se puede estandarizar el proceso de elaboración de conserva de frutas	Y=Estandarización del proceso de elaboración de conserva de frutas	Simbología, Flujogramas, BPM, ISO	Comparación con los valores reportados en la literatura
Específico	Específico	Específica	Independiente		
¿Puede determinarse un proceso estándar para la elaboración de conserva de frutas?	Determinar un proceso estándar para la elaboración de conserva de frutas.	Se puede determinar un proceso estándar de la elaboración de conserva de frutas	X1= El modelo del proceso de elaboración de conserva de frutas	Son las unidades procesados en un día, su medición está en kilos	Comparación con los valores reportados en la literatura
¿La simulación en SIMIO, determinará el mejor proceso estándar en la elaboración de conserva de frutas?	Simular en SIMIO un proceso estándar para la elaboración de conserva de frutas.	Se puede determinar el mejor proceso estándar de la elaboración de conserva de frutas usando la simulación en SIMIO.	X2= El lenguaje de simulación SIMIO para el proceso de elaboración de conserva de frutas.	Capacidad de generar datos esperados en concordancia con los reportados Valores numéricos obtenidos de los parámetros de operación	Comparativo entre los modelos propuestos. Comparativo con los valores reportados.

RESULTADOS DEL EXPERIMENTO DE SIMULACIÓN

Interactive Detail Report

Project: EL MODELO CAMBIOS Run Date: 6/28/20 18:50

Model: Model (Academic, COMMERCIAL USE

PROHIBITED)

Scenario: [Interactive Run]

Scenario: [Interactive Ru	•••					
DistanceTraveled - Total	Data Carra	0.1	Wales			
Object Name OPER1[1]	Data Source [Object]	Category Travel	Value 133.74954			
CAM[1]	[Object]	Travel	861.24			
TEC[1]	[Object]	Travel	6679.29			
NumberAccumulated - A						
Object Name	Data Source	Category	Value			
Path18	[Travelers]	Content	0.01253			
Path19	[Travelers]	Content	0.03786			
Path20	[Travelers]	Content	0.04744			
Path21	[Travelers]	Content	0.08824			
Path22	[Travelers]	Content	0.06948			
Path23	[Travelers]	Content	0.09033			
Path24	[Travelers]	Content	0.08476			
Path25	[Travelers]	Content	0.07023			
Path26	[Travelers]	Content	0.04234			
Path27	[Travelers]	Content	0.01939			
Path28	[Travelers]	Content	0.19849			
Path29	[Travelers]	Content	0.064			
Path3	[Travelers]	Content	0.0162			
Path30	[Travelers]	Content	0.02143			
Path31	[Travelers]	Content	0.02936			
NumberAccumulated - M	aximum					
NumberAccumulated - M Object Name	aximum Data Source	Category	Value			
		Category Content	Value			
Object Name	Data Source					
Object Name Path18	Data Source [Travelers]	Content	1			
Object Name Path18 Path19	Data Source [Travelers] [Travelers]	Content Content	1			
Object Name Path18 Path19 Path20	Data Source [Travelers] [Travelers]	Content Content	1 1 1			
Object Name Path18 Path19 Path20 Path21	Data Source [Travelers] [Travelers] [Travelers]	Content Content Content Content	1 1 1			
Object Name Path18 Path19 Path20 Path21 Path22	Data Source [Travelers] [Travelers] [Travelers] [Travelers] [Travelers]	Content Content Content Content Content	1 1 1 1			
Object Name Path18 Path19 Path20 Path21 Path22 Path23	Data Source [Travelers] [Travelers] [Travelers] [Travelers] [Travelers] [Travelers]	Content Content Content Content Content Content	1 1 1 1 1			
Object Name Path18 Path19 Path20 Path21 Path22 Path23 Path24	Data Source [Travelers] [Travelers] [Travelers] [Travelers] [Travelers] [Travelers] [Travelers]	Content Content Content Content Content Content Content Content Content	1 1 1 1 1 1			
Object Name Path18 Path19 Path20 Path21 Path22 Path23 Path24 Path25	Data Source [Travelers] [Travelers] [Travelers] [Travelers] [Travelers] [Travelers] [Travelers] [Travelers]	Content Content Content Content Content Content Content Content Content	1 1 1 1 1 1 1			
Object Name Path18 Path19 Path20 Path21 Path22 Path23 Path24 Path25 Path26	Data Source [Travelers] [Travelers] [Travelers] [Travelers] [Travelers] [Travelers] [Travelers] [Travelers] [Travelers]	Content	1 1 1 1 1 1 1			
Object Name Path18 Path19 Path20 Path21 Path22 Path23 Path23 Path24 Path25 Path26 Path27	Data Source [Travelers]	Content	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Object Name Path18 Path19 Path20 Path21 Path22 Path23 Path24 Path25 Path26 Path27 Path28	Data Source [Travelers]	Content	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Object Name Path18 Path19 Path20 Path21 Path22 Path23 Path24 Path25 Path26 Path27 Path28 Path29	Data Source [Travelers]	Content	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Object Name Path18 Path19 Path20 Path21 Path22 Path23 Path24 Path25 Path26 Path27 Path28 Path29 Path3	Data Source [Travelers]	Content	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Object Name Path18 Path19 Path20 Path21 Path22 Path23 Path24 Path25 Path26 Path27 Path28 Path29 Path3 Path30	Data Source [Travelers]	Content	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Object Name Path18 Path19 Path20 Path21 Path22 Path23 Path24 Path25 Path26 Path27 Path28 Path29 Path3 Path30 Path31 NumberAccumulated - M Object Name	Data Source [Travelers]	Content	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Object Name Path18 Path19 Path20 Path21 Path22 Path23 Path24 Path25 Path26 Path27 Path28 Path29 Path3 Path30 Path31 NumberAccumulated - M	Data Source [Travelers]	Content	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Page 1 of 30

107

NumberAccumulated - Mi	inimum		
Object Name	Data Source	Category	Value
Path20	[Travelers]	Content	0
Path21	[Travelers]	Content	0
Path22	[Travelers]	Content	0
Path23	[Travelers]	Content	0
Path24	[Travelers]	Content	0
Path25	[Travelers]	Content	0
Path26	[Travelers]	Content	0
Path27	[Travelers]	Content	0
Path28	[Travelers]	Content	0
Path29	[Travelers]	Content	0
Path3	[Travelers]	Content	0
Path30	[Travelers]	Content	0
Path31	[Travelers]	Content	0
NumberCreated - Total			
Object Name	Data Source	Category	Value
CAJA	[Population]	Throughput	340
CAMION	[Population]	Throughput	2308
NumberDestroyed - Total			
Object Name CAJA	Data Source	Category	Value 340
CAMION	[Population]	Throughput	
	[Population]	Throughput	6
NumberEntered - Total Object Name	Data Source	Category	Value
ADIC_ALM	MemberInputBuffer	Throughput	6
ADIC_ALM	OutputBuffer	Throughput	6
ADIC_ALM	ParentInputBuffer	Throughput	6
ADIC_ALM	Processing	Throughput	6
Combiner1	MemberInputBuffer	Throughput	6
Combiner1	OutputBuffer	Throughput	6
Combiner1	ParentInputBuffer	Throughput	2308
Combiner1	Processing	Throughput	6
Combiner2	MemberInputBuffer	Throughput	108
Combiner2	OutputBuffer	Throughput	6
Combiner2	ParentInputBuffer	Throughput	6
Combiner2	Processing	Throughput	6
Combiner3	MemberInputBuffer	Throughput	105
Combiner3	OutputBuffer	Throughput	6
Combiner3	ParentInputBuffer	Throughput	6
Combiner3	Processing	Throughput	6
Combiner4	MemberInputBuffer	Throughput	94
Combiner4	OutputBuffer	Throughput	6
Combiner4	ParentInputBuffer	Throughput	6
Combiner4	Processing	Throughput	6
Path1	[Travelers]	Throughput	6
Path10	[Travelers]	Throughput	6
Path11	[Travelers]	Throughput	6
Path12	[Travelers]	Throughput	6
Path13	[Travelers]	Throughput	6
Latino	[Travoloto]	mougnput	•

domingo, 28 de junio de 2020 Page 2 of 30

P	di	ım	ha	rFr	١t۵	rad	_ 7	Γotal
ı	чı	JIII	De		пe	rea	-	olai

Object Name	Data Source	Category	Value	
Path14	[Travelers]	Throughput	6	
Path15	[Travelers]	Throughput	6	
Path16	[Travelers]	Throughput	6	
Path17	[Travelers]	Throughput	6	
Path18	[Travelers]	Throughput	12	
Path19	[Travelers]	Throughput	10	
Path2	[Travelers]	Throughput	6	
Path20	[Travelers]	Throughput	12	
Path21	[Travelers]	Throughput	14	
Path22	[Travelers]	Throughput	14	
Path23	[Travelers]	Throughput	18	
Path24	[Travelers]	Throughput	20	
Path25	[Travelers]	Throughput	20	
Path26	[Travelers]	Throughput	18	
Path27			16	
	[Travelers]	Throughput		
Path28	[Travelers]	Throughput	14	
Path29	[Travelers]	Throughput	12	
Path3	[Travelers]	Throughput	12	
Path30	[Travelers]	Throughput	11	
Path31	[Travelers]	Throughput	16	
Path32	[Travelers]	Throughput	108	
Path33	[Travelers]	Throughput	108	
Path34	[Travelers]	Throughput	6	
Path35	[Travelers]	Throughput	6	
Path36	[Travelers]	Throughput	6	
Path37	[Travelers]	Throughput	6	
Path38	[Travelers]	Throughput	6	
Path39	[Travelers]	Throughput	6	
Path4	[Travelers]	Throughput	3	
Path40	[Travelers]	Throughput	94	
Path41	[Travelers]	Throughput	94	
Path42	[Travelers]	Throughput	11	
Path5	[Travelers]	Throughput	7	
Path6	[Travelers]	Throughput	6	
Path7	[Travelers]	Throughput	105	
Path8	[Travelers]	Throughput	105	
Path9	[Travelers]	Throughput	6	
DESEMBARQUE	InputBuffer	Throughput	6	
DESEMBARQUE	MemberOutputBuffer	Throughput	6	
DESEMBARQUE	ParentOutputBuffer	Throughput	6	
DESEMBARQUE	Processing	Throughput	6	
Separator1	InputBuffer	Throughput	6	
Separator1	MemberOutputBuffer	Throughput	6	
Separator1	ParentOutputBuffer	Throughput	6	
Separator1	Processing	Throughput	6	
Separator2	InputBuffer	Throughput	6	
Separator2	MemberOutputBuffer	Throughput	6	
domingo 28 do junio do 2020		3 7 5		Page 3 of 30

