UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIENCIAS ECONÓMICAS ESCUELA PROFESIONAL DE ECONOMÍA

"FACTORES DE PRODUCCIÓN Y CRECIMIENTO ECONÓMICO DEL PERÚ EN EL PERÍODO 1990-2022"

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE ECONOMISTA

AUTORES
BAUTISTA ORTEGA LUZ AURORA
SALAZAR SANDOVAL KAREN ESTHER
SUARES MEDINA NATHALY JOHANA

ASESOR: Dr. MIGUEL ÁNGEL BAZALAR PAZ

LÍNEA DE INVESTIGACIÓN: TEORÍA ECONÓMICA

Callao, 2024 PERÚ

INFORMACIÓN BÁSICA

FACULTAD

Facultad de Ciencias Económicas

UNIDAD DE INVESTIGACIÓN

Escuela de Economía

TÍTULO

Factores de producción y crecimiento económico del Perú en el período 1990-2022

AUTORES/ CÓDIGO ORCID/ DNI

Bautista Ortega Luz Aurora / 0009-0003-8782-2073/75606278

Salazar Sandoval Karen Esther / 0009-0007-9869-9591/77322847

Suares Medina Nathaly Johana / 0009-0007-9690-888X/72316684

ASESOR/ CODIGO ORCID/ DNI

Dr. Miguel Ángel Bazalar Paz / 0000-0002-1336-2217 /25793885

LUGAR DE EJECUCIÓN

Lima, Perú

UNIDAD DE ANÁLISIS

Factores de producción y crecimiento económico del Perú, periodo 1990-2022

TIPO/ENFOQUE/DISEÑO DE INVESTIGACIÓN

Explicativo, Cuantitativo, No Experimental

TEMA OCDE

5.2.1 Economía

HOJA DE REFERENCIA DEL JURADO Y APROBACIÓN MIEMBROS DEL JURADO

Dr. Coronado Arrilucea Pablo Mario
 PRESIDENTE

• Dr. Moncada Salcedo Luis Enrique SECRETARIO

Dr. López Salvatierra Edgar
 VOCAL

Mg. Villa Morocho Eduardo
 SUPLENTE

Asesor: Dr. Miguel Ángel Bazalar Paz

N° de Libro: N°1 Folio N°332

N° de Acta: N° 023/24

Fecha de Aprobación: 6 de abril del 2024

Resolución de Sustentación: N°093-2024-CF/FCE

ACTA DE SUSTENTACION DE TESIS CON CICLO DE TESIS PARA LA OBTENCION DEL TÍTULO PROFESIONAL DE ECONOMISTA

LIBRO 1 FOLIO N° 332 ACTA 023/24 DE SUSTENTACION DE TESIS CON CICLO DE TESIS PARA LA OBTENCION DEL TÍTULO PROFESIONAL DE ECONOMISTA

Dr. Coronado Arrilucea Pablo Mario	Presidente
Dr. Moncada Salcedo Luis Enrique	Secretario
Dr. Lopez Salvatierra Edgar	Vocal
Mg. Villa Morocho Eduardo	Suplente

Se dio inicio al acto de sustentación de la tesis de los bachilleres, BAUTISTA ORTEGA LUZ AURORA, SALAZAR SANDOVAL KAREN ESTHER y SUARES MEDINA NATHALY JOHANA, quienes, habiendo cumplido con los requisitos para optar el Título Profesional de Economista, sustentan la tesis titulada "FACTORES DE PRODUCCIÓN Y CRECIMIENTO ECONÓMICO DEL PERÚ EN EL PERÍODO 1990-2022", cumpliendo con la sustentación en acto público.

Con el quórum reglamentario de ley, se dio inicio a la sustentación de conformidad con lo establecido por el Reglamento de Grados y Títulos vigente. Luego de la exposición, y la absolución de las preguntas formuladas por el Jurado y efectuadas las deliberaciones pertinentes, acordó; dar por APPO BADO con la escala de calificación cualitativa BUENO.......... y calificación cuantitativa GOINO....... la presente tesis, conforme a lo dispuesto en el Art. 24 del Reglamento de Grados y Títulos de la UNAC, aprobado por Resolución de Consejo Universitario N° 150-2023-CU del 15 de junio de 2023.

Se dio por cerrada la sesión a las 17.35 horas del día 06 de abril de 2024.

Dr. Coronado Arrilucea Pablo Mario

Presidente

76 17

Dr. Lopez Salvatierra Edgar Vocal Mg. Villa Morocho Eduardo Miembro suplente

Secretario

Dr. Moncada Salcedo Luis Enrique

13

FICHA DE OBSERVACIONES PARA SUSTENTACIÓN DE TESIS CON CICLO DE TESIS

Recomendaciones de los señores miembros del Jurado de Sustentación a los sustentantes expositores, para que subsanen las observaciones de la sustentación de Tesis.

TESISTAS:

Bachilleres: BAUTISTA ORTEGA LUZ AURORA, SALAZAR SANDOVAL KAREN ESTHER

y SUARES MEDINA NATHALY JOHANA

TEMA DE TESIS: "FACTORES DE PRODUCCIÓN Y CRECIMIENTO ECONÓMICO DEL

PERÚ EN EL PERÍODO 1990-2022".

PRESIDENTE

SECRETARIO

Precisar la Chuidad de Análisis y especio temporal Elobarar la záfico, especificado la Variable.

MIEMBROS

Dr. Coronado Arrilucea Pablo Mario Presidente

Dr. Lopez Salvatierra Edgar

Vocal

Dr. Moncada Salcedo Luis Enrique

Secretario

Mg. Villa Morocho Eduardo Miembro suplente

Bellavista, 06 de abril de 2024

Señor Dr. AUGUSTO CARO ANCHAY DECANO DE LA FACULTAD DE CIENCIAS ECONÓMICAS UNIVERSIDAD NACIONAL DEL CALLAO

De mi mayor consideración

Es gato dirigirme a Usted a fin saludarlo e informarle lo siguiente: Los miembros el Jurado hemos revisado el Informe que contiene la absolución de las observaciones que emanaron del acto de sustentación de la tesis "FACTORES DE PRODUCCIÓN Y CRECIMIENTO ECONÓMICO DEL PERÚ EN EL PERÍODO 1990-2022", de los bachilleres BAUTISTA ORTEGA LUZ AURORA, SALAZAR SANDOVAL KAREN ESTHER y SUARES MEDINA NATHALY JOHANA. Dicho acto se realizó el 06 de abril del 2024.

Luego de la revisión del referido documento, los miembros del Jurado: Dr. Luis Enrique Moncada Salcedo, Dr. Edgar López Salvatierra y el suscrito, hemos dado la conformidad respectiva. Por lo tanto, acordamos darle paso para que continúe el proceso administrativo que corresponda.

Sin otro particular, quedo de Usted, atentamente,

Dr. Pablo Mario Coronado Arrilucea Presidente del Jurado Evaluador

Tesis Para Titulo Profesional

8%

Textos sospechosos

© 8% Similitudes

< 1% similitudes entre comillas

0% entre las fuentes mencionadas

△✓ < 1% Idiomas no reconocidos

Nombre del documento: Archivo 1 1A Bautista Luz-Salazar Karen-Suares Nathaly-TITULO-2024.docx

ID del documento: e607e336e688fb46d7e2c5912ad7bcd68f5b6866 Tamaño del documento original: 1,06 MB

Autor: Bautista Luz - Salazar Karen - Suares Nathaly

Depositante: Bautista Luz - Salazar Karen - Suares Nathaly

Fecha de depósito: 26/2/2024 Tipo de carga: url_submission fecha de fin de análisis: 26/2/2024 Número de palabras: 13.391 Número de caracteres: 89.982

Ubicación de las similitudes en el documento:

Fuentes principales detectadas

Ν°		Descripciones	Similitudes	Ubicaciones	Datos adicionales
1	0	www.scielo.org.pe http://www.scielo.org.pe/pdf/quipu/v29n61/1609-8196-quipu-29-61-37.pdf 8 fuentes similares	2%		© Palabras idénticas: 2% (354 palabras)
2	0	repositorio.upn.edu.pe https://repositorio.upn.edu.pe/bitstream/handle/11537/24626/Angulo Gastelo, Kiarela Hilary.pdf?se 2 fuentes similares	2%		© Palabras idénticas: 2% (320 palabras)
3	0	www.scielo.org.co Emprendimiento empresarial y crecimiento econômico en Perú http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-59232019000400429 1 fuente similar	1%		© Palabras idénticas: 1% (160 palabras)
4	1	Documento de otro usuario 4542/5/ ● El documento proviene de otro grupo 41 fuentes similares	< 1%		© Palabras idénticas: < 1% (150 palabras)
5	0	repositorio.unac.edu.pe https://repositorio.unac.edu.pe/bitstream/hande/20.500.12952/8405/TESS - OVIEDO.pdf?sequence=1 1 fuente similar	< 1%	1	© Palabras idénticas: < 1% (97 palabras)

Fuentes con similitudes fortultas

N°		Descripciones	Similitudes	Ubicaciones	Datos adicionales
1	0	repositorio.unac.edu.pe http://repositorio.unac.edu.pe/bitstream/20.500.12952/8206/1/TESIS - MARCHINI - SACHEZ - VARGA	<1%		© Palabras idénticas: < 1% (29 palabras)
2	0	contenido.bce.fin.ec https://contenido.bce.fin.ec/documentos/PublicacionesNotas/Catalogo/NotasTecnicas/nota15.pdf	< 1%		© Palabras idénticas: < 1% (27 palabras)
3	0	mag.elcomercio.pe Inflación: ¿por qué se produce, cómo se mide y cómo nos afe https://mag.elcomercio.pe/respuestas/inflacion-por-que-se-produce-y-como-se-mide-economia-infl	< 1%		(5) Palabras idénticas: < 1% (31 palabras)
4	0	repositorio.upt.edu.pe http://repositorio.upt.edu.pe/bitstream/20.500.12969/1223/1/Marcellano-Chaparro-Maria.pdf	< 1%		© Palabras idénticas: < 1% (19 palabras)
5	*	ARCHIVO 1 1A, MARIANO CRISTINA - QUISPE JULIO - TITULO- 2024.docx #abfr653 El documento proviene de mi biblioteca de referencias	< 1%		(h Palabras idénticas: < 1% (16 palabras)

DEDICATORIA

En primer lugar, deseo expresar mi profunda gratitud a Dios por guiarme en el camino del conocimiento y la sabiduría. A mis padres, cuyo amor inquebrantable y apoyo incondicional, que me han brindado la fuerza de voluntad para perseverar, creer en mí misma y avanzar con determinación hacia mis metas.

Luz Bautista.

A Dios, mi eterno guía, le agradezco por iluminar cada paso de mi camino con su divina sabiduría. A mis padres, pilares invaluables en esta etapa de mi vida. Su creencia constante en mí ha sido un gran impulso para superar las adversidades.

Karen Salazar.

Con profundo amor y gratitud, dedico todo el esfuerzo y compromiso que he invertido en la realización de esta tesis a mi querida madre. Agradezco de todo corazón por ser mi principal fuente de inspiración y por confiar en mí en todo momento, incluso en las circunstancias más desafiantes.

Nathaly Suares.

AGRADECIMIENTOS

Agradecemos a Dios por habernos permitido realizar la tesis, a nuestra familia por su continuo apoyo y a todos nuestros formadores universitarios.

A todas las personas que contribuyeron de manera significativa a la realización de esta tesis.

ÍNDICE DE CONTENIDO

	Pág.
HOJA DE REFERENCIA DEL JURADO Y APROBACIÓN	3
DEDICATORIA	8
AGRADECIMIENTOS	9
ÍNDICE DE CONTENIDO	10
ÍNDICE DE TABLAS	13
ÍNDICE DE FIGURAS	14
RESUMEN	15
ABSTRACT	16
INTRODUCCIÓN	17
I. PLANTEAMIENTO DEL PROBLEMA	19
1.1. Descripción de la realidad problemática	19
1.2. Formulación del problema	20
1.2.1. Problema general	20
1.2.2. Problemas específicos	20
1.3. Objetivos	21
1.3.1. Objetivos General	21
1.3.2. Objetivos Específicos	21
1.4. Justificación	21
1.4.1. Justificación práctica	21
1.4.2. Justificación metodológica	21
1.5. Delimitantes de la investigación	22
1.5.1. Delimitante teórica	22
1.5.2. Delimitante temporal	22
1.5.3. Delimitante espacial	22

II. MARCO TEÓRICO	23
2.1. Antecedentes	23
2.2. Bases teóricas	26
2.2.1. Factores de producción	26
2.2.2. Crecimiento económico	27
2.3. Marco conceptual	28
2.3.1. Modelo de crecimiento Solow	28
2.3.2. Modelo de Solow Ampliado: Capital Humano	29
2.4. Definición de términos básicos	32
III. HIPÓTESIS Y VARIABLES	34
3.1. Hipótesis general e hipótesis específicas	34
3.1.1. Hipótesis general	34
3.1.2. Hipótesis especificas	34
3.2. Definición conceptual y operacional de variables	34
3.3. Operacionalización de variables	36
IV. METODOLOGÍA DEL PROYECTO	37
4.1. Diseño metodológico	37
4.1.1. Tipo de investigación	37
4.1.2. Diseño de investigación	37
4.1.3. Método de investigación	37
4.2. Población y muestra	38
4.3. Lugar de estudio	38
4.4. Técnicas e instrumentos para la recolección de la información	38
4.4.1. Técnicas	38
4.4.2. Instrumentos	39
4.5. Análisis y procesamiento de datos	30

4.6. Aspectos éticos en investigación	39
V. RESULTADOS	41
5.1. Resultados descriptivos	41
5.1.1. Factores de producción	41
5.1.2. Crecimiento Económico	48
5.2. Resultados inferenciales	50
5.2.1. Evaluación de la estacionariedad en las series de tiempo	50
5.2.2. Estimación del Modelo ARDL	52
5.2.3. Prueba de forma y límites de la cointegración	55
5.2.4. Análisis a largo plazo	56
5.2.5. Modelo de Corrección de Errores	58
5.2.6. Pruebas Diagnóstico	59
VI. DISCUSIÓN DE RESULTADOS	64
6.1. Contrastación y demostración de la hipótesis con los resultados:	64
6.2. Contrastación de los resultados con otros estudios similares:	66
VII. CONCLUSIONES	68
VIII. RECOMENDACIONES	69
IX. REFERENCIAS BIBLIOGRAFICAS	71
Anexo 1. Matriz de Consistencia	78
Anexo 2. Base de Datos	79
Anexo 3. Tablas v figuras adicionales	80

ÍNDICE DE TABLAS

I	Pág.
Tabla 1 Operacionalización de variables	36
Tabla 2 Técnicas e instrumentos de recolección de datos	39
Tabla 3 Análisis de Raíz Unitaria	52
Tabla 4 Estimación del Modelo ARDL (4,3,4,4)	54
Tabla 5 Prueba de Limites	55
Tabla 6 Ecuación en niveles	56
Tabla 7 Modelo de Corrección de Errores	59
Tabla 8 Test de Autocorrelación	61
Tabla 9 Test de Heterocedasticidad	62
Tabla 10 Prueba de raíz unitaria de CH en niveles	80
Tabla 11 Prueba de raíz unitaria de CH en primera diferencia	81
Tabla 12 Prueba de raíz unitaria de LNCF en primera diferencia	82
Tabla 13 Prueba de raíz unitaria de LNFL en primera diferencia, con	
constante	83
Tabla 14 Prueba de raíz unitaria de LNFL en primera diferencia, con	
constante y tendencia	84
Tabla 15 Prueba de raíz unitaria de LNPBI en primera diferencia	85
Tabla 16 Modelos ARDL estimados según criterio de AIC	86
Tabla 17 Prueba de forma y límites de la cointegración	88
Tabla 18 Corrección de errores condicionales	88
Tabla 19 Estimación de modelo ARDL (5, 3, 1, 1) considerando quiebre	
estructural	89
Tabla 20 Prueba de formas y límites de cointegración considerando quieb	re
estructural	91

ÍNDICE DE FIGURAS

	Pág.
Figura 1 Principales estadísticos del capital humano en el Perú,1990-202	2 41
Figura 2 Evolución del capital humano en el Perú,1990- 2022	42
Figura 3 Principales estadísticos del capital físico en el Perú,1990 - 2022	43
Figura 4 Evolución del capital físico en el Perú,1990- 2022	44
Figura 5 Principales estadísticos de la fuerza laboral en el Perú, 1990 - 2	022
	46
Figura 6 Evolución de la fuerza laboral en el Perú, 1990 - 2022	47
Figura 7 Principales estadísticos del PBI en el Perú, 1990 - 2022	48
Figura 8 Evolución del PBI en el Perú, 1990- 2022	49
Figura 9 Gráficas de línea de series de tiempo 1990-2022	51
Figura 10 Criterio de Información de Akaike (AIC)	55
Figura 11 Forecast del crecimiento económico (LNPBI)	57
Figura 12 Comparación entre Endógena estimada y real	57
Figura 13 Test de Jarque-Bera de los errores	60
Figura 14 Autocorrelograma de los residuos	61
Figura 15 Pruebas de Cusum y Cusum SQ realizadas al Modelo ARDL	
(4,3,4,4)	63
Figura 16 Pruebas de raíz unitaria y quiebre estructural	89
Figura 17 Pruebas autorrelación considerando quiebre estructural	90
Figura 18 Criterio de Información de Akaike (AIC) considerando quiebre	
estructural	90

RESUMEN

La investigación tuvo como propósito analizar los factores de producción en el crecimiento económico del Perú en el periodo de 1990 – 2022.

La investigación realizada es de tipo explicativo, de diseño no experimental y longitudinal.

Para la obtención de datos se utilizó la técnica documental y como instrumento, la ficha documental. En ese sentido, las variables fueron estudiadas mediante los resultados del capital humano, la Formación Bruta de Capital Fijo (FBKF), la Población Económicamente Activa (PEA) y Producto Bruto Interno (PBI), el análisis se realizó mediante la aplicación del modelo econométrico Autorregresivo de Rezagos Distribuidos (ARDL).

Con los datos obtenidos se elaboró una base de datos en el Software Eviews Versión 12, la cual permitió realizar la estadística descriptiva e inferencial de la investigación.

La principal conclusión es que existe un impacto significativo y positivo entre los factores de producción (capital humano, capital físico y fuerza laboral) sobre el crecimiento económico del Perú durante el periodo de 1990-2022.

Palabras clave: crecimiento económico, capital humano, capital físico, fuerza laboral.

ABSTRACT

The purpose of the research was to analyze the factors of production in the

economic growth of Peru in the period 1990 - 2022.

The research is of an explanatory, non-experimental and longitudinal design.

The documentary technique was used to obtain data and the documentary record

was used as an instrument. In this sense, human capital, physical capital and

labor force are considered as production factors...

With the data obtained, a database was created in the Eviews Version 12

software, which allowed the descriptive and inferential statistics of the research

to be carried out.

The main conclusion found is that there is a significant and positive impact

between the factors of production (human capital, physical capital and labor

force) on Peru's economic growth during the period 1990-2022.

Key words: human capital, physical capital, workforce, economic growth.

16

INTRODUCCIÓN

La investigación tiene por objetivo determinar cómo impactan los factores de producción sobre el crecimiento económico del Perú en el periodo de 1990 – 2022.

Para llevar a cabo la investigación se ha utilizado el método estadístico, a través de la técnica documental, consistente en la recopilación de datos de los indicadores de las variables utilizando como fuente de información, las publicaciones del Banco Central de Reserva del Perú (BCRP), Ministerio de Educación (MINEDU) y del Instituto Nacional de Estadística e Informática (INEI).

Mediante la información recopilada, se construyó una base de datos que facilitó la realización de un análisis estadístico detallado en el marco de la investigación. Este análisis abarcó la organización, representación y descripción de los datos. Asimismo, se llevaron a cabo pruebas de hipótesis correspondientes para respaldar de manera solida los resultados obtenidos.

Los hallazgos de la investigación se estructuran en nueve capítulos.

El planteamiento del problema, que abarca la descripción de la realidad problemática, los objetivos, la justificación y los delimitantes de la investigación, se abordan en el primer capítulo.

El marco teórico, que comprende el marco conceptual, los fundamentos teóricos que sustentan la investigación, los antecedentes a nivel internacional y nacional y, por último, la definición precisa de los términos fundamentales, es el objeto del segundo capítulo.

El tercer capítulo expone las variables y las hipótesis, detallando su operacionalización para su compresión y análisis adecuados.

El método de investigación, la población y la muestra, el lugar y el periodo de estudio, los instrumentos y técnicas de recolección de información, el análisis y procesamiento de datos y las consideraciones éticas de la investigación se abordan el cuarto capítulo, dedicado a la metodología del proyecto.

El quinto capítulo presenta los resultados descriptivos como inferenciales obtenidos a través de la investigación.

Los resultados de la investigación se analizan desde un punto de vista comparativo en el sexto capítulo, en el que también se comparan los resultados

con otros estudios comparables que se han realizado. El análisis incluye la comprobación y demostración de las hipótesis propuestas.

Las conclusiones extraídas de la investigación se presentan en el séptimo capítulo.

Las recomendaciones formuladas se presentan el octavo capítulo.

Las fuentes consultadas para la investigación se enumeran en el noveno capítulo.