domingo, 28 de junio de 2020 Page 3 of 30

P	di	ım	ha	rFr	١t۵	rad	_ 7	Γotal
ı	чı	JIII	De		пe	rea	-	olai

NumberEntered - Total	Data Carrie	0-1	Walter
Object Name Separator2	Data Source ParentOutputBuffer	Category Throughput	Value 6
Separator2	Processing	Throughput	6
Separator3	InputBuffer	Throughput	6
Separator3	MemberOutputBuffer	Throughput	115
Separator3	ParentOutputBuffer	Throughput	6
Separator3	Processing	Throughput	6
Separator4	InputBuffer	Throughput	6
Separator4	MemberOutputBuffer	Throughput	108
Separator4	ParentOutputBuffer	Throughput	6
Separator4	Processing	Throughput	6
Separator5	InputBuffer	Throughput	6
Separator5	MemberOutputBuffer	Throughput	105
Separator5	ParentOutputBuffer	Throughput	6
Separator5	Processing	Throughput	6
ENFRIA	InputBuffer	Throughput	6
ENFRIA	OutputBuffer	Throughput	6
ENFRIA	Processing	Throughput	6
ESCAL			6
ESCAL	InputBuffer OutputBuffer	Throughput Throughput	
ESCAL			6
	Processing	Throughput	
EVAC EVAC	InputBuffer	Throughput	6
	OutputBuffer	Throughput	6
EVAC	Processing	Throughput	6
LAV_CLA	InputBuffer	Throughput	6
LAV_CLA	OutputBuffer	Throughput	6
LAV_CLA	Processing	Throughput	6
LLENADO	InputBuffer	Throughput	6
LLENADO	OutputBuffer	Throughput	6
LLENADO	Processing	Throughput	6
PASTEU	InputBuffer	Throughput	6
PASTEU	OutputBuffer	Throughput	6
PASTEU	Processing	Throughput	6
PELA	InputBuffer	Throughput	6
PELA	OutputBuffer	Throughput	6
PELA	Processing	Throughput	6
PESA	InputBuffer	Throughput	6
PESA	OutputBuffer	Throughput	6
PESA	Processing	Throughput	6
PRE_COC	InputBuffer	Throughput	6
PRE_COC	OutputBuffer	Throughput	6
PRE_COC	Processing	Throughput	6
PREP_ALM	InputBuffer	Throughput	6
PREP_ALM	OutputBuffer	Throughput	6
PREP_ALM	Processing	Throughput	6
SELEC_CLAS	InputBuffer	Throughput	6
SELEC_CLAS	OutputBuffer	Throughput	6
SELEC_CLAS	Processing	Throughput	6
density and OO de trade de OOOO			

domingo, 28 de junio de 2020 Page 4 of 30

NumberEntered - Total			
Object Name	Data Source	Category	Value
SELLADO	InputBuffer	Throughput	6
SELLADO	OutputBuffer	Throughput	6
SELLADO	Processing	Throughput	6
TROZA	InputBuffer	Throughput	6
TROZA	OutputBuffer	Throughput	6
TROZA	Processing	Throughput	6
ALMAC	InputBuffer	Throughput	6
CASCARA	InputBuffer	Throughput	11
MP_MALA	InputBuffer	Throughput	10
SALIDA_CAMION	InputBuffer	Throughput	6
LLEGA_MP	OutputBuffer	Throughput	6
LLEGA_MP	Processing	Throughput	6
Source1	OutputBuffer	Throughput	2302
Source1	Processing	Throughput	2302
TimePath1	[Travelers]	Throughput	6
TimePath2	[Travelers]	Throughput	6
TimePath3	[Travelers]	Throughput	6
TimePath4	[Travelers]	Throughput	6
OPER1[1]	RideStation	Throughput	6
NumberExited - Total			
Object Name	Data Source	Category	Value
ADIC_ALM	MemberInputBuffer	Throughput	6
ADIC_ALM	OutputBuffer	Throughput	6
ADIC_ALM	ParentInputBuffer	Throughput	6
ADIC_ALM	Processing	Throughput	6
Combiner1	MemberInputBuffer	Throughput	6
Combiner1	OutputBuffer	Throughput	6
Combiner1	ParentInputBuffer	Throughput	6
Combiner1	Processing	Throughput	6
Combiner2	MemberInputBuffer	Throughput	108
Combiner2	OutputBuffer	Throughput	6
Combiner2	ParentInputBuffer	Throughput	6
Combiner2	Processing	Throughput	6
Combiner3	MemberInputBuffer	Throughput	105
Combiner3	OutputBuffer	Throughput	6
Combiner3	ParentInputBuffer	Throughput	6
Combiner3	Processing	Throughput	6
Combiner4	MemberInputBuffer	Throughput	94
Combiner4	OutputBuffer	Throughput	6
Combiner4	ParentInputBuffer	Throughput	6
Combiner4	Processing	Throughput	6
Path1	[Travelers]	Throughput	6
Path10	[Travelers]	Throughput	6
Path11	[Travelers]	Throughput	6
Path12	[Travelers]	Throughput	6
Path13	[Travelers]	Throughput	6
Path14	[Travelers]	Throughput	6
			111

domingo, 28 de junio de 2020 Page 5 of 30

NumberExited - Total	5	•		
Object Name Path15	Data Source [Travelers]	Category Throughput	Value 6	
Path16	[Travelers]	Throughput	6	
Path17	[Travelers]	Throughput	6	
Path18	[Travelers]	Throughput	12	
Path19	[Travelers]	Throughput	10	
Path2	[Travelers]	Throughput	6	
Path20	[Travelers]	Throughput	12	
Path21	[Travelers]	Throughput	14	
Path22	[Travelers]	Throughput	14	
Path23	[Travelers]	Throughput	18	
Path24	[Travelers]	Throughput	20	
Path25	[Travelers]	Throughput	20	
Path26	[Travelers]	Throughput	18	
Path27	[Travelers]	Throughput	16	
Path28	[Travelers]	Throughput	14	
Path29	[Travelers]	Throughput	12	
Path3	[Travelers]	Throughput	12	
Path30	[Travelers]	Throughput	11	
Path31	[Travelers]	Throughput	16	
Path32	[Travelers]	Throughput	108	
Path33	[Travelers]	Throughput	108	
Path34	[Travelers]	Throughput	6	
Path35	[Travelers]	Throughput	6	
Path36	[Travelers]	Throughput	6	
Path37	[Travelers]	Throughput	6	
Path38	[Travelers]	Throughput	6	
Path39	[Travelers]	Throughput	6	
Path4	[Travelers]	Throughput	3	
Path40	[Travelers]	Throughput	94	
Path41	[Travelers]	Throughput	94	
Path42	[Travelers]	Throughput	11	
Path5	[Travelers]	Throughput	7	
Path6	[Travelers]	Throughput	6	
Path7	[Travelers]	Throughput	105	
Path8	[Travelers]	Throughput	105	
Path9	[Travelers]	Throughput	6	
DESEMBARQUE	InputBuffer	Throughput	6	
DESEMBARQUE	MemberOutputBuffer	Throughput	6	

domingo, 28 de junio de 2020 Page 6 of 30

Throughput

Throughput

Throughput

Throughput

Throughput

Throughput

Throughput

Throughput

Throughput

DESEMBARQUE

DESEMBARQUE

Separator1

Separator1

Separator1

Separator1

Separator2

Separator2

Separator2

ParentOutputBuffer

MemberOutputBuffer

MemberOutputBuffer

ParentOutputBuffer

ParentOutputBuffer

Processing

InputBuffer

Processing

InputBuffer

6

6

6

6

6

6

6

6

6

N	lum	har	Ev	hati	_ 7	Γotal
r	num	ıber	CX	nea	-	otai

NumberExited - Total Object Name	Data Source	Category	Value
Separator2	Processing	Throughput	6
Separator3	InputBuffer	Throughput	6
Separator3	MemberOutputBuffer	Throughput	115
Separator3	ParentOutputBuffer	Throughput	6
Separator3	Processing	Throughput	6
Separator4	InputBuffer	Throughput	6
Separator4	MemberOutputBuffer	Throughput	108
Separator4	ParentOutputBuffer	Throughput	6
Separator4	Processing	Throughput	6
Separator5	InputBuffer	Throughput	6
Separator5	MemberOutputBuffer	Throughput	105
Separator5	ParentOutputBuffer	Throughput	6
Separator5	Processing	Throughput	6
ENFRIA	InputBuffer	Throughput	6
ENFRIA	OutputBuffer	Throughput	6
ENFRIA	Processing	Throughput	6
ESCAL	InputBuffer	Throughput	6
ESCAL	OutputBuffer	Throughput	6
ESCAL	Processing	Throughput	6
EVAC	InputBuffer	Throughput	6
EVAC	OutputBuffer	Throughput	6
EVAC	Processing	Throughput	6
LAV_CLA	InputBuffer	Throughput	6
LAV_CLA	OutputBuffer		6
LAV_CLA		Throughput	
LLENADO	Processing	Throughput	6
LLENADO	InputBuffer	Throughput	6
	OutputBuffer	Throughput	6
LLENADO	Processing	Throughput	6
PASTEU	InputBuffer	Throughput	6
PASTEU	OutputBuffer	Throughput	6
PASTEU	Processing	Throughput Throughput	6
PELA	InputBuffer	<u> </u>	6
PELA	OutputBuffer	Throughput	6
PELA PESA	Processing	Throughput	6
	InputBuffer	Throughput	6
PESA	OutputBuffer	Throughput	6
PESA	Processing	Throughput	6
PRE_COC	InputBuffer	Throughput	6
PRE_COC	OutputBuffer	Throughput	6
PRE_COC	Processing	Throughput	6
PREP_ALM	InputBuffer	Throughput	6
PREP_ALM	OutputBuffer	Throughput	6
PREP_ALM	Processing	Throughput	6
SELEC_CLAS	InputBuffer	Throughput	6
SELEC_CLAS	OutputBuffer	Throughput	6
SELEC_CLAS	Processing	Throughput	6
SELLADO	InputBuffer	Throughput	6