Finalmente, la tesis se enriquece plenamente con los anexos pertinentes para ampliar la comprensión de los capítulos anteriores.

I. PLANTEAMIENTO DEL PROBLEMA

1.1. Descripción de la realidad problemática

Según Mankiw (2012), la producción de servicios y bienes depende de la utilización de los factores de producción, que pueden incluir recursos como el trabajo y el capital (p. 537). El crecimiento económico se define como "el aumento sostenido de la producción de servicios y bienes de una nación", donde la economía "crece continuamente en lugar de estar sujeta a cambios repetidos del ciclo económico", y puede considerarse como "un cambio en los límites de lo que es posible producir", según Larraín y Sachs (2002, p. 87)

A nivel mundial, el crecimiento económico se posiciona como un tema de trascendental importancia, intrínsecamente ligado al progreso y bienestar de las sociedades en diversos países. A lo largo del período de 1990 – 2022, la economía global experimentó un crecimiento sostenido a un promedio anual alrededor del 3.2%, a pesar de enfrentar dos crisis económicas importantes: la crisis financiera asiática de 1997 y la crisis financiera global de 2008. A pesar de estos desafíos, se observó un cambio hacia una economía global más interconectada, impulsada por la implementación de tecnologías en la producción de bienes y servicios, así como por políticas que favorecieron al crecimiento económico.

El panorama económico en Latinoamérica durante el periodo analizado se caracterizó por ciclos de notable crecimiento seguido de abruptas caídas. La década de los 90 marco un punto de inflexión, impulsada por reformas estructurales y políticas que condujeron a la estabilidad, la seguridad jurídica y la liberalización del comercio. Estos factores se vieron reforzados por los altos precios de las materias primas, el auge del consumo interno y la inversión, lo que catapultó a la región a un crecimiento sin precedentes.

Sin embargo, con la llegada del nuevo milenio, se observó un crecimiento más moderado, siendo Perú uno de los pocos países que destacó en ese aspecto. La crisis financiera global de 2008 golpeó duramente a la región, dejando impactos negativos que afectaron la recuperación económica, la cual fue lenta y desigual. La pandemia de COVID-19 provocó una caída generaliza del PBI en la región en 2020, seguida de una recuperación gradual.

En el Perú, según el INEI (2023), entre 1990 - 2022, el PBI del país mostró un crecimiento constante con una tasa promedio anual del 4%, sustentado en sólidos fundamentos macroeconómicos. La implementación de reformas estructurales en la década de 1990, que incluyeron la liberación del mercado y la privatización de empresas estatales, sentó las bases para un ambiente macroeconómico más estable y propicio para la inversión y el crecimiento. Este patrón se mantuvo hasta el año 2020, cuando se produjo la pandemia del COVID-19, causando una crisis sanitaria que repercutió en la economía.

Es fundamental destacar que el crecimiento y desarrollo económico del Perú se basa en la gestión eficiente de recursos, inversiones en capital físico, tecnología y, especialmente, en el capital humano. La educación es fundamental para el crecimiento a largo plazo, ya que dota a las personas con las capacidades y el conocimiento necesario para utilizar las herramientas de manera más eficiente y abordar los desafíos de forma innovadora. Un profesional con educación superior, gracias a sus amplios conocimientos y habilidades, puede ser más productivo que alguien con un nivel educativo básico.

Así pues, es crucial determinar qué factores de producción tienen mayor impacto en el crecimiento económico. De este modo, el país podrá garantizar un crecimiento económico autónomo y sostenido.

1.2. Formulación del problema

1.2.1. Problema general

¿Cuál es el impacto de los factores de producción sobre el crecimiento económico del Perú en el periodo de 1990 - 2022?

1.2.2. Problemas específicos

- 1. ¿Cuál es el impacto del capital humano sobre el crecimiento económico del Perú en el periodo de 1990 2022?
- ¿Cuál es el impacto del capital físico sobre el crecimiento económico del Perú en el periodo de 1990 - 2022?
- 3. ¿Cuál es el impacto de la fuerza laboral sobre el crecimiento económico del Perú en el periodo de 1990 2022?

1.3. Objetivos

1.3.1. Objetivos General

Determinar cómo impactan los factores de producción sobre el crecimiento económico del Perú en el periodo de 1990 – 2022.

1.3.2. Objetivos Específicos

- Explicar el impacto del capital humano sobre el crecimiento económico del Perú en el periodo de 1990 – 2022.
- Explicar el impacto del capital físico sobre el crecimiento económico del Perú en el periodo de 1990 – 2022.
- 3. Explicar el impacto de la fuerza laboral sobre el crecimiento económico del Perú en el periodo de 1990 2022.

1.4. Justificación

1.4.1. Justificación práctica

La justificación práctica de la tesis se basa en proporcionar al Estado información sobre el impacto de los factores de producción en el contexto del crecimiento económico del Perú, facilitando así la toma de decisiones informada. Esto permite formular y mejorar políticas económicas y sociales efectivas, dirigidas al fomento del empleo, aumento de inversiones y desarrollo del capital humano, acciones que a su vez impulsan un mayor crecimiento económico y se traducen en un mayor bienestar y desarrollo socioeconómico para la población.

1.4.2. Justificación metodológica

La investigación propuesta cuenta con una sólida justificación metodológica, donde se examinará el impacto de los factores de producción en el crecimiento económico a lo largo de 33 años (1990-2022) mediante un enfoque longitudinal. Este enfoque permite observar la evolución temporal de las variables, revelando tendencias y sus relaciones más complejas. Las variables a analizar incluyen capital físico, capital humano, mano de obra y tecnología, utilizando el modelo econométrico ARDL para determinar sus relaciones con el crecimiento

económico, incluyendo posibles cointegraciones a largo plazo. Se empleará el software Eviews para estimar el modelo ARDL y realizar pruebas de diagnóstico para validar los resultados. Los hallazgos de este estudio servirán como base para investigaciones futuras sobre el mismo tema, potencialmente ampliando el análisis a otros países o regiones mediante el uso de modelos econométricos similares.

1.5. Delimitantes de la investigación

1.5.1. Delimitante teórica

La investigación, pone especial énfasis en el Modelo Ampliado Solow – Swan, según el cual la interacción de la fuerza de trabajo, el capital humano y el capital físico es uno de los elementos claves para impulsar el crecimiento, de tal manera que los recursos de producción pueden permitir que el nivel y la excelencia educativa determinen el proceso de crecimiento económico. Además, una mano de obra cualificada también afecta positivamente a la eficiencia laboral. En otras palabras, a medida que se eleva el nivel educativo, también aumenta la productividad de todos los recursos de producción. Para respaldar este modelo utilizaremos datos secundarios de fuentes como el BCRP, el MINEDU y el INEI, que proporcionan datos pertinentes para el estudio.

1.5.2. Delimitante temporal

Para la investigación, que abarca los años 1990 a 2022, se realizan análisis de series temporales y se recopilan datos anuales.

1.5.3. Delimitante espacial

En la delimitación espacial abarca la totalidad del territorio nacional del Perú.

II. MARCO TEÓRICO

2.1. Antecedentes

A. Antecedente Internacionales

Chamba et al. (2021), en su artículo, se propusieron "analizar la incidencia de las variables determinantes dentro de la economía ecuatoriana" (p. 112), en una investigación descriptiva y explicativa, de diseño no experimental y longitudinal, utilizando la técnica documental y, como instrumento la ficha documental, mediante la aplicación de la función de producción Cobb-Douglas, que fue aplicado a las muestras de las variables tomadas en el periodo de estudio 2007- 2019, se concluyen principalmente que la Formación Bruta de Capital Fijo y la Población Económicamente Activa influyen de manera significativa al PIB ecuatoriano (p. 16) reflejando una relación positiva.

Pomi et al. (2021), en su artículo, en una traducción libre, se propusieron "analizar como interactúan el capital humano, el capital material o físico para influir en el crecimiento económico de Bangladesh" (p. 104), en una investigación explicativa, de diseño no experimental y longitudinal, utilizando la técnica el análisis documental y, como instrumento la ficha documental, mediante Modelos Vectoriales Autorregresivos (VAR), en un horizonte temporal que abarca desde el año 2000 hasta 2019, presentando entre sus conclusiones que la Población Económicamente Activa o fuerza laboral, tiene un impacto más significativo en el crecimiento económico de Bangladesh en comparación a la inversión, asimismo, la inversión en capital físico tiene un impacto negativo en el crecimiento económico en el corto plazo, pero en largo plazo los dos factores promueven el crecimiento económico (p. 105).

Cerquera et al. (2022), en su trabajo, propusieron "evaluar la correlación entre crecimiento económico y el capital humano, específicamente en el marco de naciones sudamericanas, como Argentina, Brasil, Chile, Colombia, Ecuador, Perú, Paraguay y Uruguay" (p. 147), utilizando un diseño longitudinal no experimental y la técnica documental para analizar datos de 2003 a 2018. El registro documental

se utilizó como instrumento en el modelo de datos de panel de efectos fijos, para llegar a la conclusión de que existe "una relación positiva entre el capital humano y el crecimiento económico en los ocho países sudamericanos" (p. 191).

Guzmán et al. (2022) afirman en su trabajo que su objetivo es "analizar qué variables influyen en el aumento de la cantidad de bienes y servicios en Chile, Perú y Ecuador durante el periodo comprendido entre 1990 y 2020" (p. 2), utilizando la técnica documental y el registro documental como instrumento, esta investigación descriptiva no experimental y longitudinal llegó a la conclusión principal de que la Formación Bruta de Capital Fijo es la única variable que exhibe significancia en los tres países, siendo positiva su relación sobre el crecimiento económico (p. 52).

Jiménez y Reyes (2022), en su artículo, proponen que su objetivo es "determinar el impacto de las habilidades cognitivas sobre el crecimiento económico dentro de veintidós departamentos colombianos, poniendo a prueba hipótesis derivadas de estudios internacionales realizados sobre muestras más amplias de países" (p. 153). La investigación asume un enfoque explicativo, de alcance no experimental y de diseño longitudinal, y que utiliza la revisión documental como técnica de obtención de datos compilados por el país en el período comprendido entre 2000 y 2019. Los hallazgos obtenidos posibilitan llegar a la conclusión que "el capital humano, medido a través de los años de escolaridad, tiene un efecto positivo y estadísticamente significativo en la tasa de crecimiento de la PBI per cápita" (p. 174).

B. Antecedentes Nacionales

Angulo (2020), en su tesis busca "determinar la relación del capital humano y el capital físico sobre el crecimiento económico del Perú en el periodo 1990 – 2016" (p. 31), en una investigación explicativa, de diseño no experimental y longitudinal; utilizando la técnica documental y, como instrumento, la ficha documental mediante el uso del modelo de Mínimos Cuadrados Ordinarios(MCO), concluyendo que las variables del capital

humano y capital físico tienen una relación positiva con respecto al crecimiento económico (p. 49).

Cornejo (2020), en su tesis, pretende "medir la contribución del capital humano al crecimiento económico del Perú durante el período 1970-2018" (p. 2), en una investigación correlacional, de diseño no experimental y longitudinal; utilizando la técnica documental y, como instrumento, la ficha documental mediante el uso de un Modelo de Cuadrados Ordinarios(MCO), concluyendo desde dos puntos de vista de manera empírico, el primero indica que hay una relación positiva del capital humano sobre el crecimiento económico y el segundo, que la contribución de estas variables es negativa (p. 60).

Carmona (2021), en su tesis busca "determinar la relación entre capital humano y el crecimiento económico en el Perú en el periodo 2000-2018" (p. 7), en una investigación correlacional, de diseño no experimental y longitudinal; utilizando la técnica documental y, como instrumento, la ficha documental mediante el uso del modelo de Mínimos Cuadrados Ordinarios(MCO), concluyendo que los factores como la asignación presupuestal por alumno en educación y el número de titulados universitarios tienen una influencia directa y significativa sobre el PBI per cápita (p. 93).

Castillo (2021), en su tesis pretende "demostrar cuales son los factores que determinan el crecimiento económico peruano: 3° trimestre 2001 al 2° trimestre 2020" (p. 13), en una investigación explicativa, de diseño no experimental y longitudinal; utilizando la técnica documental y, como instrumento, la ficha documental mediante el uso del modelo de regresión uniecuacional, multivariable y lineal, concluyendo que existe una relación positiva directa entre las variables utilizadas con el PBI, es decir; si aumenta la tasa de crecimiento de la inversión privada, aumenta la tasa de crecimiento del PBI en un rezago, si aumenta la tasa de crecimiento de la inversión pública o la fuerza laboral también aumenta la tasa de crecimiento del PBI en el mismo periodo (p. 29).

Cotrina y Huayllacayan (2023), en su tesis, pretenden "conocer y

explicar cómo se relaciona los factores de FBKF y la PEA con el PBI en la economía peruana durante el periodo 1990-2020"(p. 3), en una investigación explicativa, de diseño no experimental y longitudinal; utilizando la técnica documental y, como instrumento, la ficha documental mediante el uso de un modelo Cobb Douglas, concluyendo que los factores de FBKF y la PEA se relacionan y explican el PBI en la economía peruana (p. 60).

2.2. Bases teóricas

2.2.1. Factores de producción

A. Definición

Mankiw (2012) ofrece la definición de los factores de producción como los "recursos utilizados en la creación de bienes y servicios, como la mano de obra, el capital y otros recursos similares" (p. 537).

Makiw et al. (1992) interpretan a los factores productivos como aquellos elementos esenciales que impulsan el crecimiento económico. En su versión ampliada del Modelo de Solow clásico planteado en 1956, incluyen la variable de capital humano como un factor adicional al capital físico y el trabajo (p. 414). Esto representa una evolución significativa que reconoce la relevancia de la educación y las habilidades en el proceso de desarrollo económico.

Según, Samuelson y Nordhaus (2010), los factores de producción son los recursos esenciales, incluidos el trabajo, la tierra y el capital, que se emplean en la producción de bienes y servicios (p. 399).

Andrew y Bernanke (2004) definen los recursos de producción como los elementos esenciales que participan en la producción económica. Destacan la importancia de dos factores: el capital y el trabajo (p. 70).

La investigación utilizó la definición proporcionada por Makiw et al. (1992).

B. Dimensiones

Makiw et al. (1992) en su versión ampliada del Modelo de Solow de 1956, desagrega el capital humano, el capital físico y la mano de obra como principales factores (p. 414).

C. Indicadores

El índice de capital humano se empleó como indicador para evaluar la dimensión de capital humano.

Para medir la dimensión de capital físico, se empleó el indicador de FBKF.

La PEA se utilizó como indicador para evaluar la dimensión de fuerza laboral.

2.2.2. Crecimiento económico

A. Definición

Larraín y Sachs (2002) sostienen que el crecimiento económico "significa el aumento de la producción de una economía". Para medirlo se suele utilizar el crecimiento del Producto Bruto Interno (PBI) real a lo largo de unos años o décadas" (p. 87).

El Instituto Peruano de Economía (2013) explica que "el crecimiento económico se refleja en la variación porcentual positiva del producto bruto interno (PBI) de una economía en un periodo determinado" (párr. 1).

En el análisis de Jiménez (2011), se destaca que el objetivo principal del crecimiento económico es "la expansión de largo plazo del producto de la economía" (p. 42).

El crecimiento económico, según Fermoso (1997), es "el incremento cuantitativo y cualitativo del ingreso real de un país en un periodo de tiempo determinado" (p. 123).

Del mismo modo, Parkin (2007) interpreta el crecimiento económico como "la expansión de las capacidades de producción de la economía. Se puede describirse como un desplazamiento hacia afuera de la frontera de posibilidades de producción (FPP).

El crecimiento económico se cuantifica mediante el incremento del producto interno bruto real" (p. 91).

Para realizar esta investigación, nos basamos en la propuesta de Larraín y Sachs (2002).

B. Indicador

Larraín y Sachs (2002) afirman que para analizar el crecimiento económico se puede utilizar el aumento del PBI real en el tiempo (p. 87). En el contexto de la investigación, este estudio empleará el criterio planteado por estos autores para cuantificar y analizar el crecimiento económico.

2.3. Marco conceptual

2.3.1. Modelo de crecimiento Solow

También denominado como modelo de crecimiento exógeno, pretende aclarar como la acumulación de capital impulsa el crecimiento económico a largo plazo. La función de producción neoclásica, que tiene en cuenta los rendimientos decrecientes del capital, es la forma en la que Solow sugirió estudiar el crecimiento económico.

$$Y = AF(K, L)$$

Esta función mide el nivel de producto agregado, denotado como Y, el cual depende de K, que representa los factores físicos, L que corresponde a la fuerza laboral, y A que indica el nivel de tecnología o conocimientos.

Según esta teoría, el crecimiento económico presenta un límite estacionario a largo plazo hacia el cual converge. Este límite puede ser modificado mediante un cambio tecnológico que mejore la productividad de los factores. Asimismo, la teoría sugiere que un cambio tecnológico también tiene un efecto positivo en la tasa de crecimiento económico, lo que significa que este crecimiento puede acelerarse mediante la investigación continua de la innovación y el conocimiento.

Adicionalmente, los neoclásicos reconocen la importancia del crecimiento demográfico, ya que contribuye con el componente de trabajo

esencial para el desarrollo económico. Este reconocimiento subraya la necesidad de la mano de obra en el proceso de progreso económico. En conjunto, estos elementos delinean la interacción entre el límite estacionario, el cambio tecnológico, y la contribución demográfica en el marco de esta teoría del crecimiento económico.

2.3.2. Modelo de Solow Ampliado: Capital Humano

La mano de obra abarca mucho más que L, es decir, horas empleadas. El capital humano es la calidad y la capacidad de aumentar la productividad que están implícitas en la mano de obra. El capital humano aumenta como resultado de la adquisición de conocimientos y habilidades por parte de la mano de obra. El proceso de adquisición de conocimientos puede obtenerse mediante la renuncia a ingresos, al dejar de trabajar y dedicarse a la educación, o a través del aprendizaje en el propio lugar de trabajo (aprendizaje mediante la práctica). Sin duda, el método utilizado para adquirir conocimientos variará en función del tipo de conocimiento que se trate. Cuando el conocimiento se vuelve más especializado y sofisticado, uno puede creer que aprender sólo a través del trabajo es suficiente. Sin embargo, será necesario una mayor educación formal. (De Gregorio, 2007, p. 309).

Uno de los modelos más destacados que explora el impacto de añadir la mejora de capital humano en la función de producción es la desarrollada por Mankiw et al. (1992). La integración del capital humano en el modelo de Solow conduce a una mayor flexibilidad y a una mejor adaptación de la realidad, como han demostrado estos investigadores.

De esta manera, se admite que, para una tasa establecida de acumulación de capital humano, un aumento en el nivel de inversión en capital físico conlleva a producir simultáneamente un mayor ingreso per cápita y un aumento en el capital humano.

Según la perspectiva teórica, las naciones con una dotación inicial más robusta de capital humano tienden a registrar un crecimiento económico más elevado. Esto se debe a la capacidad de estos países para asimilar rápidamente las innovaciones y tecnologías emergentes. En

particular, una nación que inicia con un bajo nivel de capital físico, pero con una significativa inversión en capital humano tiende a experimentar un crecimiento más rápido en comparación con aquellas con una dotación de capital humano más limitada. Este proceso se atribuye a la mayor capacidad de absorción de conocimientos y descubrimientos provenientes de naciones líderes. Además, incluso una nación con un nivel tecnológico inferior puede, en un tiempo finito, superar a la nación líder si cuenta con un sólido respaldo de capital humano (Terrones & Cardenas, 1993).