domingo, 28 de junio de 2020 Page 7 of 30

NumberExited - Total					
Object Name	Data Source	Category	Value		
SELLADO	OutputBuffer	Throughput	6		
SELLADO	Processing	Throughput	6		
TROZA	InputBuffer	Throughput	6		
TROZA	OutputBuffer	Throughput	6		
TROZA	Processing	Throughput	6		
ALMAC	InputBuffer	Throughput	6		
CASCARA	InputBuffer	Throughput	11		
MP_MALA	InputBuffer	Throughput	10		
SALIDA_CAMION	InputBuffer	Throughput	6		
LLEGA_MP	OutputBuffer	Throughput	6		
LLEGA_MP	Processing	Throughput	6		
Source1	OutputBuffer	Throughput	2302		
Source1	Processing	Throughput	2302		
TimePath1	[Travelers]	Throughput	6		
TimePath2	[Travelers]	Throughput	6		
TimePath3	[Travelers]	Throughput	6		
TimePath4	[Travelers]	Throughput	6		
OPER1[1]	RideStation	Throughput	6		
NumberInStation - Average					
Object Name	Data Source	Category	Value		
ADIC_ALM	MemberInputBuffer	Content	0.40387		
1010 1111	55	•			

NumberInStation - Average					
Object Name	Data Source	Category	Value		
ADIC_ALM	MemberInputBuffer	Content	0.40387		
ADIC_ALM	ParentInputBuffer	Content	0.06797		
ADIC_ALM	Processing	Content	0.0435		
Combiner1	ParentInputBuffer	Content	1132.36534		
Combiner2	MemberInputBuffer	Content	0.02964		
Combiner3	MemberInputBuffer	Content	0.17057		
Combiner4	MemberInputBuffer	Content	0.06434		
DESEMBARQUE	InputBuffer	Content	0.00622		
DESEMBARQUE	MemberOutputBuffer	Content	0.0011		
DESEMBARQUE	Processing	Content	0.02242		
ENFRIA	InputBuffer	Content	0.13394		
ENFRIA	Processing	Content	0.04691		
ESCAL	InputBuffer	Content	0.09947		
ESCAL	Processing	Content	0.08797		
EVAC	InputBuffer	Content	0.06742		
EVAC	Processing	Content	0.02372		
LAV_CLA	InputBuffer	Content	0.06715		
LAV_CLA	Processing	Content	0.04423		
LLENADO	InputBuffer	Content	0.10451		
LLENADO	Processing	Content	0.0435		
PASTEU	InputBuffer	Content	0.10712		
PASTEU	Processing	Content	0.23385		
PELA	InputBuffer	Content	0.04215		
PELA	Processing	Content	0.09136		
PESA	InputBuffer	Content	0.1133		
PESA	Processing	Content	0.04796		
PRE_COC	InputBuffer	Content	0.09589		

domingo, 28 de junio de 2020
Page 8 of 30

NumberInStation -	Average
--------------------------	---------

Object Name	=	Catamani	Value
Object Name PRE_COC	Data Source Processing	Category Content	Value 0.08731
PREP_ALM	InputBuffer	Content	0.00475
PREP_ALM	Processing	Content	0.11055
SELEC_CLAS	InputBuffer	Content	0.11231
SELEC_CLAS	Processing	Content	0.01762
SELLADO	InputBuffer	Content	0.07521
SELLADO	Processing	Content	0.01877
TROZA	InputBuffer	Content	0.05074
TROZA	Processing	Content	0.08918
OPER1[1]	RideStation	Content	0.00208
NumberInStation - Maxim	um		
Object Name	Data Source	Category	Value
ADIC_ALM	MemberInputBuffer	Content	2
ADIC_ALM	ParentInputBuffer	Content	2
ADIC_ALM	Processing	Content	1
Combiner1	ParentInputBuffer	Content	2302
Combiner2	MemberInputBuffer	Content	21
Combiner3	MemberInputBuffer	Content	20
Combiner4	MemberInputBuffer	Content	18
DESEMBARQUE	InputBuffer	Content	1
DESEMBARQUE	MemberOutputBuffer	Content	1
DESEMBARQUE	Processing	Content	1
ENFRIA	InputBuffer	Content	1
ENFRIA	Processing	Content	1
ESCAL	InputBuffer	Content	2
ESCAL	Processing	Content	1
EVAC	InputBuffer	Content	1
			1
EVAC	Processing	Content	
LAV_CLA	InputBuffer	Content	2
LAV_CLA	Processing	Content	1
LLENADO	InputBuffer	Content	2
LLENADO	Processing	Content	1
PASTEU	InputBuffer	Content	1
PASTEU	Processing	Content	1
PELA	InputBuffer	Content	1
PELA	Processing	Content	1
PESA	InputBuffer	Content	1
PESA	Processing	Content	1
PRE_COC	InputBuffer	Content	2
PRE_COC	Processing	Content	1
PREP_ALM	InputBuffer	Content	1
PREP_ALM	Processing	Content	1
SELEC_CLAS	InputBuffer	Content	2
SELEC_CLAS	Processing	Content	1
SELLADO	InputBuffer	Content	1
SELLADO	Processing	Content	1
TROZA	InputBuffer	Content	1
TROLA	Inputbullet	Content	110

domingo, 28 de junio de 2020 Page 9 of 30

NumberInStation - Ma Object Name	aximum Data Source	Category	Value	
TROZA	Processing	Category	value 1	
OPER1[1]	RideStation	Content	1	
NumberInStation - Mi	inimum			
Object Name	Data Source	Category	Value	
ADIC_ALM	MemberInputBuffer	Content	0	
ADIC_ALM	ParentInputBuffer	Content	0	
ADIC_ALM	Processing	Content	0	
Combiner1	ParentInputBuffer	Content	0	
Combiner2	MemberInputBuffer	Content	0	
Combiner3	MemberInputBuffer	Content	0	
Combiner4	MemberInputBuffer	Content	0	
DESEMBARQUE	InputBuffer	Content	0	
DESEMBARQUE	MemberOutputBuffer	Content	0	
DESEMBARQUE	Processing	Content	0	
ENFRIA	InputBuffer	Content	0	
ENFRIA	Processing	Content	0	
ESCAL	InputBuffer	Content	0	
ESCAL	Processing	Content	0	
EVAC	InputBuffer	Content	0	
EVAC	Processing	Content	0	
LAV_CLA	InputBuffer	Content	0	
LAV_CLA	Processing	Content	0	
LLENADO	InputBuffer	Content	0	
LLENADO	Processing	Content	0	
PASTEU	InputBuffer	Content	0	
PASTEU	Processing	Content	0	
PELA	InputBuffer	Content	0	
PELA	Processing	Content	0	
PESA	InputBuffer	Content	0	
PESA	Processing	Content	0	
PRE_COC	InputBuffer	Content	0	
PRE_COC	Processing	Content	0	
PREP_ALM	InputBuffer	Content	0	
PREP_ALM	Processing	Content	0	
SELEC_CLAS	InputBuffer	Content	0	
SELEC_CLAS	Processing	Content	0	
SELLADO	InputBuffer	Content	0	
SELLADO	Processing	Content	0	
TROZA	InputBuffer	Content	0	
TROZA	Processing	Content	0	
OPER1[1]	RideStation	Content	0	
NumberInSystem - Average				
Object Name	Data Source	Category	Value	
CAJA	[Population]	Content	91.5925	
CAMION	[Population]	Content	1132.51862	
NumberInSystem - M		•		
Object Name CAJA	Data Source	Category Content	Value 183	
OAJA	[Population]	Content	103	

domingo, 28 de junio de 2020 Page 10 of 30

NumberInSystem - Maximum				
Object Name	Data Source	Category	Value	
CAMION	[Population]	Content	2302	
NumberInSystem - Minim		Catamami	Value	
Object Name CAJA	Data Source [Population]	Category Content	0	
CAMION	[Population]	Content	0	
NumberOnLink - Average				
Object Name	Data Source	Category	Value	
Path1	[Travelers]	Content	0.00208	
Path10	[Travelers]	Content	0.00093	
Path11	[Travelers]	Content	0.00056	
Path12	[Travelers]	Content	0.00043	
Path13	[Travelers]	Content	0.01322	
Path14	[Travelers]	Content	0.00165	
Path15	[Travelers]	Content	0.00164	
Path16	[Travelers]	Content	0.00133	
Path17	[Travelers]	Content	0.00037	
Path18	[Travelers]	Content	0.0153	
Path19	[Travelers]	Content	0.04153	
Path2	[Travelers]	Content	0.00619	
Path20	[Travelers]	Content	0.04926	
Path21	[Travelers]	Content	0.09319	
Path22	[Travelers]	Content	0.09373	
Path23	[Travelers]	Content	0.09592	
Path24	[Travelers]	Content	0.08766	
Path25	[Travelers]	Content	0.07327	
Path26	[Travelers]	Content	0.04484	
Path27	[Travelers]	Content	0.02347	
Path28	[Travelers]	Content	0.2021	
Path29	[Travelers]	Content	0.06684	
Path3	[Travelers]	Content	0.02865	
Path30	[Travelers]	Content	0.04042	
Path31	[Travelers]	Content	0.04943	
Path32	[Travelers]	Content	0.01675	
Path33	[Travelers]	Content	0.01271	
Path34	[Travelers]	Content	0.0005	
Path35	[Travelers]	Content	0.00068	
Path36	[Travelers]	Content	0.00025	
Path37	[Travelers]	Content	0.00183	
Path38	[Travelers]	Content	0.00315	
Path39	[Travelers]	Content	0.00043	
Path4	[Travelers]	Content	0.00329	
Path40	[Travelers]	Content	0.01147	
Path41	[Travelers]	Content	0.00823	
Path42	[Travelers]	Content	0.0115	
Path5	[Travelers]	Content	0.00616	
Path6	[Travelers]	Content	0.0005	
Path7	[Travelers]	Content	0.00896	
			117	

Object Name	Data Source	Category	Value	
Path8	[Travelers]	Content	0.00542	
Path9	[Travelers]	Content	0.01412	
TimePath1	[Travelers]	Content	0.00312	
TimePath2	[Travelers]	Content	0.01041	
TimePath3	[Travelers]	Content	0.01041	
TimePath4	[Travelers]	Content	0.0052	
NumberOnLink - Maxi	mum			
Object Name	Data Source	Category	Value	
Path1	[Travelers]	Content	1	
Path10	[Travelers]	Content	1	
Path11	[Travelers]	Content	1	
Path12	[Travelers]	Content	1	
Path13	[Travelers]	Content	1	
Path14	[Travelers]	Content	1	
Path15	[Travelers]	Content	1	
Path16	[Travelers]	Content	1	
Path17	[Travelers]	Content	1	
Path18	[Travelers]	Content	1	
Path19	[Travelers]	Content	1	
Path2	[Travelers]	Content	1	
Path20	[Travelers]	Content	1	
Path21	[Travelers]	Content	1	
Path22	[Travelers]	Content	1	
Path23	[Travelers]	Content	1	
Path24	[Travelers]	Content	1	
Path25	[Travelers]	Content	1	
Path26		Content	<u>'</u> 1	
	[Travelers]	Content	1	
Path27	[Travelers]			
Path28	[Travelers]	Content	1	
Path29	[Travelers]	Content	1	
Path3	[Travelers]	Content	1	
Path30	[Travelers]	Content	1	
Path31	[Travelers]	Content	1	
Path32	[Travelers]	Content	21	
Path33	[Travelers]	Content	21	
Path34	[Travelers]	Content	1	
Path35	[Travelers]	Content	1	
Path36	[Travelers]	Content	1	
Path37	[Travelers]	Content	1	
Path38	[Travelers]	Content	1	
Path39	[Travelers]	Content	1	
Path4	[Travelers]	Content	1	
Path40	[Travelers]	Content	18	
Path41	[Travelers]	Content	18	
Path42	[Travelers]	Content	3	
Path5	[Travelers]	Content	3	
Path6	[Travelers]	Content	1	
1 4110	[Tavolois]	Contont		1.10

domingo, 28 de junio de 2020 Page 12 of 30

Num	harOnl	ink - I	Maximum

NumberOnLink - Maximu		Catagory	Value
Object Name Path7	Data Source [Travelers]	Category Content	Value 20
Path8	[Travelers]	Content	20
Path9	[Travelers]	Content	1
TimePath1	[Travelers]	Content	1
TimePath2	[Travelers]	Content	1
TimePath3		Content	
	[Travelers]		1
TimePath4	[Travelers]	Content	1
NumberOnLink - Minimus Object Name	m Data Source	Category	Value
Path1	[Travelers]	Content	0
Path10	[Travelers]	Content	0
Path11	[Travelers]	Content	0
Path12	[Travelers]	Content	0
Path13		Content	
	[Travelers]		0
Path14	[Travelers]	Content	0
Path 15	[Travelers]	Content	0
Path16	[Travelers]	Content	0
Path17	[Travelers]	Content	0
Path18	[Travelers]	Content	0
Path19	[Travelers]	Content	0
Path2	[Travelers]	Content	0
Path20	[Travelers]	Content	0
Path21	[Travelers]	Content	0
Path22	[Travelers]	Content	0
Path23	[Travelers]	Content	0
Path24	[Travelers]	Content	0
Path25	[Travelers]	Content	0
Path26	[Travelers]	Content	0
Path27	[Travelers]	Content	0
Path28	[Travelers]	Content	0
Path29	[Travelers]	Content	0
Path3	[Travelers]	Content	0
Path30	[Travelers]	Content	0
Path31	[Travelers]	Content	0
Path32	[Travelers]	Content	0
Path33	[Travelers]	Content	0
Path34	[Travelers]	Content	0
Path35	[Travelers]	Content	0
Path36	[Travelers]	Content	0
Path37			0
	[Travelers]	Content	
Path38	[Travelers]	Content	0
Path 4	[Travelers]	Content	0
Path4	[Travelers]	Content	0
Path40	[Travelers]	Content	0
Path41	[Travelers]	Content	0
Path42	[Travelers]	Content	0
Path5	[Travelers]	Content	0
domingo 28 de junio de 2020			Page 13 of 30

Page 13 of 30 domingo, 28 de junio de 2020

Object Name	Data Source	Category	Value
Path6	[Travelers]	Content	0
Path7	[Travelers]	Content	0
Path8	[Travelers]	Content	0
Path9	[Travelers]	Content	0
imePath1	[Travelers]	Content	0
ΓimePath2	[Travelers]	Content	0
TimePath3	[Travelers]	Content	0
ΓimePath4	[Travelers]	Content	0
OutputValue - FinalValu	ue		
Object Name	Data Source	Category	Value
Model	MP_LLEGADA	INVEST	21
Model	MP_TOTAL	INVEST	115
ScheduledUtilization -	Percent		
Object Name	Data Source	Category	Value
ADIC_ALM	[Resource]	Capacity	10.50618
Combiner1	[Resource]	Capacity	0
Combiner2	[Resource]	Capacity	0
Combiner3	[Resource]	Capacity	0
Combiner4	[Resource]	Capacity	0
DESEMBARQUE	[Resource]	Capacity	2.86469
Separator1	[Resource]	Capacity	0
Separator2	[Resource]	Capacity	0
Separator3	[Resource]	Capacity	0
Separator4	[Resource]	Capacity	0
Separator5	[Resource]	Capacity	0
ENFRIA	[Resource]	Capacity	17.19011
ESCAL	[Resource]	Capacity	17.59678
EVAC	[Resource]	Capacity	8.7268
LAV_CLA	[Resource]	Capacity	10.30213
LLENADO	[Resource]	Capacity	14.2131
PASTEU	[Resource]	Capacity	30.562
PELA	[Resource]	Capacity	12.37432
PESA	[Resource]	Capacity	15.29054
PRE_COC	[Resource]	Capacity	16.83828
PREP_ALM	[Resource]	Capacity	11.05453
SELEC_CLAS	[Resource]	Capacity	11.31447
SELLADO	[Resource]	Capacity	9.12111
TROZA	[Resource]	Capacity	12.52484
OPER1	[Population]	Capacity	0.31791
OPER1[1]	[Resource]	Capacity	0.31791
CAM	[Population]	Capacity	2.86469
CAM[1]	[Resource]	Capacity	2.86469
TEC	[Population]	Capacity	97.24196
TEC[1]	[Resource]	Capacity	97.24196
imeBusy - Average Diect Name	Data Source	Category	Value

Object Name CAM[1] Category ResourceState **Data Source** Value 0.04588 [Resource] TEC[1] 0.33371 [Resource] ResourceState Page 14 of 30

TimeBusy - Occurrences			
Object Name	Data Source	Category	Value
CAM[1]	[Resource]	ResourceState	6
TEC[1]	[Resource]	ResourceState	28
TimeBusy - Percent			
Object Name	Data Source	Category	Value
CAM[1]	[Resource]	ResourceState	2.86469
TEC[1]	[Resource]	ResourceState	97.24196
TimeBusy - Total			
Object Name	Data Source	Category	Value
CAM[1]	[Resource]	ResourceState	0.27527
TEC[1]	[Resource]	ResourceState	9.34393
Timeldle - Average			
Object Name	Data Source	Category	Value
OPER1[1]	[Resource]	ResourceState	1.36834
CAM[1]	[Resource]	ResourceState	1.55561
TEC[1]	[Resource]	ResourceState	0.00946
Timeldle - Occurrences	- · -		
Object Name	Data Source	Category	Value
OPER1[1]	[Resource]	ResourceState	7
CAM[1]	[Resource]	ResourceState	6
TEC[1]	[Resource]	ResourceState	28
Timeldle - Percent		_	
Object Name	Data Source	Category	Value
OPER1[1]	[Resource]	ResourceState	99.68209
CAM[1]	[Resource]	ResourceState	97.13531
TEC[1]	[Resource]	ResourceState	2.75804
Timeldle - Total		-	
Object Name	Data Source	Category ResourceState	Value
OPER1[1]	[Resource]		9.5784
CAM[1]	[Resource]	ResourceState	9.33368
TEC[1]	[Resource]	ResourceState	0.26502
TimeInStation - Average	Data Comment	0.4	W.L.
Object Name ADIC_ALM	Data Source MemberInputBuffer	Category HoldingTime	Value 0.6468
ADIC_ALM	ParentInputBuffer	HoldingTime	0.10886
ADIC_ALM	Processing	HoldingTime	0.06967
Combiner1	ParentInputBuffer	HoldingTime	4.12455
Combiner2	MemberInputBuffer	HoldingTime	0.00264
Combiner3	B # a		
	MemberInputBuffer	HoldingTime	0.01561
Combiner4	MemberInputBuffer	HoldingTime	0.00658
Combiner4 DESEMBARQUE	MemberInputBuffer InputBuffer	HoldingTime HoldingTime	0.00658 0.00997
Combiner4	MemberInputBuffer	HoldingTime	0.00658
Combiner4 DESEMBARQUE	MemberInputBuffer InputBuffer	HoldingTime HoldingTime	0.00658 0.00997
Combiner4 DESEMBARQUE DESEMBARQUE	MemberInputBuffer InputBuffer MemberOutputBuffer	HoldingTime HoldingTime HoldingTime	0.00658 0.00997 0.00176
Combiner4 DESEMBARQUE DESEMBARQUE DESEMBARQUE	MemberInputBuffer InputBuffer MemberOutputBuffer Processing	HoldingTime HoldingTime HoldingTime HoldingTime	0.00658 0.00997 0.00176 0.03591
Combiner4 DESEMBARQUE DESEMBARQUE DESEMBARQUE ENFRIA	MemberInputBuffer InputBuffer MemberOutputBuffer Processing InputBuffer	HoldingTime HoldingTime HoldingTime HoldingTime HoldingTime	0.00658 0.00997 0.00176 0.03591 0.21451
Combiner4 DESEMBARQUE DESEMBARQUE DESEMBARQUE ENFRIA ENFRIA	MemberInputBuffer InputBuffer MemberOutputBuffer Processing InputBuffer Processing	HoldingTime HoldingTime HoldingTime HoldingTime HoldingTime HoldingTime	0.00658 0.00997 0.00176 0.03591 0.21451 0.07513
Combiner4 DESEMBARQUE DESEMBARQUE DESEMBARQUE ENFRIA ENFRIA ESCAL	MemberInputBuffer InputBuffer MemberOutputBuffer Processing InputBuffer Processing InputBuffer	HoldingTime HoldingTime HoldingTime HoldingTime HoldingTime HoldingTime HoldingTime HoldingTime	0.00658 0.00997 0.00176 0.03591 0.21451 0.07513 0.15931
Combiner4 DESEMBARQUE DESEMBARQUE DESEMBARQUE ENFRIA ENFRIA ESCAL ESCAL EVAC	MemberInputBuffer InputBuffer MemberOutputBuffer Processing InputBuffer Processing InputBuffer Processing InputBuffer InputBuffer InputBuffer	HoldingTime	0.00658 0.00997 0.00176 0.03591 0.21451 0.07513 0.15931 0.14088 0.10797
Combiner4 DESEMBARQUE DESEMBARQUE DESEMBARQUE ENFRIA ENFRIA ESCAL ESCAL	MemberInputBuffer InputBuffer MemberOutputBuffer Processing InputBuffer Processing InputBuffer Processing	HoldingTime HoldingTime HoldingTime HoldingTime HoldingTime HoldingTime HoldingTime HoldingTime HoldingTime	0.00658 0.00997 0.00176 0.03591 0.21451 0.07513 0.15931 0.14088