En este contexto, Mankiw et al. (1992) proponen la siguiente función de producción:

$$Y(t) = K_t^{\alpha} H^{\beta} (A L)^{1-\alpha-\beta}$$

Donde:

Y: Producción

K: Stock de capital físico

H: Acumulación de capital humano

L: Número de trabajadores

A: Nivel de tecnología

En términos per cápita tenemos que:

$$v = Ak^{\alpha}h^{\beta} \dots (2)$$

 s_k se define como porcentaje de la renta asignado como capital físico y s_h como porcentaje asignado al capital humano. De forma similar, "g" representa el avance de tecnología, "n" el crecimiento de la población y " δ " es la tasa de depreciación del capital. Donde la acumulación de capital adopta la siguiente forma:

$$k_t' = s_k y_t - (n + g + \delta) k_t \dots (3)$$

En las ecuaciones 3 y 4 indican que la economía tiende a converger hacia el estado estacionario definido por:

$$k^* = \begin{array}{cc} s_k^{1-\beta} s_h^{\beta} & \frac{1}{1-\alpha-\beta} \end{array}$$

$$h^* = \left[\frac{S_k{}^{\alpha} S_h{}^{1\alpha}}{n+q+\delta}\right]^{\frac{1}{1-\alpha-\beta}} \dots \dots (6)$$

La ecuación de Solow Ampliado para el ingreso se obtiene combinando la ecuación (5 y 6) con la ecuación que describe el nivel de capital humano en estado estacionario, que se expone en (3 y 4). Esta ecuación se expresa como una función de la tasa de inversión en capital físico, la tasa de crecimiento de la fuerza laboral y el nivel de capital humano.

$$\ln \left[\frac{Y_t}{L_t}\right] = \ln A \xrightarrow[(0)]{} + g + \left(\frac{\alpha}{1 - \alpha - \beta}\right) \ln(s) - \left(\frac{\alpha + \beta}{1 - \alpha - \beta}\right) \ln(n + g + \delta) + \left(\frac{\beta}{1 - \alpha - \beta}\right) \ln(s) \dots (7)$$

El valor esperado de α , que representa la proporción del capital físico en el ingreso, sigue la misma lógica que el modelo de Solow. Además de este enfoque, donde el capital humano se considera una inversión similar al capital físico, existe la posibilidad de presentar un modelo alternativo. En este último, el capital humano se mide en niveles en lugar de sus tasas de crecimiento. En este caso, en lugar de incorporar sus tasas de crecimiento, se incluye en la ecuación el valor que el capital humano alcanzaría en el estado estacionario. La forma resultante de la ecuación a estimar es la siguiente:

$$ln\frac{Y_t}{[t]} = lnA + g t \frac{1}{[n]} \frac{\alpha}{[t]} - (\frac{\alpha}{1-\alpha}) ln(n+g+\delta) + (\frac{\beta}{[t]}) lnh_*....(8)$$

$$L_t = lnA + g t \frac{1}{[n]} \frac{\alpha}{[t]} - (\frac{\alpha}{[t]}) ln(n+g+\delta) + (\frac{\beta}{[t]}) lnh_*...(8)$$

Al igual que antes, esperamos un valor de alrededor de un tercio de α , ya que es la participación del capital físico en el ingreso. Resulta más complicado calibrar un valor razonable β , que es participación del

capital humano. Según el análisis empírico, el salario mínimo en el sector manufacturero de los Estados Unidos representa entre el 30% y 50% del salario promedio. Esto se debe a que el salario mínimo es aproximadamente el equivalente a los rendimientos del factor de trabajo sin capital humano. Los rendimientos del capital humano β representan entre un tercio y un medio del ingreso por el factor trabajo, o entre 50% y 70%.

2.4. Definición de términos básicos

Actividad económica. Se llama actividad económica al proceso mediante el cual se adquieren bienes y servicios que cubren necesidades de la sociedad que permite generar riqueza a través de la extracción, transformación y comercialización (INEI, 2022, p. 209).

Acumulación de capital. La acumulación de capital es el aumento de los recursos de capitales, en donde se incluye al capital humano (Parkin, 2007, p. 38).

Balanza comercial. Dentro de la balanza de pagos, registra el intercambio de mercancías de un país con el resto del mundo. Su saldo es la diferencia entre los ingresos por exportaciones y los gastos por importaciones (BCRP, 2011).

Bienes de consumo. Bienes o servicios generalmente utilizados para consumo final, es decir, que no son destinados a un proceso productivo (BCRP, 2011, p. 14).

Depreciación. Es la disminución del acervo de capital que resulta del desgaste y la obsolescencia. (Parkin, 2007, p. 115).

Demanda. Se refiere a la relación completa entre la cantidad demandada y el precio de un bien, y se ilustra a través de la curva de demanda y del plan de demanda (Parkin, 2007, p. 62).

Economía de mercado. Es una economía que asigna los recursos por medio de las decisiones descentralizadas de muchas empresas y hogares cuando interactúan en los mercados de bienes y servicios (Mankiw, 2012, p. 11).

Estado estacionario. Una economía con existencias constantes de

personas y cosas (productos) que se mantienen a un nivel deseado de suficiencia con una tasa baja de flujo de mantenimiento, es decir, el flujo de materia y energía más bajo posible desde la primera etapa de Producción a la última etapa de consumo (Daly et al., 1974, p. 357).

Inflación. Aumento persistente del nivel general de los precios de la economía, con la consecuente pérdida del valor adquisitivo de la moneda. Se mide generalmente a través de la variación del índice de precios al consumidor (BCRP, 2011).

Inversión. En términos macroeconómicos, es el flujo de producto de un período dado que se destina al mantenimiento o ampliación del stock de capital de la economía. El gasto en inversión da lugar a un aumento de la capacidad productiva (BCRP, 2011).

Precios constantes. Son variables de cantidad en soles de valor constante de un año base. (Jiménez, 1999, p.18).

Stock de capital. Es un conjunto de bienes durables empleados en la producción. Se trata de bienes no homogéneos en varios aspectos: naturaleza, función, edad, eficiencia productiva, etc. Es el conjunto de maquinaria y equipo, equipo de transporte y edificios poseídos en determinada fecha por los agentes económicos. (Córdova, 2005, p. 20).

III. HIPÓTESIS Y VARIABLES

3.1. Hipótesis general e hipótesis específicas

3.1.1. Hipótesis general

Los factores de producción impactan de manera positiva sobre el crecimiento económico del Perú en el periodo de 1990 – 2022.

3.1.2. Hipótesis especificas

- El capital humano impacta de manera positiva sobre el crecimiento económico del Perú en el periodo de 1990 – 2022.
- El capital físico impacta de manera positiva sobre el crecimiento económico del Perú en el periodo de 1990 – 2022.
- La fuerza laboral impacta de manera positiva sobre el crecimiento económico del Perú en el periodo de 1990 – 2022.

3.2. Definición conceptual y operacional de variables

Las variables de los problemas formulados son las siguientes:

Variable independiente: Factores de producción

Makiw et al. (1992) interpretan a los factores productivos como aquellos elementos esenciales que impulsan el crecimiento económico. En su versión ampliada del Modelo de Solow clásico planteado en 1956, incluyen la variable de capital humano como un factor adicional al capital físico y el trabajo (p. 414).

Para operacionalizar esta variable se ha llevado a cabo un análisis que abarca las siguientes dimensiones: Capital humano, Capital Físico y Fuerza laboral.

Para medir el Capital humano, se ha utilizado como indicador el índice de capital humano, calculado a través de los años promedio de estudio.

Por otra parte, para medir el Capital Físico se ha considerado la FBKF en millones de soles a precios constantes de 2007.

Para el caso de la variable fuerza laboral, se considera a la PEA como indicador.

Variable dependiente: Crecimiento económico

Crecimiento Económico, se define como "El crecimiento económico es el aumento del producto en una economía. Usualmente se mide como el aumento del Producto Bruto Interno (PBI) real en un periodo de varios años o décadas" (Larraín y Sachs, 2002, p. 87).

Para evaluar el crecimiento económico, se ha empleado como medida el PBI en millones de soles a precios constantes de 2007.

3.3. Operacionalización de variables

Tabla 1 *Operacionalización de variables*

Variables de estudio	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Método	Técnica
Factores de	Makiw et al. (1992) interpretan a los factores productivos como aquellos elementos esenciales que impulsan el crecimiento económico. En su	Modelo de Solow de	Capital humano	Índice de capital humano	Documental	Documental
producción	versión ampliada del Modelo capital humano, capital de Solow clásico planteado en físico y el trabajo (fuerza 1956, incluyen la variable de laboral) como principales capital humano como un factores de producción factor adicional al capital (p. 414). físico y el trabajo (p. 414).	físico y el trabajo (fuerza laboral) como principales	Capital físico	Formación Bruta de Capital Fijo	Documental	Documental
		Fuerza laboral	Población Económicamente Activa	Documental	Documental	
Crecimiento Económico	Se define como "El crecimiento económico es el aumento del producto en una economía" (Larraín & Sachs, 2002, p. 87).	Larraín y Sachs (2002) resalta la utilidad del PBI para medir el crecimiento.		Producto Bruto Interno en el Perú	Documental	Documental

IV. METODOLOGÍA DEL PROYECTO

4.1. Diseño metodológico

4.1.1. Tipo de investigación

La investigación se centró en desarrollar un enfoque exhaustivo que considerara tantos aspectos descriptivos, correlaciones y explicativos. La parte descriptiva se dedicó a detallar las características de las variables factores de producción y el crecimiento económico con el propósito de ofrecer una comprensión integral de estos componentes esenciales.

Además, se utilizará un enfoque correlacional para examinar la relación entre las variables estudiadas, mediante el uso de pruebas de correlación para medir la asociación entre ellas. Estas pruebas de correlación servirán como base para respaldar las hipótesis planteadas, tal como han indicado diversos estudios anteriores (Hernández et al, 2010).

En adición a ello, la investigación también se enmarca en el ámbito explicativo, este enfoque pretende descubrir las razones y motivos subyacentes a los eventos del fenómeno estudiado. Se busca observar tanto las causas como los efectos presentes, identificando las circunstancias que rodean dicho fenómeno (Hernández, 2014).

4.1.2. Diseño de investigación

En base a Hernández y Mendoza (2018), la investigación será no experimental permitiendo un análisis objetivo de la relación entre las variables y longitudinal, puesto que se pueden observar y analizar la evolución de las variables a lo largo del tiempo. Esta selección se basa en que no se ha realizado ninguna intervención intencional en las variables examinadas, dado que los datos se han obtenido de fuentes secundarias confiables, tales como BCRP, MINEDU y el INEI.

4.1.3. Método de investigación

Es hipotético-deductivo en cuanto a la metodología, es decir, una hipótesis basada en datos empíricos tendrá sus predicciones derivadas

por deducción y éstas se verificarán empíricamente. Una vez que vemos que los hechos observados concuerdan con las predicciones realizadas, la hipótesis inicial queda validada.

Según Hernández et al. (1991), la recolección de datos para validar las hipótesis es una de las características definitorias de un enfoque cuantitativo. Se trata de un enfoque en el que los comportamientos se encuentran en patrones regulares y las teorías se ponen a prueba; a través del análisis estadístico y la medición numérica (p. 5).

Dado que la economía es una disciplina susceptible de medición, la elección pertinente para la tesis, que involucra variables cuantitativas, es el enfoque cuantitativo. Además, se busca respaldar las hipótesis mediante la aplicación de métodos estadísticos y econométricos.

4.2. Población y muestra

La población comprende los datos de Perú entre 1990 y 2022. La muestra se compone de los datos anuales tomados de este periodo (33 observaciones). Los datos provienen de fuentes confiables (INEI, MINEDU y BCRP). Esta estrategia de muestreo se empleó debido a la disponibilidad de los datos y la rapidez con la que se puede acceder a ellos, ya que permitirán una amplia investigación de las tendencias.

4.3. Lugar de estudio

El escenario de investigación abarca el territorio peruano. El estudio se realizó en el periodo comprendido de 1990 hasta el 2022.

4.4. Técnicas e instrumentos para la recolección de la información

4.4.1. Técnicas

Como resultado de los datos procesados por el BCRP, MINEDU, INEI y otros vinculados al tema de investigación, se utilizó información secundaria en el estudio. También se revisó el tema, textos, boletines y otras fuentes relevantes; es decir, el "análisis documental" fue el método utilizado para la recolección de datos.

4.4.2. Instrumentos

El instrumento utilizado ha sido la guía de análisis documental.

Tabla 2 *Técnicas e instrumentos de recolección de datos*

Técnica	Instrumento	Alcance	Informante
Análisis de Documentos	Guía de análisis documental	Variable I: Factores de Producción	INEI, MINEDU
Análisis de Documentos	Guía de análisis documental	Variable II: Crecimiento económico	BCRP

4.5. Análisis y procesamiento de datos

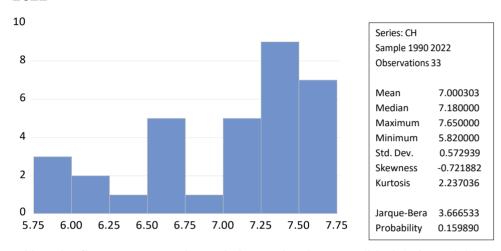
- Planificación: El propósito de la presente tesis era el principal factor focal; la cantidad de tiempo que se requería para su aplicación; el cronograma del proyecto y la cantidad de recursos necesarios para su correcta aplicación y análisis.
- Elaboración: Las dimensiones se formularon en el contexto de la hipótesis y se establecieron los correspondientes proxis; se identificaron las variables independientes y dependientes. Una vez obtenidos los datos, se creó una base de datos en Eviews 12. Nos ayudó a aplicar distintas técnicas de estimación inferencial y a realizar estadísticas descriptivas. Además, se utilizó Microsoft Excel 2021.

4.6. Aspectos éticos en investigación

Durante el diseño de la presente investigación se ha actuado con ética, en tal sentido no se ha alterado, creado u omitido información relevante en los datos estadísticos, mucho menos se ha tomado ideas de terceros como propias.

En relación a la organización de los antecedentes y el marco teórico, empleados para dar sustento teórico al presente trabajo, a fin de otorgar reconocimiento legal correspondiente a los aportes de los investigadores, se ha citado cumpliendo las recomendaciones de APA en su Séptima Edición.

La base de datos utilizada en la investigación se describe como obtenida de una fuente fidedigna y veraz, la cual se pone a disposición a través de la página web del INEI. Es decir, se indica que la base de datos cumple con los valores de integridad, congruencia, dedicación y autenticidad al presentar la verdad o al trabajar con la metodología adecuada para responder a las indagaciones previamente establecidas.

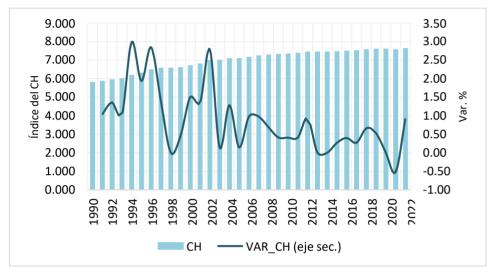

V. RESULTADOS

5.1. Resultados descriptivos

5.1.1. Factores de producción

A. Capital Humano

Figura 1Principales estadísticos del capital humano en el Perú, 1990 - 2022


Nota. La figura muestra el test de la prueba de normalidad de la variable Capital Humano entre 1990 – 2022. Fuente: MINEDU.

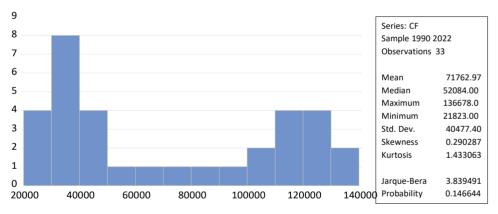
De acuerdo a la Figura 1, se muestra que el valor promedio del capital humano (CH), para el periodo de 1990 – 2022 asciende aproximadamente a 7.00, mientras que la mediana situada en 7.18, indica el punto medio del conjunto de datos cuando se organiza en orden descendente o ascendente. La amplitud de los datos debería estar correlacionada con un mínimo de 5.82 y un máximo de 7.65. Por otra parte, una desviación típica cercana a 0.57 indica un nivel moderado de variabilidad de los datos con respecto a la media. Dado que la probabilidad es superior al 5% (15%) y que el coeficiente de la prueba de Jarque-Bera es inferior a 5,99 (3,67), no

puede descartarse la hipótesis nula de normalidad en la variable Capital Humano.

Figura 2

Evolución del capital humano en el Perú, 1990-2022

Nota. La figura muestra la variación de las cifras del Capital Humano a través de los años 1990-2022. Fuente: MINEDU.

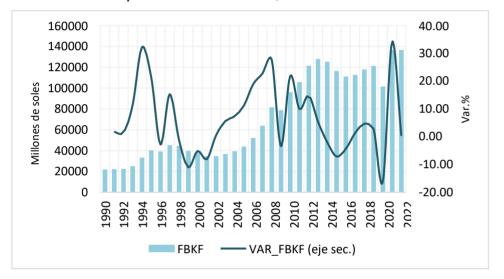

La evolución del capital humano en el Perú se muestra en la Figura 2, junto a su variación porcentual anual. Como se aprecia, en general, el capital humano del Perú (CH) mostró una tendencia positiva y constante entre 1990 y 2022. Al respecto, en la década de 1990, el capital humano mostró un incremento sostenido como consecuencia de la implementación de una serie de iniciativas innovadoras centradas en elevar la calidad educativa, las cuales, aunque no destacan en el conjunto general del sistema educativo nacional, sí indican direcciones y oportunidades para su transformación (Bello, 2012, p. 78).

Asimismo, se destaca el año 1994 por su marcado crecimiento, presentando un importante avance del 2.99% con respecto al año anterior. También, se destaca la mayor variación en el año 2002, donde se alcanzó una tasa de 2.79%, este incremento podría relacionarse a consecuencia de las directrices

implementadas por el MINEDU en el año anterior (Bello, 2012, p. 71) o al entorno económico que incentivaron la adquisición de habilidades y conocimientos.

Por otra parte, la figura también señala que en el año 2021 se registró un leve descenso del -0.52%, atribuible a las repercusiones generadas por la pandemia del COVID-19, durante la cual, los estudiantes tuvieron que adaptarse a nuevos métodos y tecnologías para el desarrollo de sus clases. Posteriormente, se observa en el 2022 un aumento del 0.92%, lo que representa una recuperación respecto al año anterior. Este incremento sugiere un compromiso por parte del estado y otros actores para fortalecer el capital humano.

B. Capital Físico Figura 3 Principales estadísticos del capital físico en el Perú, 1990 - 2022


Nota. La figura muestra el test de la prueba de normalidad de la variable FBKF entre 1990 – 2022. Fuente: BCRP.

En el caso de la serie de capital físico (CF), medido a través del indicador FBKF, se observa que la media del valor se aproxima a 71,762. 97 millones de soles, durante el periodo de estudio. La mediana, corresponde a 52,084 millones de soles. El rango de los datos abarca un mínimo de 21,823 y máximo de 136,678 millones de soles. La variabilidad respecto a la media representa

aproximadamente 40,477.40 millones de soles. Los datos presentan una asimetría positiva de 0.29 y curtosis de 1.43. Con el coeficiente del test de Jarque-Bera inferior a 5.99 (3.84) y una probabilidad superior al 5% (15%), se denota que no hay evidencia significativa para rechazar la hipótesis nula de normalidad en la variable del Capital Físico.

Figura 4

Evolución del capital físico en el Perú, 1990-2022

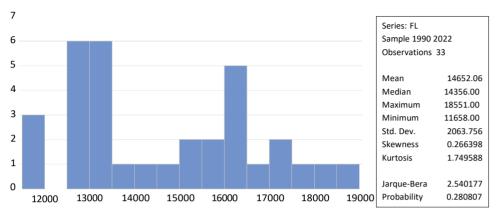
Nota. La figura muestra la variación de las cifras de la FBKF a través de los años 1990-2022. Fuente: BCRP.

La evolución de la Formación Bruta de Capital Fijo (FBKF), así como su variación porcentual anual, se muestra en la figura 4, y esta pone de manifiesto varias tendencias en las tres últimas décadas. En primer lugar, la FBKF muestra una tendencia positiva entre 1990 y 2008. Este dato es importante, ya que fue un periodo muy beneficioso para la economía nacional, después de que el gobierno implementara una serie de políticas en favor de la liberalización de los mercados, desregularización y apertura de la inversión extranjera en el país. Además, esto se vio impulsado por un contexto internacional favorable, el cual promovió el flujo de capitales en el país; también, posicionó al Perú como uno de los

países de Latinoamérica con mayor atracción de inversión extranjera directa. Cabe destacar que, entre los años 2005 y 2008, la FBKF mostró un crecimiento promedio de 16.84%.

Por otro lado, en 2009, la FBKF en el Perú registró una contracción de 3.40% a consecuencia de la Crisis Financiera Internacional. No obstante, durante los años posteriores, la FBKF registró avances importantes, con tasas de crecimiento de 21.87%, 9.93% y 14.89% para los años 2010, 2011 y 2012, respectivamente.

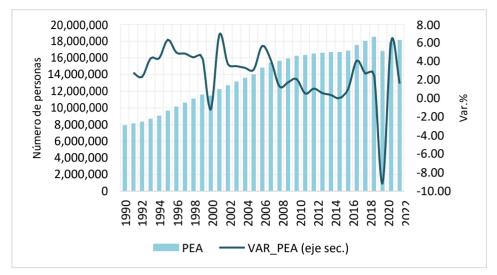
En 2020, la FBKF se vio fuertemente golpeada por la pandemia de la Covid-19, provocando un descenso del 16.16%. Posteriormente, en 2021, el avance en los niveles de la FBKF fue sustancial, registrándose un crecimiento del 34.07%, debido principalmente a un efecto base y al incremento en la inversión extranjera directa en los sectores mineros.


Por último, en 2022, la FBKF mostró un leve aumento de 0.27%, encaminando a la inversión privada a un crecimiento más modesto.

Estas cifras muestran cómo ha cambiado la inversión fija privada a lo largo del tiempo, así como la dinámica económica y los patrones de inversión en el Perú.

C. Fuerza laboral

Figura 5

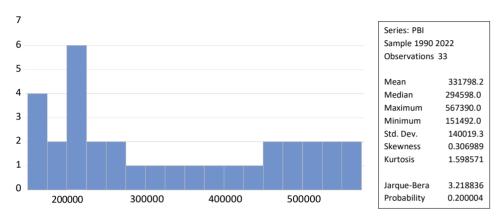

Principales estadísticos de la fuerza laboral en el Perú, 1990 2022

Nota. La figura muestra el test de la prueba de normalidad de la variable fuerza laboral entre 1990 – 2022. Fuente: INEI.

Con respecto a la Fuerza Laboral (FL), se observa que la media de la variable es de 14,652.06 miles de personas durante el período analizado. La mediana, con un valor de 14,356 miles de personas. Los extremos del rango de los datos abarcan desde un mínimo de 11,658 hasta un máximo de 18,551 miles de personas. La desviación estándar de 2063.76, sugiere una moderada variabilidad con respecto a la media. Se destaca una asimetría positiva de 0.27 y una curtosis de 1.75. Con el coeficiente del test de Jarque-Bera inferior a 5.99 y una probabilidad superior al 5%, se denota que no hay evidencia significativa para rechazar la hipótesis nula de normalidad en la variable fuerza laboral.

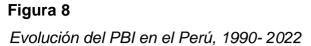
Nota. La figura muestra la variación de las cifras de la PEA a través de los años 1990-2022. Fuente: BCRP

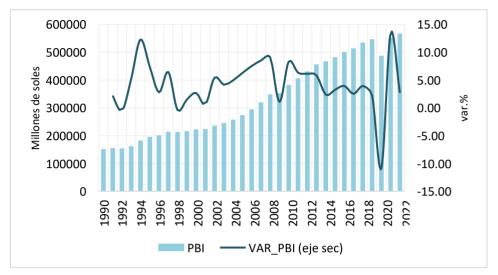
En la Figura 6, se observa la evolución de la fuerza laboral en el Perú, medido a través de la PEA, y su variación porcentual anual. La fuerza laboral en el Perú está marcada por un alto nivel de informalidad y baja productividad en varios sectores. En 1990, la PEA sumaba un total de 7.9 millones de personas, para el 2019, esta cifra alcanzó un total de 18.5 millones de personas, lo que refleja una tasa de crecimiento promedio anual de 2.87%. Si bien el avance de la PEA es notable, esta se vio caracterizada en un contexto de desafíos significativos en materia de contrataciones, despidos y calidad de políticas activas del mercado laboral.


Por otro lado, en 2020, los niveles de la PEA sufrieron una caída de 9.16% con respecto al año anterior, debido a la pandemia por el Covid-19, la cual afecto en mayor medida a los trabajadores de las micro y pequeñas empresas. Esto llevó a que el gobierno efectúe una serie de medidas para mitigar el efecto de la pandemia, con la implementación de programas como Reactiva Perú, Fondo de Apoyo Empresarial (FAE-Mype), entre otros. No obstante, a pesar de estos esfuerzos del gobierno, aún se mantiene secuelas

que requieren una gestión técnica de calidad para implementación de políticas laborales.

5.1.2. Crecimiento Económico


Figura 7


Principales estadísticos del PBI en el Perú, 1990 - 2022

Nota. La figura muestra el test de la prueba de normalidad de la variable PBI entre 1990–2022. Fuente: INEI.

En relación a la variable crecimiento económico, medido a través del PBI, se muestra una media 331,798.2 millones de soles durante el periodo 1990-2022. Se observa una mediana de 294,598 millones de soles, la serie se extiende de con un mínimo y un máximo de 151,492 y 567,390 millones de soles respectivamente. Una desviación estándar de 140,019.3 millones de soles aproximadamente, asimismo, se evidencia una asimetría positiva de 0.3067 y una curtosis de 1.5986. Se demuestra que no hay pruebas significativas suficientes para rechazar la hipótesis nula de normalidad en la variable de crecimiento económico, debido a que el coeficiente de la prueba de Jarque-Bera es inferior a 5.99 y la probabilidad superior al 5%.

Nota. La figura muestra la variación de las cifras del PBI a través de los años 1990-2022. Fuente: BCRP.

La Figura 8 muestra la evolución del PBI en el Perú durante el periodo 1990-2022. En ese periodo, el PBI peruano mostró un crecimiento promedio anual de 4%, debido en gran medida por las reformas estructurales implementadas en la década de 1990. Asimismo, la economía peruana, a partir del año 2000 se vio marcada por periodos de crecimientos significativos, impulsados principalmente por las condiciones externas favorables y un sólido marco macroeconómico. Esto le permitió al Perú reducir los niveles de pobreza y desigualdad, reflejando, a su vez, cambios en la economía y el desarrollo del Perú.

Por otro lado, durante los 12 últimos años, si bien el PBI ha mostrado tasas de crecimiento positivas, se evidencia una desaceleración en su dinámica con una tasa de crecimiento promedio anual de 2.82%, por lo que es necesario implementar reformas que impulsen un crecimiento económico más robusto. Además, esta desaceleración puede atribuirse a otros factores como las condiciones económicas globales, cambios en las medidas de política en el país, fluctuaciones en los precios de

productos básicos, entre otros.

En 2020, el PBI registró una fuerte caída de -10.87% con respecto al año anterior, esto debido a la pandemia por la Covid-19, reflejando, además, la dificultad en la implementación de las medidas de contención y las medidas de restricción para hacer frente a la emergencia sanitaria. Posteriormente, el siguiente año, se observó un incremento del 13.42%; no obstante, al 2022, no se ha recuperado los niveles previos a la pandemia.

5.2. Resultados inferenciales

Con el fin de contrastar las hipótesis planteadas, se propone el uso del modelo autorregresivo de rezagos distribuidos (ARDL), el cual permite analizar la relación de largo y corto plazo entre la variable dependiente y sus determinantes. Una de las ventajas más destacadas de este enfoque, es su capacidad de aplicación independientemente de si las variables de estudio son estacionarias o integradas de primer orden.

En este contexto, se ha optado por transformar las variables de capital físico, fuerza laboral y PBI a logaritmo natural con el objetivo de homogenizar la unidad de medida y alcanzar una mayor estabilidad del modelo. La variable de capital humano, por su parte, permanece en su escala original.

En consecuencia, la ecuación funcional de la investigación se define de la siguiente manera:

 $LNPBI_t = f(CH_t, LNCF_t, LNFL_t)$

Donde:

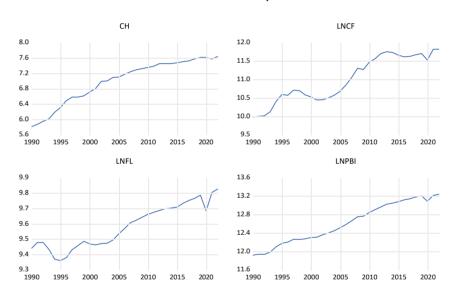
 $LNPBI_t$: $Logaritmo\ de\ PBI$

 CH_t : Capital Humano

 $LNCF_t$: Logaritmo de capital físico

 $LNFL_t$: Logaritmo de fuerza laboral

t : Periodo de estudio comprendido entre 1990 y 2022


5.2.1. Evaluación de la estacionariedad en las series de tiempo

Antes de aplicar el modelo ARDL es necesario que ninguna de las series sea estacionaria de orden I(2). Esto se logra mediante un análisis

grafico inicial de las series temporales, como se observa en la Figura 9. En esta figura, se observa que cada serie muestra intercepto y una clara presencia de tendencia, reflejando así la dinámica de las variables macroeconómicas a lo largo del periodo evaluado. Además, se aprecia que tanto la varianza como la media no permanecen constantes, lo cual se atribuye a períodos de disminución seguidos de fases de recuperación en las series

Figura 9

Gráficas de línea de series de tiempo 1990-2022

En consecuencia, en un primer análisis se puede afirmar que las series son no estacionarias. Sin embargo, será necesario verificar esta estacionariedad a través de la aplicación de pruebas de raíz unitaria DFA. Esta prueba tiene como hipótesis nula que la variable evaluada presenta raíz unitaria y, por lo tanto, no estacionaria. Para llevar a cabo esta prueba, se utiliza el Criterio de Akaike (AIC), reconocido por su buen rendimiento en muestras pequeñas. Además, se analiza las series temporales tanto a nivel como con sus primeras diferencias, considerando la tendencia y el intercepto. A continuación, se presentan los estadísticos encontrados:

Tabla 3 *Análisis de Raíz Unitaria*

Series	Comp. Determinístico	t-estadíst.	Prob.*	Orden de Integración
CH	Constant	-3.783825	0.0072	I(0)
D(CH)	Constant, Linear Trend	-5.519678	0.0005	I(1)
D(LNCF)	None	-2.085311	0.0375	I(1)
D(LNFL)	Constant	-5.863976	0.0000	I(1)
D(LNFL)	Constant, Linear Trend	-6.04396	0.0001	I(1)
D(LNPBI)	Constant	-5.935273	0.0000	I(1)
D(LNPBI)	Constant, Linear Trend	-5.913603	0.0002	I(1)

Nota: resumen de las tablas 10 a la 15 del anexo 3

Los resultados presentados en la Tabla 3 muestran que la serie del capital humano es estacionaria en nivel, como se evidencia por el p-valor inferior al 5%. Sin embargo, todas las variables muestran estacionariedad con p-valores inferiores al 5% cuando se consideran las primeras diferencias. Podemos concluir que capital humano es una serie integrada de orden I(0), mientras que el capital físico, fuerza laboral y el PBI son series integradas de orden I(1). Por lo tanto, es factible estimar el modelo ARDL, ya que las series analizadas tienen un orden de integración menor a dos.

5.2.2. Estimación del Modelo ARDL

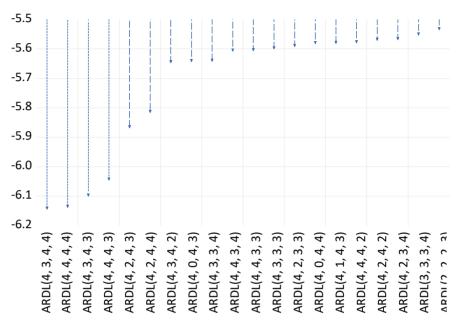
Se lleva a cabo la estimación del modelo de rezagos distribuidos autorregresivo (ARDL) cointegrada entre LNPBI como la variable endógena y como variables exógenas el LNCH, LNCF y LNFL, lo cual nos permite analizar tanto el equilibrio a largo plazo como a corto plazo mediante el método de corrección de errores. Se realizaron ajustes sobre un total de 29 observaciones anuales para el periodo entre 1990 y 2022, donde se consideró un máximo de 4 rezagos mediante una selección automática para la variable dependiente utilizando el criterio de Akaike (AIC).

En los anexos, la Tabla 16 presenta los resultados de la estimación de 500 modelos, de los cuales se selecciona el modelo ARDL (4,3,4,4) debido a que exhibe el menor criterio de Akaike. Según este modelo, los cuatro primeros rezagos de la variable de crecimiento económico (LNPBI) representan los regresores dinámicos en este modelo. Así las fluctuaciones pasadas del crecimiento económico tienen una gran influencia en el

crecimiento futuro. Por otro lado, los regresores estáticos incluyen tres rezagos del capital humano (CH), cuatro rezagos del capital físico (LNCF) y cuatro rezagos de la fuerza laboral (LNFL), respectivamente.

En la Tabla 4 se evidencia la idoneidad del modelo ARDL (4,3,4,4). En primer lugar, el coeficiente de determinación (R-cuadrado) de 0.99 destaca que el modelo describe prácticamente toda la variabilidad del crecimiento económico en función de las variables independiente consideras. Asimismo, el R- cuadrado ajustado de 0.99 respalda este hallazgo al conformar un ajuste muy adecuado del modelo al número de variables incluidas.

El estadístico F, con un valor de 2325.23 y una probabilidad asociada cercana a cero (0.000), demuestran la fiabilidad conjunta del modelo y la fuerte significancia estadística de sus resultados. En este sentido, al considerar los impactos individuales, se destaca que en el corto plazo, LNPBI(-1) muestra un impacto positivo y significativo en el crecimiento actual (0.86), indicando que un aumento del 1% en el crecimiento pasado se traduce en un aumento del 0.86% en el presente. Sin embargo, los rezagos LNPBI(-2) al LNPBI(-4) son en su mayoría insignificantes, excepto LNPBI(-4) con un valor negativo y significativo (-0.67), sugiriendo un posible efecto negativo a largo plazo. Por otro lado, CH(-1) indica un impacto negativo a corto plazo del capital humano, mientras que LNCF muestra un coeficiente alto (0.23) y LNCF(-4) un efecto positivo a largo plazo. Por último, LNFL tiene un coeficiente positivo y significativo (0.57) en el crecimiento actual, aunque sus rezagos son no significativos.


Tabla 4Estimación del Modelo ARDL (4,3,4,4)

Variable	Coefficient	Std. Error	t-Statistic	Prob. *
LNPBI (-1)	0.861723	0.199323	4.323261	0.0015
LNPBI (-2)	0.076585	0.284233	0.269443	0.7931
LNPBI (-3)	0.267142	0.279165	0.956931	0.3612
LNPBI (-4)	-0.667463	0.203715	-3.276447	0.0083
CH	0.031003	0.071905	0.431163	0.6755
CH (-1)	-0.19025	0.083627	-2.274986	0.0462
CH (-2)	0.063639	0.075317	0.844944	0.4179
CH (-3)	0.148449	0.067198	2.20912	0.0516
LNCF	0.231366	0.03765	6.145234	0.0001
LNCF (-1)	-0.227143	0.06153	-3.691603	0.0042
LNCF (-2)	-0.059197	0.086678	-0.682954	0.5101
LNCF (-3)	-0.024431	0.077649	-0.314629	0.7595
LNCF (-4)	0.163464	0.058918	2.774433	0.0196
LNFL	0.57249	0.157823	3.627414	0.0046
LNFL (-1)	-0.318634	0.187109	-1.702932	0.1194
LNFL (-2)	0.036189	0.194592	0.185976	0.8562
LNFL (-3)	0.231534	0.262368	0.882477	0.3982
LNFL (-4)	0.225209	0.205339	1.096767	0.2985
С	-2.596654	1.775981	-1.462095	0.1744
R-squared	0.999761	Mean depen	dent var	12.71346
Adjusted R-squared	0.999331	S.D. depend	dent var	0.384128
S.E. of regression	0.009934	Akaike info	criterion	-6.140034
Sum squared resid	0.000987	Schwarz c	Schwarz criterion	
Log likelihood	108.0305	Hannan-Qui	nn criter.	-5.859476
F-statistic	2325.239	Durbin-Wat	son stat	2.158727
Prob(F-statistic)	0.0000			

Para evaluar la superioridad relativa del modelo elegido frente a otras opciones, la Figura 10 presenta un gráfico de AIC de los veinte modelos principales. Cabe destacar que el mejor modelo se ubica en el extremo izquierdo de la gráfica. En este caso, el modelo ARDL seleccionado por el programa Eviews es el (4, 3, 4, 4).

Figura 10

Criterio de Información de Akaike (AIC)

Nota: resumen de la Tabla 16 del Anexo 3

5.2.3. Prueba de forma y límites de la cointegración

Después de realizar el modelo ARDL, con el propósito de identificar la relación sostenida entre las variables a lo largo del tiempo, es imperativo determinar la presencia de cointegración. Esta identificación es realizada a través de la prueba de límites o prueba F.

Tabla 5 *Prueba de Limites*

Modele		1	%	59	%	10%	
Modelo	F - estadístico	I(0)	I(1)	I(0)	I(1)	I(0)	l(1)
(4, 3, 4, 4)	5.9974	3.65	4.66	2.79	3.67	2.37	3.2

En la Tabla 5 se obtiene un estadístico F de 5.9974 con un nivel de significancia del 5% que supera los valores críticos para I(0) e I(1). Esto implica que se rechaza la hipótesis nula de no existencia de una relación a largo plazo entre las variables estudiadas. En otras palabras, las series se cointegran, lo que significa que la variable dependiente (crecimiento económico) y las variables independientes (capital físico, capital humano y

fuerza laboral) presentan una relación sostenida a lo largo del periodo de estudio.

5.2.4. Análisis a largo plazo

Confirmada la existencia de una relación a largo plazo, se presenta la siguiente ecuación:

$$LNPBI = 0.1144 * CH + 0.1819 * LNCF + 1.6164 * LNFL - 5.6203$$

En la Tabla 6, se encuentran los resultados de la ecuación en niveles con coeficientes significativos para CH, LNCF y LNFL. CH presenta un coeficiente positivo y significativo de 0.1144, indicando que un aumento de una unidad en el capital humano se asocia con un incremento del 0.1144% en el nivel de crecimiento económico a largo plazo. LNCF muestra un coeficiente positivo y significativo de 0.1819, indicando que un aumento del 1% en el capital físico se relaciona con un aumento del 0.1819% en el nivel de crecimiento económico a largo plazo. De manera similar, LNFL tiene un coeficiente positivo y significativo de 1.6164, indicando que un incremento del 1% en la fuerza laboral se asocia con un aumento del 1.6164% en el nivel de crecimiento económico a largo plazo. Estos resultados implican que, en el largo plazo, un aumento en cualquiera de las variables independientes (capital físico, capital humano o fuerza laboral) conduce a un aumento en el nivel de crecimiento económico. Se destaca que el capital físico tiene el mayor impacto en el nivel de crecimiento económico a largo plazo, seguido por la fuerza laboral y el capital humano.

Tabla 6 *Ecuación en niveles*

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CH	0.11437	0.047613	2.402057	0.0372
LNCF	0.181943	0.072117	2.522893	0.0302
LNFL	1.616379	0.416996	3.876243	0.0031
С	-5.6203	3.028	-1.856109	0.0931

Cada modelo ARDL está asociado a un modelo de corrección de errores condicionales (CEC), el cual describe cómo los cambios en las variables de corto plazo se ajustan a la relación de largo plazo. La Tabla 6

resalta la importancia del capital humano, capital físico y fuerza laboral como impulsores del crecimiento económico a largo y corto plazo.

Figura 11

Forecast del crecimiento económico (LNPBI)

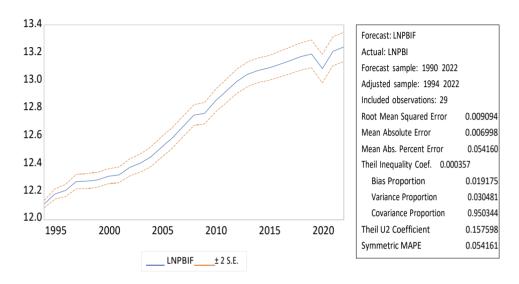
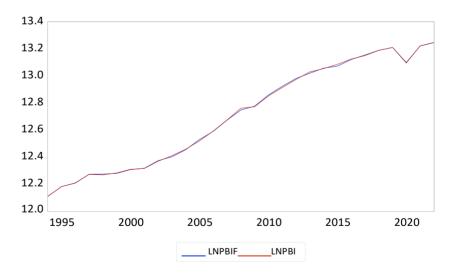



Figura 12

Comparación entre Endógena estimada y real

5.2.5. Modelo de Corrección de Errores

Para obtener resultados más robustos sobre la relación a largo plazo y dirección de causalidad, se requiere estimar el Modelo de Corrección de Errores (MCE). La Tabla 7 presenta los resultados de este modelo.

En primer lugar, analizamos el coeficiente de corrección de error $(CointEq_{-1})$, el cual es negativo y estadísticamente significativo, confirmando la existencia de una relación a largo plazo entre las variables analizadas, tal como lo indicaba la prueba de forma y límites. Además, el valor de $(CointEq_{-1})$ indica que la velocidad de ajuste hacia el equilibrio de largo plazo es alrededor del 46% anual.

En cuanto a las elasticidades estimadas para el corto plazo, se observa que los cambios pasados en LNPBI tienen un efecto positivo en los cambios actuales de la misma variable. Sin embargo, no se observa un efecto claro a corto plazo de CH en los cambios de LNPBI. Por otro lado, los cambios pasados en LNCF influyen positivamente en los cambios de LNPBI, mientras que los cambios en el rezago de LNFL impactan negativamente en los cambios de LNPBI.

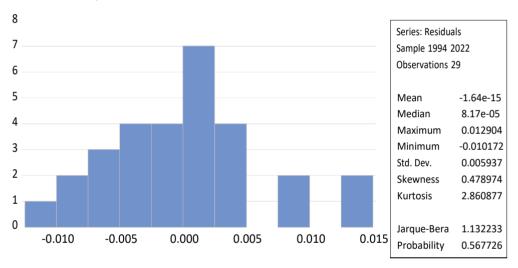
Además, los valores de R- cuadrado (98.13%) y R- cuadrado ajustado (96.29%) indican que el modelo de regresión de ECM tiene un buen ajuste de datos y captura de manera efectiva la variabilidad en el crecimiento económico. Por último, el valor del estadístico Durbin–Watson sugiere que no existe problemas significativos de autocorrelacion en los residuos del modelo.