domingo, 28 de junio de 2020 Page 15 of 30

TimeInStation - Average			
Object Name	Data Source	Category	Value
LAV_CLA	Processing	HoldingTime	0.07084
LLENADO	InputBuffer	HoldingTime	0.16737
LLENADO	Processing	HoldingTime	0.06966
PASTEU	InputBuffer	HoldingTime	0.17155
PASTEU	Processing	HoldingTime	0.3745
PELA	InputBuffer	HoldingTime	0.06751
PELA	Processing	HoldingTime	0.14632
PESA	InputBuffer	HoldingTime	0.18146
PESA	Processing	HoldingTime	0.0768
PRE_COC	InputBuffer	HoldingTime	0.15356
PRE_COC	Processing	HoldingTime	0.13982
PREP_ALM	InputBuffer	HoldingTime	0.0076
PREP_ALM	Processing	HoldingTime	0.17704
SELEC_CLAS	InputBuffer	HoldingTime	0.17986
SELEC_CLAS	Processing	HoldingTime	0.02822
SELLADO	InputBuffer	HoldingTime	0.12046
SELLADO	Processing	HoldingTime	0.03006
TROZA	InputBuffer	HoldingTime	0.08125
TROZA	Processing	HoldingTime	0.14282
OPER1[1]	RideStation	HoldingTime	0.00333
TimeInStation - Maximum	1		
Object Name	Data Source	Category	Value
ADIC_ALM	MemberInputBuffer	HoldingTime	1.28163
ADIC_ALM	ParentInputBuffer	HoldingTime	0.25227
ADIC_ALM	Processing	HoldingTime	0.09057
Combiner1	ParentInputBuffer	HoldingTime	8.06782
Combiner2	MemberInputBuffer	HoldingTime	0.00264
Combiner3	MemberInputBuffer	HoldingTime	0.01561
Combiner4	MemberInputBuffer	HoldingTime	0.00658
DESEMBARQUE	InputBuffer	HoldingTime	0.00997
DESEMBARQUE	MemberOutputBuffer	HoldingTime	0.00176
DESEMBARQUE	Processing	HoldingTime	0.04249
ENFRIA	InputBuffer	HoldingTime	0.66355
ENFRIA	Processing	HoldingTime	0.09034
ESCAL	InputBuffer	HoldingTime	0.40308
ESCAL	Processing	HoldingTime	0.1997
EVAC	InputBuffer	HoldingTime	0.26631
EVAC	Processing	HoldingTime	0.04718
LAV_CLA	InputBuffer	HoldingTime	0.25141
LAV_CLA	Processing	HoldingTime	0.09062
LLENADO	InputBuffer	HoldingTime	0.55222
LLENADO	Processing	HoldingTime	0.08847
PASTEU	InputBuffer	HoldingTime	0.63307
PASTEU	Processing	HoldingTime	0.4154
PELA	InputBuffer	HoldingTime	0.17533
PELA	Processing	HoldingTime	0.18966
PESA	InputBuffer	HoldingTime	0.58134

Page 16 of 30

١٧٧

TimeInStation - Maximum	ı		
Object Name	Data Source	Category	Value
PESA	Processing	HoldingTime	0.09942
PRE_COC	InputBuffer	HoldingTime	0.45648
PRE_COC	Processing	HoldingTime	0.18242
PREP_ALM	InputBuffer	HoldingTime	0.04561
PREP_ALM	Processing	HoldingTime	0.19488
SELEC_CLAS	InputBuffer	HoldingTime	0.38266
SELEC_CLAS	Processing	HoldingTime	0.03236
SELLADO	InputBuffer	HoldingTime	0.25679
SELLADO	Processing	HoldingTime	0.03582
TROZA	InputBuffer	HoldingTime	0.14094
TROZA	Processing	HoldingTime	0.19282
OPER1[1]	RideStation	HoldingTime	0.00333
TimeInStation - Minimum			
Object Name	Data Source	Category	Value
ADIC_ALM	MemberInputBuffer	HoldingTime	0.13685
ADIC_ALM	ParentInputBuffer	HoldingTime	0.00111
ADIC_ALM	Processing	HoldingTime	0.0547
Combiner1	ParentInputBuffer	HoldingTime	0.64945
Combiner2	MemberInputBuffer	HoldingTime	0.00264
Combiner3	MemberInputBuffer	HoldingTime	0.01561
Combiner4	MemberInputBuffer	HoldingTime	0.00658
DESEMBARQUE	InputBuffer	HoldingTime	0.00997
DESEMBARQUE	MemberOutputBuffer	HoldingTime	0.00176
DESEMBARQUE	Processing	HoldingTime	0.02861
ENFRIA	InputBuffer	HoldingTime	0.00208
ENFRIA	Processing	HoldingTime	0.05138
ESCAL	InputBuffer	HoldingTime	0.00118
ESCAL	Processing	HoldingTime	0.10999
EVAC	InputBuffer	HoldingTime	0.01184
EVAC	Processing	HoldingTime	0.02803
LAV_CLA	InputBuffer	HoldingTime	0.00125
LAV_CLA	Processing	HoldingTime	0.05427
LLENADO	InputBuffer	HoldingTime	0.00125
LLENADO	Processing	HoldingTime	0.05077
PASTEU	InputBuffer	HoldingTime	0.00226
PASTEU	Processing	HoldingTime	0.33937
PELA	InputBuffer	HoldingTime	0.00319
PELA	Processing	HoldingTime	0.10885
PESA	InputBuffer	HoldingTime	0.00333
PESA	Processing	HoldingTime	0.05376
PRE_COC	InputBuffer	HoldingTime	0.00278
PRE_COC	Processing	HoldingTime	0.10355
PREP_ALM	InputBuffer	HoldingTime	0
PREP_ALM	Processing	HoldingTime	0.14271
SELEC_CLAS	InputBuffer	HoldingTime	0.002
SELEC_CLAS	Processing	HoldingTime	0.02247
SELLADO	InputBuffer	HoldingTime	0.00226
			اکی

domingo, 28 de junio de 2020 Page 17 of 30

TimeInStation - Minimum			
Object Name	Data Source	Category	Value
SELLADO	Processing	HoldingTime	0.02538
TROZA	InputBuffer	HoldingTime	0.01642
TROZA	Processing	HoldingTime	0.10621
OPER1[1]	RideStation	HoldingTime	0.00333
TimeInSystem - Average			
Object Name	Data Source	Category	Value
CAJA	[Population]	FlowTime	2.58855
CAMION	[Population]	FlowTime	0.0558
ALMAC	[DestroyedEntities]	FlowTime	3.3343
CASCARA	[DestroyedEntities]	FlowTime	0.01004
MP_MALA	[DestroyedEntities]	FlowTime	0.00908
SALIDA_CAMION	[DestroyedEntities]	FlowTime	0.0558
TimeInSystem - Maximum			
Object Name	Data Source	Category	Value
CAJA	[Population]	FlowTime	4.64631
CAMION	[Population]	FlowTime	0.06238
ALMAC	[DestroyedEntities]	FlowTime	4.64631
CASCARA	[DestroyedEntities]	FlowTime	0.01004
MP_MALA	[DestroyedEntities]	FlowTime	0.01054
SALIDA_CAMION	[DestroyedEntities]	FlowTime	0.06238
TimeInSystem - Minimum			
Object Name	Data Source	Category	Value
CAJA	[Population]	FlowTime	0.00845
CAMION	[Population]	FlowTime	0.0485
ALMAC	[DestroyedEntities]	FlowTime	1.59861
CASCARA	[DestroyedEntities]	FlowTime	0.01004
MP_MALA	[DestroyedEntities]	FlowTime	0.00845
SALIDA_CAMION	[DestroyedEntities]	FlowTime	0.0485
TimeInSystem - Observati	ions		
Object Name	Data Source	Category	Value
CAJA	[Population]	FlowTime	340
CAMION	[Population]	FlowTime	6
ALMAC	[DestroyedEntities]	FlowTime	6
CASCARA	[DestroyedEntities]	FlowTime	11
MP_MALA	[DestroyedEntities]	FlowTime	10
SALIDA_CAMION	[DestroyedEntities]	FlowTime	6
TimeOnLink - Average			
Object Name	Data Source	Category	Value
Path1	[Travelers]	FlowTime	0.00333
Path10	[Travelers]	FlowTime	0.00149
Path11	[Travelers]	FlowTime	0.0009
Path12	[Travelers]	FlowTime	0.00069
Path13	[Travelers]	FlowTime	0.02117
Path14	[Travelers]	FlowTime	0.00264
Path15	[Travelers]	FlowTime	0.00263
Path16	[Travelers]	FlowTime	0.00213
Path17	[Travelers]	FlowTime	0.0006
Path18	[Travelers]	FlowTime	0.01225
			124