Tabla 7 *Modelo de Corrección de Errores*

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LNPBI(-1))	0.323737	0.12343	2.622843	0.0255
D(LNPBI(-2))	0.400321	0.144098	2.778118	0.0195
D(LNPBI(-3))	0.667463	0.13152	5.074999	0.0005
D(CH)	0.031003	0.047686	0.650146	0.5303
D(CH(-1))	-0.212087	0.043843	-4.837387	0.0007
D(CH(-2))	-0.148449	0.044728	-3.318916	0.0078
D(LNCF)	0.231366	0.018763	12.3312	0
D(LNCF(-1))	-0.079836	0.038505	-2.07338	0.0649
D(LNCF(-2))	-0.139034	0.045202	-3.075832	0.0117
D(LNCF(-3))	-0.163464	0.040337	-4.052447	0.0023
D(LNFL)	0.57249	0.062712	9.128815	0
D(LNFL(-1))	-0.492932	0.082557	-5.970834	0.0001
D(LNFL(-2))	-0.456743	0.122545	-3.727151	0.0039
D(LNFL(-3))	-0.225209	0.116484	-1.933384	0.082
CointEq(-1)*	-0.462013	0.071305	-6.479386	0.0001
R-squared	0.981322	Mean der	oendent var	0.043203
Adjusted R- squared	0.962644	S.D. dep	endent var	0.04344
S.E. of regression	0.008396	Akaike ir	nfo criterion	-6.415896
Sum squared resid	0.000987	Schwar	z criterion	-5.708674
Log likelihood	108.0305	Hannan-C	Quinn criter.	-6.194402
Durbin-Watson stat	2.158727			
	Null Hypothe	sis: No levels re	elationship	
Test Statistic	Value	Signif.	I(0)	I(1)
F-statistic	5.997491	10%	2.37	3.2
k	3	5%	2.79	3.67
		2.50%	3.15	4.08
		1%	3.65	4.66

5.2.6. Pruebas Diagnóstico

En esta sección, se llevan a cabo diversas pruebas para verificar la robustez del modelo estimado y garantizar la fiabilidad de los resultados.


Prueba de normalidad

En la Figura 13, se presentan los resultados de la prueba de Jarque-Bera aplicada a los residuos del modelo. Esta prueba evalúa si los residuos se ajustan a una distribución normal, lo que se conoce como la hipótesis nula. El estadístico de Jarque-Bera (1.1322) es inferior al valor crítico de 5.99 para un nivel de significancia del 5% con 2 grados de libertad. Adicionalmente, el p-valor asociado a la prueba (0.5677) es mayor al 5% de significancia.

Estos resultados indican que no hay evidencia suficiente que permita rechazar la hipótesis nula. En otras palabras, podemos concluir con un nivel de confianza del 95% que los errores estimados del modelo se ajustan a una distribución normal.

Figura 13

Test de Jarque-Bera de los errores

Prueba de Autocorrelación

En la Tabla 8 se presentan los resultados de la prueba de Breusch-Godfrey para la autocorrelación en los residuos del modelo. Esta prueba evalúa la hipótesis nula de que no existe autocorrelación en los errores.

Los resultados de la prueba no encuentran evidencia de autocorrelación. El estadístico F (0.5154), con un p-valor asociado de 0.6158 y el valor de Obs*R-squared (0.1911) son mayores al nivel de significancia de 5%. Esto indica que no hay evidencia estadística suficiente para concluir que existe autocorrelacion. Adicionalmente, el estadístico Durbin-Watson (2.05) se encuentra entre 1.7 y 2.3, lo que también respalda la ausencia de autocorrelación. El correlograma en la Figura 14 confirma visualmente esta conclusión.

En conjunto, estas pruebas sugieren que los residuos del modelo son independientes entre sí y las inferencias del modelo son confiables.

Figura 14 *Autocorrelograma de los residuos*

Autocorrelation	Partial Correlation	AC PAC Q-Stat Prob*
		1 -0.081 -0.081 0.2126 0.645 2 -0.179 -0.187 1.2752 0.529 3 -0.211 -0.254 2.8122 0.421
, , ,		4 -0.173 -0.292 3.8880 0.421 5 0.063 -0.133 4.0356 0.544 6 -0.144 -0.397 4.8497 0.563
· · · · · · · · · · · · · · · · · ·		7 0.267 0.002 7.7581 0.354 8 -0.028 -0.260 7.7921 0.454 9 0.088 -0.033 8.1363 0.520
· 🗐 ·		10 -0.111 -0.279 8.7229 0.559 11 -0.112 -0.205 9.3464 0.590 12 0.137 -0.160 10.343 0.586

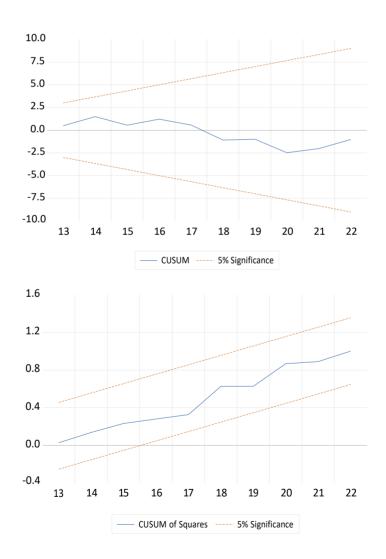
Tabla 8 *Test de Autocorrelación*

Breusch-Godfrey Serial Correlation LM Test					
F-statistic	0.515438	Prob. F(2	2,8)	0.6158	
Obs*R-squared	3.310354	Prob. Ch	i-Square(2)	0.1911	
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
LNPBI(-1)	0.070661	0.305472	0.231317	0.8229	
LNPBI(-2)	0.117138	0.446767	0.262191	0.7998	
LNPBI(-3)	-0.207949	0.423403	-0.491138	0.6365	
LNPBI(-4)	0.024296	0.223146	0.108877	0.916	
CH	-0.057319	0.096439	-0.594359	0.5687	
CH(-1)	0.030255	0.098111	0.308376	0.7657	
CH(-2)	0.019366	0.090812	0.213258	0.8365	
CH(-3)	-0.010604	0.078429	-0.135204	0.8958	
LNCF	-0.017001	0.044928	-0.378403	0.715	
LNCF(-1)	-0.03915	0.078903	-0.496183	0.6331	
LNCF(-2)	-0.001458	0.115196	-0.012657	0.9902	
LNCF(-3)	0.055233	0.111057	0.497334	0.6323	
LNCF(-4)	-0.028538	0.068384	-0.417322	0.6874	
LNFL	0.096023	0.191128	0.502402	0.6289	
LNFL(-1)	0.041444	0.285935	0.144943	0.8883	
LNFL(-2)	-0.126045	0.296212	-0.425522	0.6817	
LNFL(-3)	0.208213	0.345353	0.6029	0.5633	
LNFL(-4)	-0.062096	0.236586	-0.262468	0.7996	
С	-1.094918	2.228144	-0.491404	0.6363	
RESID(-1)	-0.24602	0.536937	-0.458192	0.659	
RESID(-2)	-0.526917	0.562988	-0.93593	0.3767	
R-squared	0.11415	Mean de	pendent var	-1.64E-15	
Adjusted R-squared	-2.100475	S.D. dep	endent var	0.005937	
S.E. of regression	0.010454	Akaike in	fo criterion	-6.12331	
Sum squared resid	0.000874	Schwarz	criterion	-5.133199	
Log likelihood	109.788	Hannan-	Quinn criter.	-5.81322	
F-statistic	0.051544	Durbin-W	/atson stat	2.057821	
Prob(F-statistic)	1				

Prueba de Heterocedasticidad

La Tabla 9 presenta los resultados de la prueba Breusch-Pagan-Godfrey, que evalúa la homocedasticidad de los errores (residuales) del modelo, es decir, si su varianza permanece constante en todas las observaciones.

La probabilidad de 0.6771, que corresponde al estadístico F (0.795853), es superior al nivel de significancia del 5%. Esto sugiere que no existe evidencia estadística suficiente para rechazar la hipótesis nula de homocedasticidad. En conclusión, no se encuentran indicios de heterocedasticidad, lo que fortalece la validez del modelo.


Tabla 9 *Test de Heterocedasticidad*

Heteroskedasticity Te	st: Breusch-Pa	gan-Godfrey		
F-statistic	0.795853	Prob. F(18	3,10)	0.6771
Obs*R-squared	17.07829	Prob. Chi-Square(18)		0.5177
Scaled explained SS	1.889452	Prob. Chi-	Square(18)	1
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.007479	0.009062	0.825349	0.4284
LNPBI(-1)	-0.001138	0.001017	-1.118838	0.2894
LNPBI(-2)	0.002197	0.00145	1.514598	0.1608
LNPBI(-3)	-0.000195	0.001424	-0.137124	0.8937
LNPBI(-4)	-0.001268	0.001039	-1.220094	0.2504
CH	-0.000343	0.000367	-0.934179	0.3722
CH(-1)	0.000359	0.000427	0.840861	0.4201
CH(-2)	-0.000266	0.000384	-0.691063	0.5053
CH(-3)	0.000438	0.000343	1.276774	0.2305
LNCF	0.000266	0.000192	1.383901	0.1965
LNCF(-1)	0.000222	0.000314	0.705571	0.4966
LNCF(-2)	-0.000756	0.000442	-1.710295	0.118
LNCF(-3)	0.000221	0.000396	0.557764	0.5893
LNCF(-4)	0.000315	0.000301	1.048407	0.3191
LNFL	-0.001052	0.000805	-1.306081	0.2208
LNFL(-1)	0.000807	0.000955	0.844961	0.4179
LNFL(-2)	-0.001484	0.000993	-1.494497	0.1659
LNFL(-3)	0.001667	0.001339	1.24516	0.2415
LNFL(-4)	-0.000628	0.001048	-0.599013	0.5625
R-squared	0.588906	Mean de	ependent var	3.40E-05
Adjusted R-squared	-0.151062	S.D. de	pendent var	4.72E-05
S.E. of regression	5.07E-05	Akaike i	nfo criterion	-16.69618
Sum squared resid	2.57E-08	Schwa	rz criterion	-15.80036
Log likelihood	261.0945	Hannan-	Quinn criter.	-16.41562
F-statistic	0.795853	Durbin-	Watson stat	2.698828
Prob(F-statistic)	0.677064			

Prueba de estabilidad de parámetros

En la Figura 15 se muestran los resultados de las pruebas CUSUM y CUSUM-SQ, utilizadas para evaluar la estabilidad de los parámetros (coeficientes) del modelo. Se observa que la línea de la suma acumulada (representada en azul) permanece dentro de los intervalos de confianza del 5% marcado en rojo. Esto indica que los parámetros del modelo ARDL se mantienen estables durante el periodo de análisis (1990-2022), lo que respalda la confiabilidad de los resultados del modelo.

Figura 15
Pruebas de Cusum y Cusum SQ realizadas al Modelo ARDL (4,3,4,4)

VI. DISCUSIÓN DE RESULTADOS

6.1. Contrastación y demostración de la hipótesis con los resultados:

Contraste inferencial de la hipótesis general

 H_0 : Los factores de producción impactan de manera positiva sobre el crecimiento económico del Perú en el periodo de 1990 – 2022.

 H_1 : Los factores de producción no impactan de manera positiva sobre el crecimiento económico del Perú en el periodo de 1990 – 2022.

Basándonos en los resultados obtenidos del modelo ARDL y las pruebas de diagnóstico comprueban la existencia de una relación positiva y significativa entre los factores de producción y el crecimiento económico del Perú en el periodo analizado. Los resultados indican que, en conjunto, los factores de producción explican el 99% de la variabilidad del crecimiento económico del país. Debido a la contundencia de la evidencia, se acepta la hipótesis nula planteada.

Contraste inferencial de la hipótesis específica 1

*H*₀: El capital humano impacta de manera positiva sobre el crecimiento económico del Perú en el periodo de 1990 – 2022.

*H*₁: El capital humano no impacta de manera positiva sobre el crecimiento económico del Perú en el periodo de 1990 − 2022.

Conforme a los hallazgos obtenidos, el capital humano muestra un coeficiente positivo de 0.1144 al 95% de confianza, lo que sugiere que un aumento en una unidad en el capital humano se asocia con un aumento del 0.1144% en el nivel de crecimiento económico. Esto indica que hay evidencia estadística significativa que respalda la hipótesis nula, la cual plantea que el capital humano tiene un impacto positivo en el crecimiento económico del Perú entre 1990 y 2022.

Contraste inferencial de la hipótesis específica 2

H0: El capital físico impacta de manera positiva sobre el crecimiento económico del Perú en el periodo de 1990 – 2022.

H1: El capital físico no impacta de manera positiva sobre el crecimiento

económico del Perú en el periodo de 1990 – 2022.

En base a los resultados obtenidos, el capital físico muestra un coeficiente positivo de 0.1819, significante al 95% de confianza. Esto indica que un aumento del 10% en el capital físico se asocia a un aumento de 1.82% en el nivel de crecimiento económico del Perú entre 1990 y 2022. En consecuencia, existe evidencia estadística significativa para aceptar la hipótesis nula, que plantea que el capital físico tiene un impacto positivo en el crecimiento económico del país.

Contraste inferencial de la hipótesis específica 3

- *H*₀: La fuerza laboral impacta de manera positiva sobre el crecimiento económico del Perú en el periodo de 1990 2022.
- *H*₁: La fuerza laboral no impacta de manera positiva sobre el crecimiento económico del Perú en el periodo de 1990 − 2022.

Los resultados obtenidos revelan que la fuerza laboral presenta un coeficiente positivo de 1.6164, significante al 95% de confianza. Esto indica que un aumento del 10% en la fuerza laboral se asocia a un aumento de 16.16% en el nivel de crecimiento económico del Perú entre 1990 y 2022. Esta evidencia respalda la aceptación de la hipótesis nula, que establece que la fuerza laboral tiene un impacto positivo en el crecimiento económico del país.

6.2. Contrastación de los resultados con otros estudios similares:

Los resultados para la **hipótesis general** coinciden con el estudio de Angulo (2020), que, utilizando un enfoque de mínimos cuadrados ordinarios (MCO), demuestra que la inversión en capital humano y capital físico tiene un impacto significativo y positivo en el crecimiento económico del país. Estos resultados se encuentran alineados con el modelo de Romer, el cual predice que la acumulación de capital humano y físico impulsa el crecimiento económico a largo plazo. Cotrina y Huayllacayan (2023) también encuentran resultados similares. En su estudio, concluyen que la FBKF y la PEA tienen una relación positiva con el PBI peruano.

En línea con lo anterior, los resultados para las hipótesis especificas 1,2 y 3 refuerzan la importancia del capital humano, el capital físico y la fuerza laboral como motores del crecimiento económico.

En el caso de la **hipótesis específica 1**, los resultados coinciden con los encontrados por Jiménez y Reyes (2022) en el caso de Colombia. En su estudio, que abarcó 22 departamentos colombianos entre 2000 y 2019, los autores utilizaron modelos de panel de efectos fijos y aleatorios para estimar el impacto del capital humano sobre el crecimiento del PBI. Estos resultados indican que el capital humano, medido en años promedio de escolaridad, tiene un efecto positivo y significativo sobre el ritmo de expansión del PBI colombiano.

En cuanto a la **hipótesis específica 2**, los resultados concuerdan con los encontrados por Chamba et al. (2021) para el caso de Ecuador. Entre 2007 y 2019, estos autores utilizaron un enfoque de mínimos cuadrados ordinarios (MCO) para estimar el impacto de la fuerza laboral y capital físico sobre el crecimiento del PBI ecuatoriano. Sus resultados, alineados con la función Cobb Douglas ampliada, indican que la fuerza laboral y el capital físico, medido por la PEA y el FBKF, respectivamente, tienen un efecto positivo y significativo sobre el ritmo de expansión del PBI.

Finalmente, respecto a la **hipótesis específica 3**, los resultados se suman a los encontrados por Castillo (2021) para el caso peruano. Entre 2001 y 2020, este estudio, utilizando la función de Cobb Douglas y un

enfoque de mínimos cuadrados ordinarios (MCO) con frecuencia trimestral, evidenció que la FBKF y PEA tienen un impacto positivo y significativo sobre la variación en el PBI peruano durante el periodo analizado.

VII. CONCLUSIONES

- 1. La presente investigación confirma la importancia y cohesión de los factores de producción (capital humano, físico y fuerza laboral) en el análisis del crecimiento económico del Perú entre 1990 a 2022. Utilizando el modelo econométrico ARDL, se comprueba una relación a largo plazo entre estas variables, con un alto nivel de significancia estadística. Los resultados indican que el capital físico tiene el mayor impacto en el crecimiento económico, seguido por la fuerza laboral y el capital humano. Un aumento de 1% en el capital físico se asocia a un crecimiento del 0.18%, mientras que un aumento similar en la fuerza laboral y el capital humano se traduce en un crecimiento del 1.62% y 0.11%, respectivamente.
- 2. De acuerdo a los resultados mostrados en la hipótesis especifica 1, se evidenció un efecto positivo del capital humano en el crecimiento económico del Perú entre 1990 y 2022. Al aumentar una unidad del capital humano, el crecimiento económico del país se incrementa en 0.11%. Este resultado coincide con el Modelo de Solow ampliado, el cual demuestra que el capital humano (educación, habilidades y experiencia) aumenta la productividad de trabajo, lo que genera un mayor crecimiento económico.
- 3. De acuerdo a los resultados mostrados en la hipótesis especifica 2, se comprobó un impacto positivo del capital físico en el crecimiento económico del Perú entre 1990 y 2022. Al aumentar el capital físico en un 1%, el crecimiento económico del país se incrementa en un 0.18%. Estos resultados se corroboran con el Modelo de Solow ampliado, el cual demuestra que el capital físico (maquinaria y equipos) permite a los trabajadores producir más en el mismo tiempo, lo que conduce a un aumento de productividad y, en consecuencia, a un mayor crecimiento económico.
- 4. De acuerdo a los resultados mostrados en la hipótesis especifica 3, se evidenció un efecto positivo de la fuerza laboral en el crecimiento económico del Perú entre 1990 y 2022. Al aumentar en un 1%, el crecimiento económico del país se incrementa en un 1.62%. Este resultado corrobora las predicciones del Modelo de Solow ampliado, que destaca la importancia de la fuerza laboral como factor determinante del crecimiento económico.

VIII. RECOMENDACIONES

- 1. Es fundamental reconocer la importancia de los factores de producción en la economía peruana, enfocándose particularmente en el papel del capital humano, el capital físico y la fuerza laboral. Es esencial analizarlos de manera conjunta, reconociendo que cada uno de ellos aporta valor de forma única y sinérgica al crecimiento económico del país. El Estado debe desempeñar un papel fundamental en la promoción y el desarrollo de los factores de producción en colaboración con el sector privado y la sociedad civil. Para ello, debe implementar políticas que fomenten: la educación de calidad, desde el nivel inicial hasta el nivel superior, así como programas de capacitación y actualización constante para la fuerza laboral.
- Se requiere la realización de inversiones estratégicas tanto en infraestructura física (carreteras, puertos, aeropuertos, redes de energía y telecomunicaciones) como en infraestructura tecnológica (banda ancha de alta velocidad, adopción de tecnologías digitales y plataformas de innovación). Además, es necesario construir entornos laborales que fomenten el progreso personal y profesional, ofreciendo salarios justos y condiciones laborales adecuadas. Asimismo, se debe promover una cultura organizacional que estimule la creatividad, la innovación y el trabajo en equipo.
- 2. Basándose en los resultados de esta investigación, se subraya la importancia crucial de una educación de alta calidad como factor fundamental para el crecimiento económico del Perú. Por lo tanto, se recomienda que futuras investigaciones se centren en examinar más a fondo el impacto específico de diferentes aspectos del capital humano en el crecimiento económico del país. Asimismo, se sugiere que los responsables de la formulación de políticas y los líderes gubernamentales consideren la implementación de medidas destinadas a mejorar la calidad y el acceso a la educación en todos los niveles, incluyendo el aumento de la inversión de infraestructura educativa, la mejora de la formación y el salario de los docentes, la expansión de los programas de becas y reformas curriculares para enfocarse en habilidades relevantes para el mercado laboral. Además, se recomienda explorar la viabilidad y efectividad de políticas y programas dirigidos a fortalecer el capital humano a

través de inversiones en capacitación en habilidades técnicas y blandas, aprendizaje permanente y desarrollo profesional continuo, y oportunidades de educación superior y formación técnica, en colaboración con el sector privado, para desarrollar el pleno potencial del capital humano como motor de crecimiento económico y transformación social en el Perú.

- 3. En consonancia con las conclusiones de la investigación, se recomienda fortalecer la colaboración entre el sector público y privado a través de alianzas estratégicas para incrementar el capital físico y estimular el crecimiento económico de manera sostenible. La atención debe centrarse en el diseño de políticas coherentes y coordinadas, que tengan como objetivo estimular los esfuerzos de las empresas y brindarles el apoyo necesario para aumentar la productividad, generar empleo decente, crear la infraestructura económica que beneficiará al país (infraestructura de transporte y logística, infraestructura energética, infraestructura tecnológica) y generar bienestar en la población. Esto incluye incentivos fiscales y financieros, simplificación de trámites burocráticos y regulaciones, programas de capacitación y asistencia técnica, y un marco regulatorio estable y predecible.
- 4. Se recomienda que el Estado diseñe políticas públicas orientadas a impulsar la formación técnica y profesional alineadas a las necesidades actuales y futuras del mercado laboral. La mejora en la calidad educativa es fundamental para fortalecer las competencias de la mayoría de la PEA que ya cuenta con educación básica, pero requiere actualizar y desarrollar nuevas competencias para hacer frente a las necesidades cambiantes del entorno laboral que exigen una fuerza laboral altamente calificada y adaptable. Estas políticas deben diseñarse en colaboración con el sector privado para garantizar su efectividad y pertinencia.

Estas recomendaciones servirán como impulso para fomentar un crecimiento económico sostenido, elevar la competitividad del país, lo que a su vez contribuirá a mejorar la calidad de vida de la población.