Page 18 of 30

TimeOnLink - Average			
Object Name	Data Source	Category	Value
Path19	[Travelers]	FlowTime	0.03991
Path2	[Travelers]	FlowTime	0.00992
Path20	[Travelers]	FlowTime	0.03945
Path21	[Travelers]	FlowTime	0.06396
Path22	[Travelers]	FlowTime	0.06433
Path23	[Travelers]	FlowTime	0.0512
Path24	[Travelers]	FlowTime	0.04211
Path25	[Travelers]	FlowTime	0.0352
Path26	[Travelers]	FlowTime	0.02394
Path27	[Travelers]	FlowTime	0.01409
Path28	[Travelers]	FlowTime	0.13871
Path29	[Travelers]	FlowTime	0.05352
Path3	[Travelers]	FlowTime	0.02294
Path30	[Travelers]	FlowTime	0.03531
Path31	[Travelers]	FlowTime	0.02968
Path32	[Travelers]	FlowTime	0.00149
Path33	[Travelers]	FlowTime	0.00113
Path34	[Travelers]	FlowTime	0.00079
Path35	[Travelers]	FlowTime	0.00109
Path36	[Travelers]	FlowTime	0.0004
Path37	[Travelers]	FlowTime	0.00294
Path38	[Travelers]	FlowTime	0.00504
Path39	[Travelers]	FlowTime	0.00069
Path4	[Travelers]	FlowTime	0.01054
Path40	[Travelers]	FlowTime	0.00117
Path41	[Travelers]	FlowTime	0.00084
Path42	[Travelers]	FlowTime	0.01004
Path5	[Travelers]	FlowTime	0.00845
Path6	[Travelers]	FlowTime	0.00079
Path7	[Travelers]	FlowTime	0.00082
Path8	[Travelers]	FlowTime	0.0005
Path9	[Travelers]	FlowTime	0.02262
TimePath1	[Travelers]	FlowTime	0.005
TimePath2	[Travelers]	FlowTime	0.01667
TimePath3	[Travelers]	FlowTime	0.01667
TimePath4	[Travelers]	FlowTime	0.00833
TimeOnLink - Maximum			
Object Name	Data Source	Category	Value
Path1	[Travelers]	FlowTime	0.00333
Path10	[Travelers]	FlowTime	0.00149
Path11	[Travelers]	FlowTime	0.0009
Path12	[Travelers]	FlowTime	0.00069
Path13	[Travelers]	FlowTime	0.02117
Path14	[Travelers]	FlowTime	0.00264
Path15	[Travelers]	FlowTime	0.00263
Path16	[Travelers]	FlowTime	0.00213
Path17	[Travelers]	FlowTime	0.0006
			IZJ

domingo, 28 de junio de 2020 Page 19 of 30

TimeOnlink Maximum			
TimeOnLink - Maximum Object Name	Data Source	Category	Value
Path18	[Travelers]	FlowTime	0.03436
Path19	[Travelers]	FlowTime	0.1674
Path2	[Travelers]	FlowTime	0.00992
Path20	[Travelers]	FlowTime	0.14537
Path21	[Travelers]	FlowTime	0.25426
Path22	[Travelers]	FlowTime	0.32048
Path23	[Travelers]	FlowTime	0.1956
Path24	[Travelers]	FlowTime	0.1595
Path25	[Travelers]	FlowTime	0.20123
Path26	[Travelers]	FlowTime	0.08294
Path27	[Travelers]	FlowTime	0.0386
Path28	[Travelers]	FlowTime	0.41766
Path29	[Travelers]	FlowTime	0.37222
Path3	[Travelers]	FlowTime	0.04249
Path30		FlowTime	0.10698
	[Travelers]		
Path31	[Travelers]	FlowTime	0.10269
Path32	[Travelers]	FlowTime	0.00149
Path33	[Travelers]	FlowTime	0.00113
Path34	[Travelers]	FlowTime	0.00079
Path35	[Travelers]	FlowTime	0.00109
Path36	[Travelers]	FlowTime	0.0004
Path37	[Travelers]	FlowTime	0.00294
Path38	[Travelers]	FlowTime	0.00504
Path39	[Travelers]	FlowTime	0.00069
Path4	[Travelers]	FlowTime	0.01054
Path40	[Travelers]	FlowTime	0.00117
Path41	[Travelers]	FlowTime	0.00084
Path42	[Travelers]	FlowTime	0.01004
Path5	[Travelers]	FlowTime	0.00845
Path6	[Travelers]	FlowTime	0.00079
Path7	[Travelers]	FlowTime	0.00082
Path8	[Travelers]	FlowTime	0.0005
Path9	[Travelers]	FlowTime	0.02262
TimePath1	[Travelers]	FlowTime	0.005
TimePath2	[Travelers]	FlowTime	0.01667
TimePath3	[Travelers]	FlowTime	0.01667
TimePath4	[Travelers]	FlowTime	0.00833
TimeOnLink - Minimum			
Object Name	Data Source	Category	Value
Path1	[Travelers]	FlowTime	0.00333
Path10	[Travelers]	FlowTime	0.00149
Path11	[Travelers]	FlowTime	0.0009
Path12	[Travelers]	FlowTime	0.00069
Path13	[Travelers]	FlowTime	0.02117
Path14	[Travelers]	FlowTime	0.00264
Path15	[Travelers]	FlowTime	0.00263
D 41.40			

domingo, 28 de junio de 2020 Page 20 of 30

FlowTime

0.00213

Path16

[Travelers]

TimeOnLink - Minimum			
Object Name	Data Source	Category	Value
Path17	[Travelers]	FlowTime	0.0006
Path18	[Travelers]	FlowTime	0.00229
Path19	[Travelers]	FlowTime	0.00362
Path2	[Travelers]	FlowTime	0.00992
Path20	[Travelers]	FlowTime	0.00153
Path21	[Travelers]	FlowTime	0.00348
Path22	[Travelers]	FlowTime	0.01671
Path23	[Travelers]	FlowTime	0.00306
Path24	[Travelers]	FlowTime	0.00146
Path25	[Travelers]	FlowTime	0.00153
Path26	[Travelers]	FlowTime	0.00139
Path27	[Travelers]	FlowTime	0.00254
Path28	[Travelers]	FlowTime	0.00254
Path29	[Travelers]	FlowTime	0.00237
Path3	[Travelers]	FlowTime	0.00997
Path30	[Travelers]	FlowTime	0.01664
Path31	[Travelers]	FlowTime	0.01212
Path32	[Travelers]	FlowTime	0.00149
Path33	[Travelers]	FlowTime	0.00113
Path34	[Travelers]	FlowTime	0.00079
Path35	[Travelers]	FlowTime	0.00109
Path36	[Travelers]	FlowTime	0.0004
Path37	[Travelers]	FlowTime	0.00294
Path38	[Travelers]	FlowTime	0.00504
Path39	[Travelers]	FlowTime	0.00069
Path4	[Travelers]	FlowTime	0.01054
Path40	[Travelers]	FlowTime	0.00117
Path41	[Travelers]	FlowTime	0.00084
Path42	[Travelers]	FlowTime	0.01004
Path5	[Travelers]	FlowTime	0.00845
Path6	[Travelers]	FlowTime	0.00079
Path7		FlowTime	0.00079
	[Travelers]	FlowTime	
Path8	[Travelers]		0.0005
Path9 TimePath1	[Travelers]	FlowTime FlowTime	0.02262
	[Travelers]		0.005
TimePath2	[Travelers]	FlowTime	0.01667
TimePath3	[Travelers]	FlowTime	0.01667
TimePath4	[Travelers]	FlowTime	0.00833
TimeProcessing - Averag Object Name	e Data Source	Category	Value
ADIC_ALM	[Resource]	ResourceState	0.20191
DESEMBARQUE	[Resource]	ResourceState	0.04588
ENFRIA	[Resource]	ResourceState	0.33036
ESCAL	[Resource]	ResourceState	0.33817
EVAC	[Resource]	ResourceState	0.16771
LAV_CLA	[Resource]	ResourceState	0.19799
•	[50000]		

ResourceState

Page 21 of 30

0.27315

LLENADO

[Resource]