IX. REFERENCIAS BIBLIOGRAFICAS

- Angulo, K.H. (2020). Capital humano y capital físico como determinantes del crecimiento económico del Perú durante el período 1990 2016 [Tesis de Licenciatura, Universidad Privada del Norte]. https://repositorio.upn.edu.pe/handle/11537/24626
- Abel, A. B., & Bernanke, B. S. (2004). Macroeconomics, Update Edition (E.Rabasco Trad.; 4.ª ed.). Pearson Educación, S.A. (Original work published 2001). https://www.researchgate.net/publication/48212535_Macroeconomia
- Banco Central de Reserva del Perú [BCRP]. (2011). Glosario de Términos Económicos.https://www.bcrp.gob.pe/docs/Publicaciones/Glosario/Glosario-BCRP.pdf
- Begg, D., Fischer, S., Dornbusch, R., & Fernández, A. (2006). Economics (E.Rabasco Trad.; 8.ª ed.). Mc Graw Hill (Original work published 2005).
- Bello, M. (2002). Equidad social y educación en los años 90. IPE-UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000129515
- Carmona, O.D (2021). Inversión en educación, capital humano y su relación con el crecimiento económico en el Perú [Tesis de Doctorado, Universidad Nacional de Cajamarca]. http://hdl.handle.net/20.500.14074/4349
- Castillo, L.J. (2021). Determinantes del crecimiento económico peruano:

3°trimestre 2001 al 2° trimestre 2020. [Tesis de Licenciatura, Universidad de Piura].

https://hdl.handle.net/11042/4974

- Cerquera, L. O., Clavijo, T. M., & Pérez, P. C. (2022). Capital humano y crecimiento económico: evidencia empírica para Sudamérica. *Apuntes del CENES, 41(73)*, 143-167. https://doi.org/10.19053/01203053.v41.n73.2022.13679
- Chamba, J. L., Bermeo, L. A., & Campuzano, J. A. (2021). Variables determinantes en el crecimiento económico del Ecuador función Cobb-Douglass 2007-2019. *Sociedad & Tecnología, 4(2)*, 109–122. https://doi.org/10.51247/st.v4i2.98
- Córdova, M.G. (2005). Estimación del Stock de Capital para la economía ecuatoriana en dolarización [Tesis de Maestría, Universidad Peruana de Ciencias Aplicadas].

 https://biblio.flacsoandes.edu.ec/catalog/resGet.php?resId=20015
- Cornejo, X.M. (2020). El Impacto del Capital Humano en el Crecimiento

 Económico del Perú entre los años 1970 2018 [Tesis de Licenciatura,

 Universidad Peruana de Ciencias Aplicadas].

 http://doi.org/10.19083/tesis/652683
- Cotrina, E.J. & Huayllacayan, L. A. (2023). Función de producción Cobb

 Douglas aplicada al producto bruto interno en la economía peruana,

 período 1990 2020 [Tesis de Licenciatura, Universidad Nacional

- Daniel Alcides Carrión].
- http://repositorio.undac.edu.pe/handle/undac/3250Daly, H. E., Urquidi, V. L., & de la Peña, R. (1974). La Economía Del Estado Estacionario.

 Demografía y Economía, 8(3), 357–365.

 http://www.jstor.org/stable/40593574
- De Gregorio, J. (2007). Macroeconomía. Teoría y Políticas. Pearson-Educación.

 http://www.degregorio.cl/pdf/Macroeconomia.pdf
- Fermoso, E.P. (1997). Manual de economía de la educación. Narcea.

 https://jabega.uma.es/permalink/34CBUA_UMA/36gblb/alma9910025
 22029704986
- Guzmán, D.M., Piñancela, L.Y., & Sotomayor, J. (2022). Determinantes del crecimiento económico de Chile, Perú y Ecuador durante el periodo 1990 al 2020. 593 *Digital Publisher CEIT*, 7(2), 43-55. https://doi.org/10.33386/593dp.2022.2.1004
- Hernández, R., Fernández, C., & Baptista, P. (1991). Metodología de la investigación. McGraw-Hill.
 https://www.uv.mx/personal/cbustamante/files/2011/06/Metodologia-de-la-Investigaci%C3%83%C2%B3n_Sampieri.pdf
- Hernández, R., Fernández, C., & Baptista, M. (2010). *Metodología de la investigación.* (5ta ed.). McGraw-Hill. http://biblioteca.udgvirtual.udg.mx/jspui/handle/123456789/2707

- Hernández, R., & Mendoza, C. (2018). *Metodología De La Investigación: Las Rutas Cuantitativa, Cualitativa y Mixta.* McGraw-Hill.http://www.biblioteca.cij.gob.mx/Archivos/Materiales_de_consulta/Drogas de Abuso/Articulos/SampieriLasRutas.pdf
- Instituto Latinoamericano y del Caribe de Planificación Económica y Social (2002). Informe de Actividades del ILPES 2002

 https://repositorio.cepal.org/bitstreams/8f3c9282-e019-412a-a074-b5cbd898e295/download
- Instituto Nacional de Estadística e Informática (2022). Perú: Estructura

 Empresarial 2020.

 https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales

 /Est/Lib1861/libro.pdf
- Instituto Nacional de Estadística e Informática (2023). Panorama de la Economía Peruana 1950-2022. https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales /Est/Lib1904/libro.pdf
- Instituto Peruano de Economía. (2023). Economía Peruana: ¿Qué significa haber crecido solo 2,7% en el 2022? https://www.ipe.org.pe/portal/economia-peruana-que-significa-haber-crecido-solo-2-7-en-el-2022/
- Jiménez, F. (1999). Macroeconomía: Breve Historia y Conceptos Básicos.

 Editorial Pontificia Universidad Católica del Perú.

- http://repositorio.pucp.edu.pe/index/handle/123456789/46811
- Jiménez, F. (2011). Crecimiento económico: enfoques y modelos. Editorial Pontificia Universidad Católica del Perú.

 https://repositorio.pucp.edu.pe/index/bitstream/123456789/46611/1/cr ecimiento_economico.pdf
- Jiménez, F. (2012). Elementos de Teoría y Política Macroeconomía para una economía abierta. Sello Editorial Pontificia Universidad Católica del Perú.

http://repositorio.pucp.edu.pe/index/handle/123456789/46613

Jiménez, S., & Reyes, S. (2022). Habilidades cognitivas y crecimiento económico en Colombia. Un análisis departamental. *Lecturas De Economía*, 97(97), 149–179.

https://doi.org/10.17533/udea.le.n97a347351

- Larrain, F., & Sachs, J. (2002). *Macroeconomía en la economía global* (2nd ed.). Pearson Education S.A.

 https://books.google.com.co/books?id=DbBQpI7W0ssC&lpg=PR1&hl=es&pg=PR6#v=onepage&q&f=false
- Mankiw, N. G. (2012) Principles of Economics (M. Meza y M. Carril Trad.; 6.^a ed.). Cengage Learning. (Original work published 2012). https://clea.edu.mx/biblioteca/files/original/bd2711c3969d92b67fcf71d 844bcbaed.pdf
- Mankiw, N. G., Romer, D., & Weil, D. N. (1992). A contribution to the empirics

- of economic growth. *The quarterly journal of economics, 107(2),* 407-437.
- Parkin, M. (2007). Macroenomics (M. Martinez Trad.; 7.ª ed.). Pearson Education. (Original work published 2005).
- Pomi, S.S., Sarkar, S.M., & Dhar, B.K. (2021). Human or physical capital, which influences sustainable economic growth most? *A study on Bangladesh, Canadian Journal of Business and Information Studies, 3(5)*, 101-108. https://doi.org/10.34104/cjbis.021.01010108
- Samuelson, P. A., & Nordhaus, W. D. (2010). Macroeconomics (A.Deras.; 19^a ed.). McGraw-Hil. (Original work published 2010). https://bibliotecaees1boulogne.files.wordpress.com/2020/06/samuelson-19-edi-macroeconomia.pdf
- Terrones, M., & Calderón, C. (1993). Educación, capital humano y crecimiento económico: El caso de América Latina. *Economía, 16(31)*, 23-69. https://doi.org/10.18800/economia.199301.002

ANEXOS

Anexo 1. Matriz de Consistencia

Factores de producción y crecimiento económico del Perú en el período 1990-2022

Objeto de estudio	Problemas de investigación	Objetivos de investigación	Hipótesis	Variables	Dimensiones	Indicadores	Método
	Problema general	Objetivo general	Hipótesis general		Capital	Índice de capital	Para llevar a cabo
	¿Cuál es el impacto de los factores de	Determinar el impacto de	Los factores de producción impactan de		humano	humano	la investigación, se procederá a
	producción sobre el crecimiento económico del Perú en el periodo de 1990 - 2022?	los factores de producción sobre el crecimiento económico del Perú en el periodo de 1990 – 2022	manera positiva sobre el crecimiento económico del Perú en el periodo de 1990 – 2022.	Factores de	Capital físico	Formación bruta de capital físico	recopilar información de fuentes confiables como el BCRP, MINEDU e INEI.
	Problemas específicos	Objetivos específicos	Hipótesis específicas	producción		, , , , , , , , , , , , , , , , , , ,	A continuación, se estructurarán
	1. ¿Cuál es el impacto del capital humano	1. Explicar el impacto del	1. El capital humano impacta de manera				los datos
Perú	sobre el crecimiento económico del Perú en el periodo de 1990 - 2022?	capital humano sobre el crecimiento económico del Perú en el periodo de 1990 – 2022.	impacta de manera positiva sobre el crecimiento económico del Perú en el periodo de 1990 – 2022.		Fuerza laboral	Población Económicamente Activa	mediante tablas para facilitar su comprensión, se visualizarán a través de gráficos
	2. ¿Cuál es el impacto del capital físico sobre el crecimiento económico del Perú en el periodo de 1990 - 2022?	capital físico sobre el	2. El capital físico impacta de manera positiva sobre el crecimiento económico del Perú en el periodo de 1990 – 2022.		Producto Bruto	de línea para una representación más intuitiva, se describirán detalladamente mediante cifras	
	3. ¿Cuál es el impacto de la fuerza laboral sobre el crecimiento económico del Perú en el periodo de 1990 - 2022?	3. Explicar el impacto de la fuerza laboral sobre el crecimiento económico del Perú en el periodo de 1990 – 2022.	3. La fuerza laboral impacta de manera positiva sobre el crecimiento económico del Perú en el periodo de 1990 – 2022.	Crecimiento Económico		Interno en el Perú	estadísticas, y se aplicará la prueba de hipótesis con el fin de resaltar la significancia estadística de las estimaciones obtenidas.

Anexo 2. Base de Datos

Año	PBI	FBKF	PEA	СН
1990	151,492	21,823	12,616	5.82
1991	154,854	22,227	13,096	5.88
1992	154,017	22,546	13,119	5.96
1993	162,093	25,141	12,539	6.02
1994	182,044	33,234	11,756	6.20
1995	195,536	40,335	11,658	6.32
1996	201,009	39,189	11,881	6.5
1997	214,028	45,167	12,511	6.59
1998	213,190	44,635	12,857	6.59
1999	216,377	39,700	13,209	6.62
2000	222,207	37,654	12,990	6.72
2001	223,580	34,602	12,908	6.81
2002	235,773	34,772	13,016	7.00
2003	245,593	36,725	13,047	7.01
2004	257,770	39,430	13,319	7.10
2005	273,971	43,816	13,867	7.11
2006	294,598	52,084	14,356	7.18
2007	319,693	63,892	14,907	7.25
2008	348,870	81,666	15,157	7.30
2009	352,693	78,886	15,451	7.33
2010	382,081	96,141	15,738	7.36
2011	406,256	105,687	15,949	7.39
2012	431,199	121,423	16,143	7.46
2013	456,435	127,954	16,326	7.46
2014	467,308	125,380	16,396	7.46
2015	482,506	116,404	16,498	7.48
2016	501,581	111,207	16,904	7.51
2017	514,215	112,639	17,216	7.53
2018	534,626	117,898	17,463	7.58
2019	546,605	121,263	17,830	7.62
2020	487,191	101,671	16,095	7.62
2021	552,560	136,309	18,149	7.58
2022	567,390	136,678	18,551	7.65

Anexo 3. Tablas y figuras adicionales

Tabla 10 *Prueba de raíz unitaria de CH en niveles*

Null Hypothesis: CH has a unit root									
Exogenous: Constant									
Lag Length: 0 (Automatic - based on SIC, maxlag=8)									
			t-Statistic	Prob.*					
Augmented Dickey-Full	er test statistic		- 3.783825	0.0072					
Test critical values:	1% level		-3.65373						
	5% level		-2.95711						
	10% level		- 2.617434						
*MacKinnon (1996) one	e-sided p-value	es.							
Augmented Dickey-Full	ler Test Equati	on							
Dependent Variable: De	(CH)								
Method: Least Squares									
Date: 02/11/24 Time: 1	9:25								
Sample (adjusted): 199	1 2022								
Included observations: 32 after adjustments									
Variable	Coefficient	Std. Error	t-Statistic	Prob.					
CH(-1)	-0.054285	0.014347	3.783825	0.0007					
С	0.4361		4.340906	0.0001					
R-squared	0.323064	Mean de _l var	pendent	0.057188					
Adjusted R-squared	0.300499	S.D. dep	endent var	0.054432					
S.E. of regression	0.045525	Akaike in criterion	-3.28067						
Sum squared resid	0.062174	4 Schwarz criterion 3.189							
Log likelihood	54.49072	Hannan-G	3.250304						
F-statistic	14.31733	Durbin-W	atson stat	1.949576					
Prob(F-statistic)	0.000689								

Tabla 11 *Prueba de raíz unitaria de CH en primera diferencia*

Null Hypothesis: D(CH) has a unit root									
Exogenous: Constant, Linear Trend									
Lag Length: 0 (Automatic - based on SIC, maxlag=8)									
t-Statistic P									
Augmented Dickey-Fuller	r test statistic		5.519678	0.0005					
Test critical values:	1% level		-4.28458						
	5% level		3.562882						
	10% level		- 3.215267						
*MacKinnon (1996) one-s Augmented Dickey-Fuller Dependent Variable: D(C Method: Least Squares Date: 02/11/24 Time: 19 Sample (adjusted): 1992 Included observations: 3									
Variable	Coefficient	Std. Error	t-Statistic	Prob.					
D(CH(-1))	-1.05832	0.191736	5.519678	0					
С	0.123695	0.028948	4.273087	0.0002					
@TREND("1990")	-0.003723	0.001166	3.193458	0.0035					
R-squared	0.521191	Mean de var	pendent	0.000323					
Adjusted R-squared	0.48699	S.D. dep	endent	0.065191					
S.E. of regression	0.046693	Akaike ir criterion	nfo	3.198679					
Sum squared resid	0.061047	Schwarz	criterion	3.059906					
Log likelihood	52.57952	Hannan- criter.	3.153442						
F-statistic	15.2392	Durbin-V stat	Vatson	1.974672					
Prob(F-statistic)	0.000033								

Tabla 12 *Prueba de raíz unitaria de LNCF en primera diferencia*

Null Hypothesis: D(LNCF) has a unit root								
Exogenous: None								
Lag Length: 1 (Automati	Prob.*							
Augmented Dickey-Fulle	er test statistic		- 2.085311	0.0375				
Test critical values:	1% level		2.644302					
	5% level		1.952473					
*** (4000)	10% level		1.610211					
Augmented Dickey-Fulle Dependent Variable: D(I Method: Least Squares Date: 02/11/24 Time: 19	Date: 02/11/24 Time: 19:26 Sample (adjusted): 1993 2022							
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
D(LNCF(-1))	-0.451257	0.216398	2.085311	0.0463				
D(LNCF(-1),2)	-0.321669	0.200087	1.607642	0.1191				
R-squared	0.389322	Mean dep var	0.000385					
Adjusted R-squared	0.367512	S.D. depe	endent var	0.154888				
S.E. of regression	S.E. of regression 0.123181 Akaike info criterion							
Sum squared resid	Sum squared resid 0.424863 Schwarz criterion							
Log likelihood	21.28964	Hannan-C criter.	1.256092					
Durbin-Watson stat	2.013016							

Tabla 13 *Prueba de raíz unitaria de LNFL en primera diferencia, con constante*

Null Hypothesis: D(LNFL) has a unit root								
Exogenous: Constant	Allesis. D(L	141 Lj 1143 4 41111 1001						
Lag Length: 0 (Automatic - based on SIC, maxlag=8)								
	Prob.*							
Augmented Dickey-Fu	ller test statis	stic 5.863976	0.0000					
Test critical values:	1% level	- 3.661661						
	5% level	- 2.960411						
	10% level	-2.61916						
*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(LNFL,2) Method: Least Squares Date: 02/11/24 Time: 19:55 Sample (adjusted): 1992 2022 Included observations: 31 after adjustments								
Variable	Coefficient		Prob.					
D(LNFL(-1))	-1.07809	0.18385 5.863976	0					
С	0.012149	0.00702 1.730612	0.0942					
R-squared	0.542487	Mean dependent var	0.000498					
Adjusted R-squared	0.526711	S.D. dependent var	0.054066					
S.E. of regression	0.037195	Akaike info criterion	3.682927					
Sum squared resid	0.040121	Schwarz criterion	- 3.590412					
Log likelihood	59.08537	Hannan-Quinn criter.	-3.65277					
F-statistic	34.38621	Durbin-Watson stat	1.981809					
Prob(F-statistic)	0.000002							

Tabla 14Prueba de raíz unitaria de LNFL en primera diferencia, con constante y tendencia

Null Hypothesis: D(LNFL) has a unit root								
Exogenous: Constant, Li		,						
Lag Length: 0 (Automatic - based on SIC, maxlag=8) t-Statistic Prob.*								
	Prob.*							
Augmented Dickey-Fulle	r test statistic		-6.04396	0.0001				
Test critical values:	1% level		-4.28458					
	5% level		- 3.562882					
	10% level		3.215267					
*MacKinnon (1996) one-s	sided p-value	S.						
Augmented Dickey-Fulle	r Test Equation	on						
Dependent Variable: D(L	NFL,2)							
Method: Least Squares								
Date: 02/11/24 Time: 19	:31							
Sample (adjusted): 1992								
Included observations: 3	•							
Variable	Coefficient			Prob.				
D(LNFL(-1))	-1.114303	0.184366	-6.04396	0				
С	-0.003361	0.01421	0.236492	0.8148				
@TREND("1990")	0.000937	0.000749	1.25142	0.2211				
R-squared	0.566721	Mean der	pendent	0.000498				
Adjusted R-squared	0.535772		endent var	0.054066				
Aujusteu N-squareu	0.555772	Akaike in		0.034000				
S.E. of regression	0.036838	criterion	10	3.672834				
Sum squared resid	0.037996	Schwarz	- 3.534061					
Log likelihood	59.92892	Hannan-G	- 3.627597					
F-statistic	18.31172		atson stat	2.015896				
Prob(F-statistic)	8000008							

Tabla 15 *Prueba de raíz unitaria de LNPBI en primera diferencia*

Null Hypothesis: D(LNPBI) has a unit root								
Exogenous: Constant	,	<u> </u>						
Lag Length: 0 (Automatic - based on SIC, maxlag=8) t-Statistic Prob.*								
	Prob.*							
Augmented Dickey-Fulle	er test statistic		5.935273	0.0000				
Test critical values:	1% level		3.661661					
	5% level		- 2.960411					
	10% level		-2.61916					
*MacKinnon (1996) one-sided p-values. Augmented Dickey-Fuller Test Equation Dependent Variable: D(LNPBI,2) Method: Least Squares Date: 02/11/24 Time: 19:56 Sample (adjusted): 1992 2022 Included observations: 31 after adjustments								
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
D(LNPBI(-1))	-1.095516	0.184577	5.935273	0				
С	0.045876	0.010964	4.184177	0.0002				
R-squared	0.54848	Mean dep var	endent	0.000146				
Adjusted R-squared	0.53291	S.D. depe	ndent var	0.06355				
S.E. of regression	0.043432	Akaike inf	o criterion	3.372882				
Sum squared resid	0.054705	Schwarz o		3.280367				
Log likelihood	54.27968	Hannan-∩uinn						
F-statistic	35.22746	Durbin-Wa	atson stat	1.983717				
Prob(F-statistic)	0.000002							

Tabla 16 *Modelos ARDL estimados según criterio de AIC*

AIC	Modelos	AIC	Modelos	AIC	Modelos	AIC	Modelos	AIC
-6.140034	ARDL(2, 1, 2, 4)	-5.479184	ARDL(3, 3, 4, 3)	-5.417433	ARDL(2, 4, 4, 3)	-5.342636	ARDL(1, 0, 1, 3)	-5.18765
-6.13391	ARDL(3, 2, 2, 4)	-5.476277	ARDL(2, 0, 3, 4)	-5.416595	ARDL(4, 1, 3, 2)	-5.324219	ARDL(1, 3, 4, 3)	-5.184666
-6.095412	ARDL(4, 0, 3, 4)	-5.475844	ARDL(2, 4, 2, 2)	-5.415226	ARDL(2, 0, 2, 2)	-5.317912	ARDL(2, 3, 1, 2)	-5.183689
-6.041169	ARDL(2, 1, 2, 2)	-5.474722	ARDL(2, 1, 3, 4)	-5.411678	ARDL(3, 2, 4, 2)	-5.31753	ARDL(1, 4, 2, 4)	-5.182765
-5.863544	ARDL(3, 3, 2, 4)	-5.470038	ARDL(4, 1, 4, 2)	-5.411146	ARDL(3, 1, 4, 2)	-5.305073	ARDL(1, 1, 1, 4)	-5.177243
-5.811552	ARDL(3, 2, 2, 3)	-5.469437	ARDL(2, 4, 3, 3)	-5.410896	ARDL(3, 4, 4, 2)	-5.299008	ARDL(2, 1, 1, 2)	-5.176951
-5.642467	ARDL(2, 2, 3, 3)	-5.469149	ARDL(4, 1, 2, 3)	-5.410877	ARDL(3, 3, 4, 2)	-5.284447	ARDL(3, 0, 4, 2)	-5.174355
-5.639001	ARDL(3, 0, 2, 4)	-5.467697	ARDL(2, 4, 3, 4)	-5.410368	ARDL(3, 0, 2, 2)	-5.269291	ARDL(2, 3, 3, 1)	-5.173876
-5.638162	ARDL(4, 3, 2, 4)	-5.467268	ARDL(3, 4, 2, 4)	-5.407389	ARDL(1, 3, 1, 4)	-5.269218	ARDL(1, 1, 2, 4)	-5.173482
-5.603244	ARDL(2, 4, 2, 4)	-5.464143	ARDL(3, 3, 2, 2)	-5.401789	ARDL(1, 3, 3, 2)	-5.26664	ARDL(1, 1, 4, 3)	-5.172038
-5.601883	ARDL(2, 2, 3, 4)	-5.464061	ARDL(2, 2, 4, 3)	-5.400638	ARDL(2, 0, 3, 2)	-5.259943	ARDL(1, 3, 2, 1)	-5.170768
-5.595852	ARDL(4, 1, 3, 3)	-5.463479	ARDL(4, 4, 2, 4)	-5.399782	ARDL(1, 1, 3, 2)	-5.253406	ARDL(1, 4, 1, 2)	-5.170283
-5.58778	ARDL(2, 3, 3, 4)	-5.458706	ARDL(2, 2, 4, 4)	-5.395691	ARDL(4, 0, 4, 2)	-5.251723	ARDL(1, 1, 3, 1)	-5.170166
-5.57774	ARDL(3, 4, 4, 4)	-5.457949	ARDL(2, 3, 4, 4)	-5.39561	ARDL(4, 3, 4, 1)	-5.243148	ARDL(1, 1, 3, 4)	-5.169233
-5.577236	ARDL(3, 1, 3, 3)	-5.457463	ARDL(3, 1, 4, 3)	-5.388818	ARDL(1, 3, 1, 2)	-5.238352	ARDL(1, 4, 3, 4)	-5.167778
-5.574724	ARDL(2, 2, 3, 2)	-5.45257	ARDL(4, 3, 2, 2)	-5.385964	ARDL(1, 3, 3, 4)	-5.235584	ARDL(2, 3, 4, 1)	-5.166579
-5.566961	ARDL(3, 4, 4, 3)	-5.450449	ARDL(3, 2, 3, 2)	-5.385679	ARDL(4, 4, 4, 1)	-5.231789	ARDL(1, 2, 3, 3)	-5.166444
-5.564526	ARDL(2, 4, 2, 3)	-5.448465	ARDL(3, 4, 2, 2)	-5.385307	ARDL(1, 3, 3, 3)	-5.230283	ARDL(1, 0, 3, 3)	-5.165422
-5.548424	ARDL(3, 2, 2, 2)	-5.447933	ARDL(2, 2, 4, 2)	-5.384015	ARDL(1, 3, 2, 4)	-5.228904	ARDL(2, 4, 1, 4)	-5.165366
-5.53093	ARDL(3, 0, 4, 3)	-5.44519	ARDL(4, 1, 2, 2)	-5.38384	ARDL(2, 0, 4, 2)	-5.227758	ARDL(1, 4, 3, 3)	-5.164639
-5.530837	ARDL(3, 1, 2, 3)	-5.444991	ARDL(3, 4, 2, 3)	-5.38225	ARDL(1, 1, 3, 3)	-5.227333	ARDL(1, 4, 4, 2)	-5.160181
-5.523841	ARDL(2, 1, 3, 3)	-5.441128	ARDL(4, 1, 2, 4)	-5.381719	ARDL(1, 3, 3, 1)	-5.227079	ARDL(1, 4, 3, 1)	-5.159156
-5.521583	ARDL(2, 3, 2, 2)	-5.438158	ARDL(2, 0, 4, 3)	-5.381571	ARDL(1, 1, 1, 2)	-5.225866	ARDL(1, 2, 2, 3)	-5.158061
-5.516528	ARDL(2, 1, 3, 2)	-5.437516	ARDL(4, 4, 2, 3)	-5.380468	ARDL(1, 1, 2, 3)	-5.225355	ARDL(1, 2, 1, 2)	-5.157501
	-6.140034 -6.13391 -6.095412 -6.041169 -5.863544 -5.811552 -5.642467 -5.639001 -5.638162 -5.603244 -5.601883 -5.595852 -5.58778 -5.57774 -5.577236 -5.574724 -5.566961 -5.564526 -5.548424 -5.53093 -5.530837 -5.523841 -5.521583	-6.140034 ARDL(2, 1, 2, 4) -6.13391 ARDL(3, 2, 2, 4) -6.095412 ARDL(4, 0, 3, 4) -6.041169 ARDL(2, 1, 2, 2) -5.863544 ARDL(3, 3, 2, 4) -5.811552 ARDL(3, 2, 2, 3) -5.642467 ARDL(2, 2, 3, 3) -5.639001 ARDL(3, 0, 2, 4) -5.638162 ARDL(4, 3, 2, 4) -5.603244 ARDL(2, 4, 2, 4) -5.601883 ARDL(2, 2, 3, 4) -5.595852 ARDL(4, 1, 3, 3) -5.59778 ARDL(3, 4, 4, 4) -5.577236 ARDL(3, 1, 3, 3) -5.577724 ARDL(3, 1, 3, 3) -5.574724 ARDL(2, 2, 3, 2) -5.566961 ARDL(3, 4, 4, 3) -5.564526 ARDL(2, 4, 2, 3) -5.548424 ARDL(3, 2, 2, 2) -5.53093 ARDL(3, 0, 4, 3) -5.523841 ARDL(2, 1, 3, 3) -5.523841 ARDL(2, 1, 3, 3) -5.521583 ARDL(2, 3, 2, 2)	-6.140034 ARDL(2, 1, 2, 4) -5.479184 -6.13391 ARDL(3, 2, 2, 4) -5.476277 -6.095412 ARDL(4, 0, 3, 4) -5.475844 -6.041169 ARDL(2, 1, 2, 2) -5.474722 -5.863544 ARDL(3, 3, 2, 4) -5.469437 -5.642467 ARDL(2, 2, 3, 3) -5.469149 -5.639001 ARDL(3, 0, 2, 4) -5.467697 -5.638162 ARDL(4, 3, 2, 4) -5.467268 -5.603244 ARDL(2, 4, 2, 4) -5.464143 -5.601883 ARDL(2, 2, 3, 4) -5.464061 -5.595852 ARDL(4, 1, 3, 3) -5.463479 -5.57774 ARDL(3, 4, 4, 4) -5.458706 -5.57774 ARDL(3, 1, 3, 3) -5.457463 -5.577236 ARDL(3, 1, 3, 3) -5.457463 -5.577424 ARDL(2, 2, 3, 2) -5.45257 -5.566961 ARDL(3, 4, 4, 3) -5.450449 -5.564526 ARDL(2, 4, 2, 3) -5.448465 -5.548424 ARDL(3, 2, 2, 2) -5.448465 -5.530837 ARDL(3, 0, 4, 3) -5.444128 -5.521583 ARDL(2, 1, 3, 3) -5.443158	-6.140034 ARDL(2, 1, 2, 4) -5.479184 ARDL(3, 3, 4, 3) -6.13391 ARDL(3, 2, 2, 4) -5.476277 ARDL(2, 0, 3, 4) -6.095412 ARDL(4, 0, 3, 4) -5.475844 ARDL(2, 4, 2, 2) -6.041169 ARDL(2, 1, 2, 2) -5.474722 ARDL(2, 1, 3, 4) -5.863544 ARDL(3, 3, 2, 4) -5.470038 ARDL(4, 1, 4, 2) -5.811552 ARDL(3, 2, 2, 3) -5.469437 ARDL(2, 4, 3, 3) -5.642467 ARDL(2, 2, 3, 3) -5.469149 ARDL(4, 1, 2, 3) -5.639001 ARDL(3, 0, 2, 4) -5.467697 ARDL(2, 4, 3, 4) -5.638162 ARDL(4, 3, 2, 4) -5.467268 ARDL(3, 4, 2, 4) -5.603244 ARDL(2, 4, 2, 4) -5.464143 ARDL(3, 3, 2, 2) -5.601883 ARDL(2, 2, 3, 4) -5.464061 ARDL(3, 3, 2, 2) -5.595852 ARDL(4, 1, 3, 3) -5.463479 ARDL(4, 4, 2, 4) -5.58778 ARDL(2, 3, 3, 4) -5.458706 ARDL(2, 2, 4, 4) -5.57774 ARDL(3, 4, 4, 4) -5.457949 ARDL(2, 2, 4, 4) -5.577724 ARDL(3, 1, 3, 3) -5.457463 ARDL(3, 1, 4, 3) -5.574724 ARDL(2, 2, 3, 2) -5.45257 ARDL(4, 3, 2, 2) -5.566961 ARDL(3, 4, 4, 3) -5.450449 ARDL(3, 2, 3, 2) -5.564526 ARDL(3, 4, 4, 3) -5.450449 ARDL(3, 2, 3, 2) -5.564526 ARDL(3, 0, 4, 3) -5.44519 ARDL(3, 4, 2, 2) -5.53093 ARDL(3, 0, 4, 3) -5.44519 ARDL(3, 4, 2, 3) -5.523841 ARDL(2, 1, 3, 3) -5.441128 ARDL(4, 1, 2, 4) -5.521583 ARDL(2, 1, 3, 3) -5.441128 ARDL(4, 1, 2, 4) -5.521583 ARDL(2, 1, 3, 3) -5.441128 ARDL(4, 1, 2, 4)	-6.140034	-6.140034 ARDL(2, 1, 2, 4) -5.479184 ARDL(3, 3, 4, 3) -5.417433 ARDL(2, 4, 4, 3) -6.13391 ARDL(3, 2, 2, 4) -5.476277 ARDL(2, 0, 3, 4) -5.416595 ARDL(4, 1, 3, 2) -6.095412 ARDL(4, 0, 3, 4) -5.475844 ARDL(2, 4, 2, 2) -5.415226 ARDL(2, 0, 2, 2) -6.041169 ARDL(2, 1, 2, 2) -5.474722 ARDL(2, 1, 3, 4) -5.411678 ARDL(3, 2, 4, 2) -5.863544 ARDL(3, 3, 2, 4) -5.470038 ARDL(4, 1, 4, 2) -5.411146 ARDL(3, 1, 4, 2) -5.811552 ARDL(3, 2, 2, 3) -5.469437 ARDL(2, 4, 3, 3) -5.410896 ARDL(3, 4, 4, 2) -5.642467 ARDL(2, 2, 3, 3) -5.469149 ARDL(4, 1, 2, 3) -5.410877 ARDL(3, 3, 4, 2) -5.639001 ARDL(3, 0, 2, 4) -5.467697 ARDL(2, 4, 3, 4) -5.410368 ARDL(3, 0, 2, 2) -5.638162 ARDL(4, 3, 2, 4) -5.467268 ARDL(3, 4, 2, 4) -5.407389 ARDL(1, 3, 1, 4) -5.603244 ARDL(2, 4, 2, 4) -5.464143 ARDL(3, 3, 2, 2) -5.401789 ARDL(1, 3, 3, 2) -5.595852 ARDL(4, 1, 3, 3) -5.464061 ARDL(2, 2, 4, 3) -5.400638 ARDL(2, 0, 3, 2) -5.595852 ARDL(4, 1, 3, 3) -5.463479 ARDL(4, 4, 2, 4) -5.399782 ARDL(1, 1, 3, 2) -5.57774 ARDL(3, 4, 4, 4) -5.457949 ARDL(2, 2, 4, 4) -5.395691 ARDL(4, 0, 4, 2) -5.577236 ARDL(3, 1, 3, 3) -5.457463 ARDL(2, 3, 4, 4) -5.39561 ARDL(4, 3, 4, 1) -5.577236 ARDL(3, 1, 3, 3) -5.457463 ARDL(3, 1, 4, 3) -5.38818 ARDL(1, 3, 3, 4) -5.566961 ARDL(2, 2, 3, 2) -5.44049 ARDL(3, 2, 3, 2) -5.385679 ARDL(4, 3, 3, 4) -5.566961 ARDL(3, 1, 4, 3) -5.458465 ARDL(3, 1, 4, 3) -5.385679 ARDL(4, 4, 4, 1) -5.5764526 ARDL(3, 1, 2, 3) -5.448465 ARDL(3, 2, 2, 2) -5.385307 ARDL(4, 3, 2, 4) -5.53093 ARDL(3, 1, 2, 3) -5.44519 ARDL(4, 1, 2, 2) -5.385307 ARDL(1, 3, 3, 3) -5.548424 ARDL(3, 2, 2, 2) -5.447933 ARDL(2, 2, 4, 2) -5.385307 ARDL(1, 3, 3, 3) -5.548424 ARDL(3, 1, 2, 3) -5.444991 ARDL(4, 1, 2, 4) -5.385171 ARDL(1, 1, 3, 3) -5.523841 ARDL(2, 1, 3, 3) -5.444991 ARDL(4, 1, 2, 4) -5.381719 ARDL(1, 1, 3, 3) -5.523841 ARDL(2, 1, 3, 3) -5.443128 ARDL(2, 0, 4, 3) -5.381571 ARDL(1, 1, 1, 2)	-6.140034 ARDL(2, 1, 2, 4) -5.479184 ARDL(3, 3, 4, 3) -5.417433 ARDL(2, 4, 4, 3) -5.342636 -6.13391 ARDL(3, 2, 2, 4) -5.476277 ARDL(2, 0, 3, 4) -5.416595 ARDL(4, 1, 3, 2) -5.324219 -6.095412 ARDL(4, 0, 3, 4) -5.475844 ARDL(2, 4, 2, 2) -5.415226 ARDL(2, 0, 2, 2) -5.317912 -6.041169 ARDL(2, 1, 2, 2) -5.474722 ARDL(2, 1, 3, 4) -5.411678 ARDL(3, 2, 4, 2) -5.31753 -5.863544 ARDL(3, 3, 2, 4) -5.47038 ARDL(4, 1, 4, 2) -5.411146 ARDL(3, 1, 4, 2) -5.305073 -5.811552 ARDL(3, 2, 2, 3) -5.469437 ARDL(2, 4, 3, 3) -5.410896 ARDL(3, 4, 4, 2) -5.299008 -5.642467 ARDL(2, 2, 3, 3) -5.469149 ARDL(4, 1, 2, 3) -5.410877 ARDL(3, 3, 4, 2) -5.264447 -5.639001 ARDL(3, 0, 2, 4) -5.467697 ARDL(2, 4, 3, 4) -5.407389 ARDL(1, 3, 1, 4) -5.269218 -5.638162 ARDL(3, 2, 2) -5.467268 ARDL(3, 4, 2, 4) -5.407389 ARDL(1, 3, 1, 4) -5.269218 -5.603244 ARDL(2, 4, 2, 4) -5.464143 ARDL(3, 3, 2, 2) -5.401789 ARDL(1, 3, 3, 2) -5.256664 -5.601883 ARDL(2, 2, 3, 4) -5.464061 ARDL(2, 2, 4, 3) -5.400638 ARDL(2, 0, 3, 2) -5.259943 -5.595852 ARDL(4, 1, 3, 3) -5.463479 ARDL(4, 4, 2, 4) -5.399782 ARDL(1, 1, 3, 2) -5.251723 -5.57774 ARDL(3, 3, 4) -5.458706 ARDL(2, 2, 4, 4) -5.395691 ARDL(4, 0, 4, 2) -5.251723 -5.57774 ARDL(3, 1, 3, 3) -5.458706 ARDL(2, 2, 4, 4) -5.385604 ARDL(1, 3, 1, 4) -5.233184 -5.5577236 ARDL(3, 1, 3, 3) -5.4587663 ARDL(3, 2, 3, 4) -5.385604 ARDL(1, 3, 3, 4) -5.235584 -5.5574724 ARDL(3, 1, 3, 3) -5.4587663 ARDL(3, 2, 2, 2) -5.385604 ARDL(1, 3, 3, 4) -5.235584 -5.557424 ARDL(3, 1, 4, 3) -5.457643 ARDL(3, 2, 2, 2) -5.385604 ARDL(1, 3, 3, 4) -5.235884 -5.554424 ARDL(3, 2, 2, 2) -5.45257 ARDL(3, 2, 2, 2) -5.385607 ARDL(1, 3, 3, 3) -5.232833 -5.548424 ARDL(3, 2, 2, 2) -5.447933 ARDL(3, 2, 2, 2) -5.385607 ARDL(1, 3, 3, 3) -5.223584 -5.5530837 ARDL(3, 1, 2, 3) -5.444991 ARDL(3, 4, 2, 2) -5.385679 ARDL(1, 1, 3, 3) -5.227758 -5.552841 ARDL(2, 1, 3, 3) -5.444991 ARDL(3, 4, 2, 2) -5.38571 ARDL(1, 1, 3, 3) -5.227333 -5.523841 ARDL(2, 1, 3, 3) -5.43188 ARDL(2, 0, 4, 3) -5.331571 ARDL(1, 1, 1, 2) -5.225866	-6.140034 ARDL(2, 1, 2, 4) -5.479184 ARDL(3, 3, 4, 3) -5.417433 ARDL(2, 4, 4, 3) -5.342636 ARDL(1, 0, 1, 3) -6.13391 ARDL(3, 2, 2, 4) -5.476277 ARDL(2, 0, 3, 4) -5.416595 ARDL(4, 1, 3, 2) -5.324219 ARDL(1, 3, 4, 3) -6.095412 ARDL(4, 0, 3, 4) -5.475844 ARDL(2, 4, 2, 2) -5.415226 ARDL(2, 0, 2, 2) -5.317912 ARDL(2, 3, 1, 2) -6.041169 ARDL(2, 1, 2, 2) -5.474722 ARDL(2, 1, 3, 4) -5.411678 ARDL(3, 2, 4, 2) -5.31753 ARDL(1, 4, 2, 4) -5.863544 ARDL(3, 3, 2, 4) -5.476038 ARDL(4, 1, 4, 2) -5.411146 ARDL(3, 1, 4, 2) -5.305073 ARDL(1, 1, 1, 4) -5.811552 ARDL(3, 2, 2, 3) -5.469437 ARDL(2, 4, 3, 3) -5.410896 ARDL(3, 4, 2, 2) -5.299008 ARDL(2, 1, 1, 2) -5.632467 ARDL(2, 2, 3, 3) -5.469437 ARDL(2, 4, 3, 3) -5.410896 ARDL(3, 4, 4, 2) -5.269208 ARDL(2, 1, 1, 2) -5.639001 ARDL(3, 0, 2, 4) -5.467697 ARDL(2, 4, 3, 4) -5.410368 ARDL(3, 0, 2, 2) -5.269291 ARDL(3, 0, 4, 2) -5.83162 ARDL(3, 2, 4) -5.467697 ARDL(3, 4, 2, 4) -5.407389 ARDL(1, 3, 1, 4) -5.269218 ARDL(1, 1, 2, 4) -5.603244 ARDL(2, 2, 4, 4) -5.467668 ARDL(3, 4, 2, 4) -5.407389 ARDL(1, 3, 1, 4) -5.269218 ARDL(1, 1, 2, 4) -5.603244 ARDL(2, 2, 3, 4) -5.46061 ARDL(2, 2, 4, 3) -5.400588 ARDL(2, 0, 3, 2) -5.26664 ARDL(1, 1, 4, 3) -5.560383 ARDL(2, 2, 3, 4) -5.466061 ARDL(2, 2, 4, 3) -5.400588 ARDL(2, 0, 3, 2) -5.25943 ARDL(1, 1, 4, 3) -5.55852 ARDL(4, 1, 3, 3) -5.458706 ARDL(4, 2, 4) -5.399782 ARDL(1, 1, 3, 2) -5.253406 ARDL(1, 1, 3, 1) -5.577236 ARDL(3, 1, 3, 3) -5.455763 ARDL(3, 3, 4, 2) -5.385691 ARDL(4, 0, 4, 2) -5.231789 ARDL(1, 1, 3, 4) -5.577236 ARDL(3, 1, 3, 3) -5.4557463 ARDL(3, 2, 2, 2) -5.385964 ARDL(3, 3, 4, 4) -5.457949 ARDL(3, 2, 2, 2) -5.385964 ARDL(1, 3, 3, 4) -5.233584 ARDL(1, 1, 3, 3) -5.457463 ARDL(3, 2, 2, 2) -5.385969 ARDL(4, 3, 4, 4) -5.231789 ARDL(3, 3, 4, 4) -5.457949 ARDL(3, 2, 2, 2) -5.385964 ARDL(3, 3, 3, 4) -5.233584 ARDL(1, 1, 3, 3) -5.457463 ARDL(3, 2, 2, 2) -5.385964 ARDL(3, 3, 3, 4) -5.233584 ARDL(1, 1, 3, 3) -5.457463 ARDL(3, 2, 2, 2) -5.385969 ARDL(3, 3, 3, 4) -5.233584 ARDL(1, 2, 3, 3) -5.450449 ARDL(3, 2, 2, 2) -5.385307 ARDL(3, 3, 3, 4) -5.232