TimeProcessing - Averag	e		
Object Name	Data Source	Category	Value
PASTEU	[Resource]	ResourceState	0.58734
PELA	[Resource]	ResourceState	0.23781
PESA	[Resource]	ResourceState	0.29385
PRE_COC	[Resource]	ResourceState	0.3236
PREP_ALM	[Resource]	ResourceState	0.21244
SELEC_CLAS	[Resource]	ResourceState	0.21744
SELLADO	[Resource]	ResourceState	0.17529
TROZA	[Resource]	ResourceState	0.2407
TimeProcessing - Occurre	ences		
Object Name	Data Source	Category	Value
ADIC_ALM	[Resource]	ResourceState	5
DESEMBARQUE	[Resource]	ResourceState	6
ENFRIA	[Resource]	ResourceState	5
ESCAL	[Resource]	ResourceState	5
EVAC	[Resource]	ResourceState	5
LAV_CLA	[Resource]	ResourceState	5
LLENADO	[Resource]	ResourceState	5
PASTEU	[Resource]	ResourceState	5
PELA	[Resource]	ResourceState	5
PESA	[Resource]	ResourceState	5
PRE_COC	[Resource]	ResourceState	5
PREP_ALM	[Resource]	ResourceState	5
SELEC_CLAS	[Resource]	ResourceState	5
SELLADO	[Resource]	ResourceState	5
TROZA	[Resource]	ResourceState	5
TimeProcessing - Percen			
Object Name	Data Source	Category	Value
ADIC_ALM	[Resource]	ResourceState	10.50618
DESEMBARQUE	[Resource]	ResourceState	2.86469
ENFRIA	[Resource]	ResourceState	17.19011
ESCAL	[Resource]	ResourceState	17.59678
EVAC	[Resource]	ResourceState	8.7268
LAV_CLA	[Resource]	ResourceState	10.30213
LLENADO	[Resource]	ResourceState	14.2131
PASTEU	[Resource]	ResourceState	30.562
PELA	[Resource]	ResourceState	12.37432
PESA	[Resource]	ResourceState	15.29054
PRE_COC	[Resource]	ResourceState	16.83828
PREP_ALM	[Resource]	ResourceState	11.05453
SELEC_CLAS	[Resource]	ResourceState	11.31447
SELLADO	[Resource]	ResourceState	9.12111
TROZA	[Resource]	ResourceState	12.52484
TimeProcessing - Total			
Object Name	Data Source	Category	Value
ADIC_ALM	[Resource]	ResourceState	1.00953
DESEMBARQUE	[Resource]	ResourceState	0.27527
ENFRIA	[Resource]	ResourceState	1.65179
ESCAL	[Resource]	ResourceState	1.69087

domingo, 28 de junio de 2020

TimeProcessing - Total			
Object Name	Data Source	Category	Value
EVAC	[Resource]	ResourceState	0.83855
LAV_CLA	[Resource]	ResourceState	0.98993
LLENADO	[Resource]	ResourceState	1.36573
PASTEU	[Resource]	ResourceState	2.93669
PELA	[Resource]	ResourceState	1.18904
PESA	[Resource]	ResourceState	1.46926
PRE_COC	[Resource]	ResourceState	1.61798
PREP_ALM	[Resource]	ResourceState	1.06222
SELEC_CLAS	[Resource]	ResourceState	1.0872
SELLADO	[Resource]	ResourceState	0.87644
TROZA	[Resource]	ResourceState	1.20351
TimeStarved - Average			
Object Name	Data Source	Category	Value
ADIC_ALM	[Resource]	ResourceState	1.43324
Combiner1	[Resource]	ResourceState	9.60895
Combiner2	[Resource]	ResourceState	9.60895
Combiner3	[Resource]	ResourceState	9.60895
Combiner4	[Resource]	ResourceState	9.60895
DESEMBARQUE	[Resource]	ResourceState	1.55561
Separator1	[Resource]	ResourceState	9.60895
Separator2	[Resource]	ResourceState	9.60895
Separator3	[Resource]	ResourceState	9.60895
Separator4	[Resource]	ResourceState	9.60895
Separator5	[Resource]	ResourceState	9.60895
ENFRIA	[Resource]	ResourceState	1.59143
ESCAL	[Resource]	ResourceState	1.31968
EVAC	[Resource]	ResourceState	1.46173
LAV_CLA	[Resource]	ResourceState	1.4365
LLENADO	[Resource]	ResourceState	1.37387
PASTEU	[Resource]	ResourceState	1.11204
PELA	[Resource]	ResourceState	1.40332
PESA	[Resource]	ResourceState	1.35662
PRE_COC	[Resource]	ResourceState	1.33183
_	· ,	ResourceState	1.42445
PREP_ALM	[Resource]		
SELEC_CLAS	[Resource]	ResourceState	1.42029
SELLADO	[Resource]	ResourceState	1.45542
TROZA	[Resource]	ResourceState	1.40091
TimeStarved - Occurrenc		0.1	W.L.
Object Name ADIC_ALM	Data Source [Resource]	Category ResourceState	Value 6
Combiner1		ResourceState	1
Combiner2	[Resource]	ResourceState	1
	[Resource]		·
Combiner3	[Resource]	ResourceState	1
Combiner4	[Resource]	ResourceState	1
DESEMBARQUE	[Resource]	ResourceState	6
Separator1	[Resource]	ResourceState	1
Separator2	[Resource]	ResourceState	1
domingo 29 do junio do 2020			129 Page 22 of 20

TimeStarved - Occurrences	Tim	eStar	ved -	Occi	urrences
---------------------------	-----	-------	-------	------	----------

TimeStarved - Occurrence			
Object Name	Data Source	Category	Value
Separator3	[Resource]	ResourceState	1
Separator4	[Resource]	ResourceState	1
Separator5	[Resource]	ResourceState	1
ENFRIA	[Resource]	ResourceState	5
ESCAL	[Resource]	ResourceState	6
EVAC	[Resource]	ResourceState	6
LAV_CLA	[Resource]	ResourceState	6
LLENADO	[Resource]	ResourceState	6
PASTEU	[Resource]	ResourceState	6
PELA	[Resource]	ResourceState	6
PESA	[Resource]	ResourceState	6
PRE_COC	[Resource]	ResourceState	6
PREP_ALM	[Resource]	ResourceState	6
SELEC_CLAS	[Resource]	ResourceState	6
SELLADO	[Resource]	ResourceState	6
TROZA	[Resource]	ResourceState	6
TimeStarved - Percent			
Object Name	Data Source	Category	Value
ADIC_ALM	[Resource]	ResourceState	89.49382
Combiner1	[Resource]	ResourceState	100
Combiner2	[Resource]	ResourceState	100
Combiner3	[Resource]	ResourceState	100
Combiner4	[Resource]	ResourceState	100
DESEMBARQUE	[Resource]	ResourceState	97.13531
Separator1	[Resource]	ResourceState	100
Separator2	[Resource]	ResourceState	100
Separator3	[Resource]	ResourceState	100
Separator4	[Resource]	ResourceState	100
Separator5	[Resource]	ResourceState	100
ENFRIA	[Resource]	ResourceState	82.80989
ESCAL	[Resource]	ResourceState	82.40322
EVAC	[Resource]	ResourceState	91.2732
LAV_CLA	[Resource]	ResourceState	89.69787
LLENADO	[Resource]	ResourceState	85.7869
PASTEU	[Resource]	ResourceState	69.438
PELA	[Resource]	ResourceState	87.62568
PESA	[Resource]	ResourceState	84.70946
PRE_COC	[Resource]	ResourceState	83.16172
PREP_ALM	[Resource]	ResourceState	88.94547
SELEC_CLAS	[Resource]	ResourceState	88.68553
SELLADO	[Resource]	ResourceState	90.87889
TROZA	[Resource]	ResourceState	87.47516
TimeStarved - Total	[1.0000100]	Noodioodato	
Object Name	Data Source	Category	Value
ADIC_ALM	[Resource]	ResourceState	8.59942
Combiner1	[Resource]	ResourceState	9.60895
Combiner2	[Resource]	ResourceState	9.60895
			400

TimeStarved - Total			
Object Name	Data Source	Category	Value
Combiner3	[Resource]	ResourceState	9.60895
Combiner4	[Resource]	ResourceState	9.60895
DESEMBARQUE	[Resource]	ResourceState	9.33368
Separator1	[Resource]	ResourceState	9.60895
Separator2	[Resource]	ResourceState	9.60895
Separator3	[Resource]	ResourceState	9.60895
Separator4	[Resource]	ResourceState	9.60895
Separator5	[Resource]	ResourceState	9.60895
ENFRIA	[Resource]	ResourceState	7.95716
ESCAL	[Resource]	ResourceState	7.91809
EVAC	[Resource]	ResourceState	8.7704
LAV_CLA	[Resource]	ResourceState	8.61902
LLENADO	[Resource]	ResourceState	8.24322
PASTEU	[Resource]	ResourceState	6.67226
PELA	[Resource]	ResourceState	8.41991
PESA	[Resource]	ResourceState	8.13969
PRE_COC	[Resource]	ResourceState	7.99097
PREP_ALM	[Resource]	ResourceState	8.54673
SELEC_CLAS	[Resource]	ResourceState	8.52175
SELLADO	[Resource]	ResourceState	8.73251
TROZA	[Resource]	ResourceState	8.40545
TimeTransporting - Avera		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Object Name	Data Source	Category	Value
OPER1[1]	[Resource]	ResourceState	0.00509
TimeTransporting - Occu	rrences		
Object Name	Data Source	Category	Value
OPER1[1]	[Resource]	ResourceState	6
TimeTransporting - Perce			
Object Name	Data Source	Category	Value
OPER1[1]	[Resource]	ResourceState	0.31791
TimeTransporting - Total		0-1	Walter
Object Name OPER1[1]	Data Source [Resource]	Category ResourceState	Value 0.03055
UnitsAllocated - Total	[Resource]	Resourcestate	0.00000
Object Name	Data Source	Category	Value
ADIC_ALM	[Resource]	Capacity	6
Combiner1	[Resource]	Capacity	6
Combiner2	[Resource]	Capacity	6
Combiner3	[Resource]	Capacity	6
Combiner4	[Resource]	Capacity	6
DESEMBARQUE	[Resource]	Capacity	6
Separator1	[Resource]	Capacity	6
Separator2	[Resource]	Capacity	6
Separator3	[Resource]	Capacity	6
Separator4	[Resource]	Capacity	6
Separator5	[Resource]	Capacity	6
ENFRIA			6
	[Resource]	Capacity	
ESCAL	[Resource]	Capacity	6 131
domingo 28 de junio de 2020			131 Page 25 of 30

Page 25 of 30

UnitsAllocated - Total			
Object Name	Data Source	Category	Value
EVAC	[Resource]	Capacity	6
LAV_CLA	[Resource]	Capacity	6
LLENADO	[Resource]	Capacity	6
PASTEU	[Resource]	Capacity	6
PELA	[Resource]	Capacity	6
PESA	[Resource]	Capacity	6
PRE_COC	[Resource]	Capacity	6
PREP_ALM	[Resource]	Capacity	6
SELEC_CLAS	[Resource]	Capacity	6
SELLADO	[Resource]	Capacity	6
TROZA	[Resource]	Capacity	6
OPER1	[Population]	Capacity	6
OPER1[1]	[Resource]	Capacity	6
CAM	[Population]	Capacity	12
CAM[1]	[Resource]	Capacity	12
TEC	[Population]	Capacity	78
TEC[1]	[Resource]	Capacity	78
UnitsScheduled - Average			
Object Name	Data Source	Category	Value
ADIC_ALM	[Resource]	Capacity	1
Combiner1	[Resource]	Capacity	1
Combiner2	[Resource]	Capacity	1
Combiner3	[Resource]	Capacity	1
Combiner4	[Resource]	Capacity	1
DESEMBARQUE	[Resource]	Capacity	1
Separator1	[Resource]	Capacity	1
Separator2	[Resource]	Capacity	1
Separator3	[Resource]	Capacity	1
Separator4	[Resource]	Capacity	1
Separator5	[Resource]	Capacity	1
ENFRIA	[Resource]	Capacity	1
ESCAL	[Resource]	Capacity	1
EVAC	[Resource]	Capacity	1
LAV_CLA	[Resource]	Capacity	1
LLENADO	[Resource]	Capacity	1
PASTEU	[Resource]	Capacity	1
PELA	[Resource]	Capacity	1
PESA	[Resource]	Capacity	1
PRE_COC	[Resource]	Capacity	1
PREP_ALM	[Resource]	Capacity	1
SELEC_CLAS	[Resource]	Capacity	1
SELLADO	[Resource]	Capacity	1
TROZA	[Resource]	Capacity	1
OPER1	[Population]	Capacity	1
OPER1[1]	[Resource]	Capacity	1
		•	

Alm

1

domingo, 28 de junio de 2020 Page 26 of 30

Capacity

Capacity

[Population]

[Resource]

CAM

CAM[1]

UnitsScheduled - Average					
Object Name	Data Source	Category	Value		
TEC	[Population]	Capacity	1		
TE 0143		A ''	4		

TEC[1]	[Resource]	Capacity	1
UnitsScheduled - Maximu			
Object Name	Data Source	Category	Value
ADIC_ALM	[Resource]	Capacity	1
Combiner1	[Resource]	Capacity	1
Combiner2	[Resource]	Capacity	1
Combiner3	[Resource]	Capacity	1
Combiner4	[Resource]	Capacity	1
DESEMBARQUE	[Resource]	Capacity	1
Separator1	[Resource]	Capacity	1
Separator2	[Resource]	Capacity	1
Separator3	[Resource]	Capacity	1
Separator4	[Resource]	Capacity	1
Separator5	[Resource]	Capacity	1
ENFRIA	[Resource]	Capacity	1
ESCAL	[Resource]	Capacity	1
EVAC	[Resource]	Capacity	1
LAV_CLA	[Resource]	Capacity	1
LLENADO	[Resource]	Capacity	1
PASTEU	[Resource]	Capacity	1
PELA	[Resource]	Capacity	1
PESA	[Resource]	Capacity	1
PRE_COC	[Resource]	Capacity	1
PREP_ALM	[Resource]	Capacity	1
SELEC_CLAS	[Resource]	Capacity	1
SELLADO	[Resource]	Capacity	1
TROZA	[Resource]	Capacity	1
OPER1	[Population]	Capacity	1
OPER1[1]	[Resource]	Capacity	1
CAM	[Population]	Capacity	1
CAM[1]	[Resource]	Capacity	1
TEC	[Population]	Capacity	1
TEC[1]	[Resource]	Capacity	1

UnitsScheduled - Minimum

Officación Millima	•••		
Object Name	Data Source	Category	Value
ADIC_ALM	[Resource]	Capacity	1
Combiner1	[Resource]	Capacity	1
Combiner2	[Resource]	Capacity	1
Combiner3	[Resource]	Capacity	1
Combiner4	[Resource]	Capacity	1
DESEMBARQUE	[Resource]	Capacity	1
Separator1	[Resource]	Capacity	1
Separator2	[Resource]	Capacity	1
Separator3	[Resource]	Capacity	1
Separator4	[Resource]	Capacity	1
Separator5	[Resource]	Capacity	1

133

UnitsScheduled - Minimum

Data Source

Object Name

ENFRIA	[Resource]	Capacity	1
ESCAL			1
	[Resource]	Capacity	
EVAC	[Resource]	Capacity	1
LAV_CLA	[Resource]	Capacity	1
LLENADO	[Resource]	Capacity	1
PASTEU	[Resource]	Capacity	1
PELA	[Resource]	Capacity	1
PESA	[Resource]	Capacity	1
PRE_COC	[Resource]	Capacity	1
PREP_ALM	[Resource]	Capacity	1
SELEC_CLAS	[Resource]	Capacity	1
SELLADO	[Resource]	Capacity	1
TROZA	[Resource]	Capacity	1
OPER1	[Population]	Capacity	1
OPER1[1]	[Resource]	Capacity	1
CAM	[Population]	Capacity	1
CAM[1]	[Resource]	Capacity	1
TEC	[Population]	Capacity	1
TEC[1]	[Resource]	Capacity	1
UnitsUtilized - Average	[Capacity	
Object Name	Data Source	Category	Value
ADIC_ALM	[Resource]	Capacity	0.10506
Combiner1	[Resource]	Capacity	0
Combiner2	[Resource]	Capacity	0
Combiner3	[Resource]	Capacity	0
Combiner4	[Resource]	Capacity	0
DESEMBARQUE	[Resource]	Capacity	0.02865
Separator1	[Resource]	Capacity	0
Separator2	[Resource]	Capacity	0
Separator3	[Resource]	Capacity	0
Separator4	[Resource]	Capacity	0
Separator5	[Resource]	Capacity	0
ENFRIA			0.1719
ESCAL	[Resource]	Capacity	
	[Resource]	Capacity	0.17597
EVAC	[Resource]	Capacity	0.08727
LAV_CLA	[Resource]	Capacity	0.10302
LLENADO	[Resource]	Capacity	0.14213
PASTEU	[Resource]	Capacity	0.30562
PELA	[Resource]	Capacity	0.12374
PESA	[Resource]	Capacity	0.15291
PRE_COC	[Resource]	Capacity	0.16838
PREP_ALM	[Resource]	Capacity	0.11055
SELEC_CLAS			0.44044
	[Resource]	Capacity	0.11314
SELLADO	[Resource]	Capacity Capacity	0.09121
SELLADO TROZA			
	[Resource]	Capacity	0.09121
TROZA	[Resource]	Capacity Capacity	0.09121 0.12525

Category

Value

domingo, 28 de junio de 2020 Page 28 of 30

UnitsUtilized - Average			
Object Name	Data Source	Category	Value
CAM	[Population]	Capacity	0.02865
CAM[1]	[Resource]	Capacity	0.02865
TEC	[Population]	Capacity	0.97242
TEC[1]	[Resource]	Capacity	0.97242
UnitsUtilized - Maximum			
Object Name	Data Source	Category	Value
ADIC_ALM	[Resource]	Capacity	1
Combiner1	[Resource]	Capacity	1
Combiner2	[Resource]	Capacity	1
Combiner3	[Resource]	Capacity	1
Combiner4	[Resource]	Capacity	1
DESEMBARQUE	[Resource]	Capacity	1
Separator1	[Resource]	Capacity	1
Separator2	[Resource]	Capacity	1
Separator3	[Resource]	Capacity	1
Separator4	[Resource]	Capacity	1
Separator5	[Resource]	Capacity	1
ENFRIA	[Resource]	Capacity	1
ESCAL	[Resource]	Capacity	1
EVAC	[Resource]	Capacity	1
LAV_CLA	[Resource]	Capacity	1
LLENADO	[Resource]	Capacity	1
PASTEU	[Resource]	Capacity	1
PELA	[Resource]	Capacity	1
PESA	[Resource]	Capacity	1
PRE_COC	[Resource]	Capacity	1
PREP_ALM	[Resource]	Capacity	1
SELEC_CLAS	[Resource]	Capacity	1
SELLADO	[Resource]	Capacity	1
TROZA	[Resource]	Capacity	1
OPER1	[Population]	Capacity	1
OPER1[1]	[Resource]	Capacity	1
CAM	[Population]	Capacity	1
CAM[1]	[Resource]	Capacity	1
TEC	[Population]	Capacity	1
TEC[1]	[Resource]	Capacity	1
UnitsUtilized - Minimum			
Object Name	Data Source	Category	Value
ADIC_ALM	[Resource]	Capacity	0
Combiner1	[Resource]	Capacity	0
Combiner2	[Resource]	Capacity	0
Combiner3	[Resource]	Capacity	0
Combiner4	[Resource]	Capacity	0
DESEMBARQUE	[Resource]	Capacity	0
Separator1	[Resource]	Capacity	0
Separator2	[Resource]	Capacity	0
Separator3	[Resource]	Capacity	0
			135

UnitsUtilized - Minimum

Object Name	Data Source	Category	Value
Separator4	[Resource]	Capacity	0
Separator5	[Resource]	Capacity	0
ENFRIA	[Resource]	Capacity	0
ESCAL	[Resource]	Capacity	0
EVAC	[Resource]	Capacity	0
LAV_CLA	[Resource]	Capacity	0
LLENADO	[Resource]	Capacity	0
PASTEU	[Resource]	Capacity	0
PELA	[Resource]	Capacity	0
PESA	[Resource]	Capacity	0
PRE_COC	[Resource]	Capacity	0
PREP_ALM	[Resource]	Capacity	0
SELEC_CLAS	[Resource]	Capacity	0
SELLADO	[Resource]	Capacity	0
TROZA	[Resource]	Capacity	0
OPER1	[Population]	Capacity	0
OPER1[1]	[Resource]	Capacity	0
CAM	[Population]	Capacity	0
CAM[1]	[Resource]	Capacity	0
TEC	[Population]	Capacity	0
TEC[1]	[Resource]	Capacity	0

Am

domingo, 28 de junio de 2020

Page