Modelos	AIC								
ARDL(4, 1, 4, 4)	-5.514916	ARDL(4, 0, 2, 3)	-5.436803	ARDL(4, 2, 3, 2)	-5.378733	ARDL(1, 3, 1, 3)	-5.222665	ARDL(2, 3, 1, 3)	-5.157356
ARDL(3, 0, 3, 3)	-5.514106	ARDL(2, 0, 3, 3)	-5.434777	ARDL(2, 1, 4, 3)	-5.376003	ARDL(1, 4, 1, 4)	-5.221951	ARDL(1, 0, 2, 4)	-5.156767
ARDL(3, 4, 3, 3)	-5.51202	ARDL(4, 2, 2, 2)	-5.4339	ARDL(2, 1, 4, 2)	-5.371953	ARDL(1, 3, 4, 2)	-5.220189	ARDL(1, 0, 1, 4)	-5.156612
ARDL(2, 1, 2, 3)	-5.505272	ARDL(3, 1, 2, 2)	-5.432823	ARDL(3, 1, 3, 2)	-5.369752	ARDL(2, 3, 1, 4)	-5.220088	ARDL(1, 4, 1, 3)	-5.155726
ARDL(2, 0, 2, 3)	-5.503448	ARDL(4, 3, 2, 3)	-5.432481	ARDL(3, 4, 3, 2)	-5.367768	ARDL(1, 3, 4, 1)	-5.216212	ARDL(3, 1, 1, 2)	-5.152402
ARDL(3, 2, 3, 3)	-5.493035	ARDL(2, 4, 3, 2)	-5.430339	ARDL(2, 0, 4, 4)	-5.363822	ARDL(1, 1, 1, 3)	-5.214858	ARDL(2, 1, 1, 3)	-5.151693
ARDL(3, 2, 3, 4)	-5.487868	ARDL(3, 2, 4, 3)	-5.428473	ARDL(2, 4, 4, 2)	-5.362107	ARDL(1, 3, 2, 3)	-5.212173	ARDL(3, 3, 1, 2)	-5.151648
ARDL(3, 0, 3, 4)	-5.487095	ARDL(3, 1, 3, 4)	-5.426978	ARDL(3, 1, 4, 4)	-5.358127	ARDL(1, 4, 3, 2)	-5.207286	ARDL(3, 3, 1, 4)	-5.151364
ARDL(4, 2, 2, 3)	-5.485776	ARDL(3, 1, 2, 4)	-5.424655	ARDL(2, 3, 4, 3)	-5.356739	ARDL(1, 0, 2, 3)	-5.204389	ARDL(1, 1, 4, 1)	-5.149756
ARDL(3, 3, 3, 3)	-5.484946	ARDL(2, 3, 3, 3)	-5.423185	ARDL(4, 4, 2, 2)	-5.356132	ARDL(3, 0, 3, 2)	-5.200615	ARDL(3, 3, 3, 1)	-5.149221
ARDL(2, 0, 2, 4)	-5.483453	ARDL(3, 2, 4, 4)	-5.422892	ARDL(2, 3, 4, 2)	-5.353412	ARDL(4, 0, 2, 2)	-5.20035	ARDL(2, 3, 2, 1)	-5.149028
ARDL(4, 2, 2, 4)	-5.481745	ARDL(2, 3, 3, 2)	-5.419261	ARDL(3, 3, 3, 2)	-5.350334	ARDL(1, 3, 4, 4)	-5.198959	ARDL(1, 2, 1, 3)	-5.148395
ARDL(2, 2, 2, 2)	-5.48108	ARDL(4, 1, 3, 4)	-5.419193	ARDL(4, 4, 3, 2)	-5.348985	ARDL(1, 1, 4, 2)	-5.196928	ARDL(1, 4, 2, 3)	-5.147515
ARDL(2, 3, 2, 3)	-5.480274	ARDL(3, 3, 2, 3)	-5.418785	ARDL(2, 1, 4, 4)	-5.347412	ARDL(1, 3, 2, 2)	-5.192942	ARDL(1, 4, 4, 1)	-5.147356
ARDL(3, 3, 4, 4)	-5.479756	ARDL(3, 0, 4, 4)	-5.418131	ARDL(4, 3, 3, 2)	-5.345091	ARDL(1, 1, 2, 2)	-5.192579	ARDL(1, 3, 1, 1)	-5.139987
ARDL(3, 0, 2, 3)	-5.479299	ARDL(4, 0, 2, 4)	-5.417818	ARDL(2, 4, 4, 4)	-5.344782	ARDL(1, 2, 3, 2)	-5.191685	ARDL(1, 0, 4, 3)	-5.138936

Tabla 17 *Prueba de forma y límites de la cointegración*

Null Hypothesis: No levels relationship						
Test Statistic	Value	Signif.	I(0)	l(1)		
			Asymptotic:			
			n=1000			
F-statistic	5.997491	10%	2.37	3.2		
k	3	5%	2.79	3.67		
		2.5%	3.15	4.08		
		1%	3.65	4.66		
Actual Sample Size	29		Finite Sample: n=35			
		10%	2.618	3.532		
		5%	3.164	4.194		
		1%	4.428	5.816		
			Finite Sample: n=30			
		10%	2.676	3.586		
		5%	3.272	4.306		
		1%	4.614	5.966		

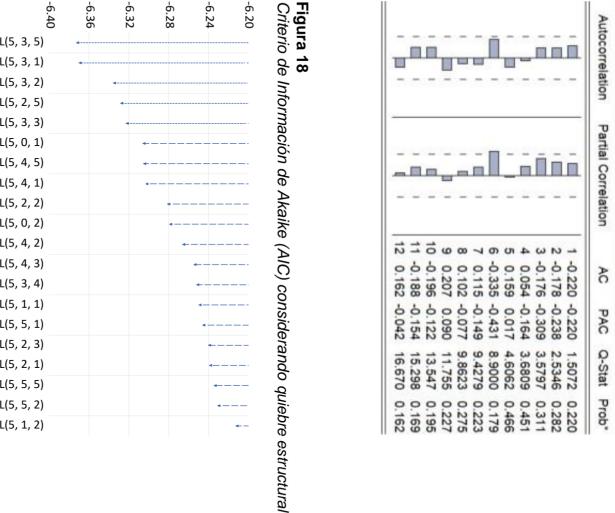
Tabla 18Corrección de errores condicionales

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-2.596654	1.775981	-1.462095	0.1744
LNPBI(-1)*	-0.462013	0.113021	-4.087857	0.0022
CH(-1)	0.05284	0.025291	2.089253	0.0632
LNCF(-1)	0.08406	0.031735	2.648838	0.0244
LNFL(-1)	0.746789	0.315832	2.364514	0.0396
D(LNPBI(-1))	0.323737	0.162802	1.988535	0.0748
D(LNPBI(-2))	0.400321	0.20031	1.998509	0.0736
D(LNPBI(-3))	0.667463	0.203715	3.276447	0.0083
D(CH)	0.031003	0.071905	0.431163	0.6755
D(CH(-1))	-0.212087	0.066442	-3.192053	0.0096
D(CH(-2))	-0.148449	0.067198	-2.20912	0.0516
D(LNCF)	0.231366	0.03765	6.145234	0.0001
D(LNCF(-1))	-0.079836	0.048503	-1.646014	0.1308
D(LNCF(-2))	-0.139034	0.056696	-2.452268	0.0341
D(LNCF(-3))	-0.163464	0.058918	-2.774433	0.0196
D(LNFL)	0.57249	0.157823	3.627414	0.0046
D(LNFL(-1))	-0.492932	0.128759	-3.828335	0.0033
D(LNFL(-2))	-0.456743	0.164483	-2.776841	0.0196
D(LNFL(-3))	-0.225209	0.205339	-1.096767	0.2985

Figura 16
Pruebas de raíz unitaria y quiebre estructural

Unit	Root with Break Test	on D(LNPBI)	
Null Hypothesis: D(LN	NPBI) has a unit root		
Trend Specification: 7	Frend and intercept		
Break Specification: In	ntercept only		
Break Type: Innovation	onal outlier		
Break Date: 2004			
	imize intercept break at	os-t-statistic	
	imize intercept break at atic - based on Schwar		on,
Break Selection: Maxi Lag Length: 1 (Autom			
Break Selection: Maxi Lag Length: 1 (Autom maxlag=8)	atic - based on Schwar	z information criterio	Prob.
Break Selection: Maxi Lag Length: 1 (Autom maxlag=8)	atic - based on Schwar	z information criterio	Prob.*
Break Selection: Maxi Lag Length: 1 (Autom	atic - based on Schwar	t-Statistic	Prob.*

Uni	it Root with Break Te	st on D(CH)	
Null Hypothesis: D(CH	H) has a unit root		
Trend Specification: 1	Frend and intercept		
Break Specification: In	ntercept only		
Break Type: Innovation	onal outlier		
Break Date: 2018			
Dican Date, 2010			
	imize intercept break at	os-t-statistic	
Break Selection: Maxi	imize intercept break at atic - based on Schwar		on,
Break Selection: Maxi Lag Length: 3 (Autom			
Break Selection: Maxi Lag Length: 3 (Autom maxlag=8)	atic - based on Schwar	z information criterio	Prob.*
Break Selection: Maxi Lag Length: 3 (Autom maxlag=8) Augmented Dickey-Fu	atic - based on Schwar	z information criterio	Prob.
Break Selection: Maxi Lag Length: 3 (Autom	atic - based on Schwar	z information criterio t-Statistic -6.097855	Prob.


Onne	Root with Break Test		
Null Hypothesis: D(LN	ICF) has a unit root		
Trend Specification: T	rend and intercept		
Break Specification: Ir	ntercept only		
Break Type: Innovatio	nal outlier		
Break Date: 2004			
break Date: 2004			
	mize Dickey-Fuller t-sta	tistic	
Break Selection: Minir	mize Dickey-Fuller t-sta atic - based on Schwar		on,
Break Selection: Minir Lag Length: 0 (Automa			
Break Selection: Minir Lag Length: 0 (Automa	atic - based on Schwar	z information criterio	Prob.*
Break Selection: Minir Lag Length: 0 (Autom maxlag=8)	atic - based on Schwar	z information criterio	Prob.*
Break Selection: Minir Lag Length: 0 (Automi maxlag=8)	atic - based on Schwar	t-Statistic	Prob.*

Unit	Root with Break Test	t on D(LNFL)	
Null Hypothesis: D(LN	IFL) has a unit root		
Trend Specification: T			
Break Specification: Ir	ntercept only		
Break Type: Innovation	nal outlier		
DI- D-1 1005			
Break Date, 1995			
Break Date: 1995 Break Selection: Maxi	mize intercept break at	s-t-statistic	
Break Selection: Maxi	mize intercept break at atic - based on Schwar		on,
Break Selection: Maxi Lag Length: 0 (Automate			
Break Selection: Maxi Lag Length: 0 (Automate	atic - based on Schwar	z information criterio	
Break Selection: Maxi Lag Length: 0 (Autom maxlag=8)	atic - based on Schwar	z information criterio	Prob.
Break Selection: Maxi Lag Length: 0 (Autom maxlag=8) Augmented Dickey-Fu	atic - based on Schwar	t-Statistic	Prob.

Tabla 19Estimación de modelo ARDL (5, 3, 1, 1) considerando quiebre estructural

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
LNPBI(-1)	0.823393	0.076024	10.83072	0
LNPBI(-2)	0.066958	0.058099	1.152476	0.2699
LNPBI(-3)	0.070073	0.087596	0.799957	0.4381
LNPBI(-4)	-0.187581	0.095388	-1.9665	0.071
LNPBI(-5)	0.187132	0.072029	2.597989	0.0221
СН	0.081995	0.047096	1.741041	0.1053
CH(-1)	-0.138276	0.057066	-2.423086	0.0307
CH(-2)	-0.013792	0.055792	-0.247196	0.8086
CH(-3)	0.131493	0.042524	3.092206	0.0086
LNCF	0.256897	0.020963	12.25499	0
LNCF(-1)	-0.194662	0.028057	-6.937992	0
LNFL	-0.126454	0.128593	-0.983367	0.3434
LNFL(-1)	-0.225327	0.124429	-1.810886	0.0933
DUMMY	-0.09563	0.015617	-6.123647	0
С	2.812873	0.846435	3.323198	0.0055
R-squared	0.999806	Mean depe	ndent var	12.73494
Adjusted R-squared	0.999598	S.D. depend	S.D. dependent var	
S.E. of regression	0.00748	Akaike info	Akaike info criterion	
Sum squared resid	0.000727	Schwarz cri	terion	-5.935382
Log likelihood	108.0869	Hannan-Qu	inn criter.	-6.430884
F-statistic	4795.54	Durbin-Wa	tson stat	2.422218
Prob(F-statistic)	0			

Figura 17Pruebas autorrelación considerando quiebre estructural

-6.40 -6.36 -6.24 ARDL(5, 3, 5) ARDL(5, 3, 1) ARDL(5, 3, 2) ARDL(5, 2, 5) ARDL(5, 3, 3) ARDL(5, 0, 1) ARDL(5, 4, 5) ARDL(5, 4, 1) ARDL(5, 2, 2) ARDL(5, 0, 2) ARDL(5, 4, 2) ARDL(5, 4, 3) ARDL(5, 3, 4) ARDL(5, 1, 1) ARDL(5, 5, 1) ARDL(5, 2, 3) ARDL(5, 2, 1) ARDL(5, 5, 5) ARDL(5, 5, 2) ARDL(5, 1, 2)

Tabla 20Prueba de formas y límites de cointegración considerando quiebre estructural

Conditional Error Correction Regression Str. or Fire Principal Pr	Model: ARDL (5, 3, 5)						
Variable Coefficient Error Statisto Problem C 0.573204 0.36694 1.580409 0.1432 LNPBI(-1)* -0.086593 0.071091 1.218046 0.2457 CH(-1) 0.026878 0.021917 1.226328 0.2457 LNCF(-1) 0.036878 0.010435 0.616895 0.54981 D(LNPBI(-1)) 0.061958 0.100435 0.616895 0.58981 D(LNPBI(-2)) -0.025348 0.177615 0.142938 0.88891 D(LNPBI(-3)) -0.023742 0.071909 0.330169 0.78702 D(CH(-1)) -0.023742 0.071909 0.330169 0.79703 D(LNCH(-1)) -0.054171 0.046011 1.079025 0.30304 D(LNCF(-1)) -0.049005 0.057049 1.079025 0.03037 D(LNCF(-1)) -0.034015 0.05009 0.03036 0.79092 D(LNCF(-2)) -0.034015 0.05009 0.03036 0.75093 D(LNCF(-2)) -0.034015 0.05009							
C 0.573204 0.362694 1.580409 0.4123 LNPBI(-1)* -0.086593 0.071091 1.212642 0.2457 CH(-1) 0.026878 0.040136 0.892954 0.391 LNCF(-1) 0.03584 0.040136 0.892954 0.391 D(LNPBI(-2)) 0.061958 0.100435 0.16895 0.8899 D(LNPBI(-3)) -0.023742 0.071091 0.142938 0.8889 D(CH) -0.023742 0.071909 0.330169 0.7473 D(CH(-1)) -0.023742 0.071909 0.330169 0.7473 D(CH(-2)) -0.054171 0.046611 1.162187 0.2690 D(LNCF(-1)) -0.049005 0.045016 1.079025 0.03037 D(LNCF(-1)) -0.049005 0.045016 1.079025 0.03037 D(LNCF(-1)) -0.049005 0.045016 1.079025 0.03037 D(LNCF(-1)) -0.049005 0.05604 1.526867 0.1556 D(LNCF(-2)) -0.013759 0.05604 1.526867 <td>Madala.</td> <td>C(('')</td> <td></td> <td></td> <td>D Iv</td>	Madala.	C(('')			D Iv		
NPBI(-1)* -0.086593 0.071091 1.218046 0.2487 CH(-1)							
CH(-1)	C	0.5/3204	0.362694	1.580409	0.1423		
No.	LNPBI(-1)*	-0.086593	0.071091	1.218046	0.2487		
D(LNPBI(-1) 0.026221 0.135731 0.19318 0.5049 D(LNPBI(-2) 0.061958 0.100435 0.164895 0.5499 D(LNPBI(-3)	CH(-1)	0.026878	0.021917	1.226328	0.2457		
D(INPBI(-2) 0.061958 0.100435 0.142938 0.8889 D(INPBI(-4)	LNCF(-1)	0.03584	0.040136	0.892954	0.391		
D(LNPBI(-4))	D(LNPBI(-1))	0.026221	0.135731	0.193181	0.8503		
D(LNPBI(-4)) -0.621605 0.238311 2.608377 0.02474 D(CH) -0.023742 0.071909 0.330169 0.7475 D(CH(-1)) -0.110355 0.057074 1.933537 0.0793 D(CH(-2)) -0.054171 0.046611 1.162187 0.2698 D(LNCF) 0.26301 0.029006 9.067467 0 D(LNCF(-1)) -0.034015 0.043006 0.790924 0.4577 D(LNCF(-2)) -0.034015 0.05609 0.30364 0.7636 D(LNCF(-3)) 0.017296 0.05609 0.30364 0.7636 D(LNCF(-4)) 0.101757 0.066644 1.526867 0.155 DUMMY -0.086028 0.015016 5.729101 0.0001 Levels Equation Std. t t Frob. CH 0.310394 0.191836 1.618017 0.1318 LNCF 0.413888 0.157207 2.6232762 0.0233 C 6.619554 1.575576 4.201354 0.0015 F-Bounds Test 10.0001 1.000 1.000 1.000 1	D(LNPBI(-2))	0.061958	0.100435	0.616895	0.5499		
D(CH) -0.023742 0.071909 0.330169 0.7475 D(CH(-1)) -0.110355 0.057074 1.933537 0.0793 D(CH(-2)) -0.054171 0.046611 1.162187 0.2698 0.10076 0.029000 0.029000 0.067467 0 D(LNCF(-1)) -0.049005 0.045416 1.079025 0.3037 D(LNCF(-1)) -0.034015 0.043006 0.790924 0.4457 0.10076 0.05609 0.308364 0.7636 0.10076 0.05609 0.308364 0.7636 0.100757 0.066644 1.526867 0.155 DUMMY -0.086028 0.015016 5.729101 0.0001 1.000000 0.000000 0.000000	D(LNPBI(-3))	-0.025388	0.177615	0.142938	0.8889		
D(CH(-1)) -0.110355 0.057074 1.933537 0.0798 D(CH(-2)) -0.054171 0.046611 1.162187 0.2698 D(LNCF) 0.26301 0.029006 9.067467 0 D(LNCF(-1)) -0.049005 0.045416 1.079025 0.3037 D(LNCF(-2)) -0.034015 0.043006 0.790924 0.4457 D(LNCF(-3)) 0.017296 0.05609 0.38364 0.7636 D(LNCF(-4)) 0.101757 0.066644 1.526867 0.155 DUMMY -0.086028 0.015016 5.729101 0.0001 Levels Equation Case 2: Restricted Constant Land No Terror Statistic Prob. CH 0.310394 0.191836 1.618017 0.1339 LNCF 0.413888 0.157207 2.632762 0.0233 EC = LNPBI - (0.3104*CH + 0.4139*Ehr) 1.0180*Ehr) 1.019 1.01 F-Bounds Test 10.00 1(1) Asymptotizer L	D(LNPBI(-4))	-0.621605	0.238311	2.608377	0.0243		
D(CH(-2)) -0.054171 0.046611 1.162187 0.2698 D(LNCF) 0.26301 0.029006 9.067467 0 D(LNCF(-1)) -0.049005 0.045416 1.079025 0.3037 D(LNCF(-2)) -0.034015 0.043006 0.790924 0.4457 D(LNCF(-3)) 0.017296 0.05609 0.308364 0.7636 D(LNCF(-4)) 0.101757 0.066644 1.526867 0.155 Case 2: Restricted Constant and No Trend Levels Equation Case 2: Restricted Constant and No Trend Std. t Variable Coefficient Error Statistic Prob. CH 0.310394 0.191836 1.618017 0.1339 LNCF 0.41388 0.157207 2.632762 0.0233 EC = LNPBI - (0.3104*CH + 0.4139*LNCF + 6.6196) Null Hypothesis: No levels relationship Fest Statistic Value Signif. I(0) I(1) Asymptotic nationship Fest Statistic Value 2.50% 3.55 4.38 4.413 5 <td>D(CH)</td> <td>-0.023742</td> <td>0.071909</td> <td>0.330169</td> <td>0.7475</td>	D(CH)	-0.023742	0.071909	0.330169	0.7475		
D(LNCF(-1)) 0.26301 0.029006 9.067467 0.3037 D(LNCF(-1)) -0.049005 0.045016 1.079025 0.3037 D(LNCF(-2)) -0.034015 0.043006 0.790924 0.4557 D(LNCF(-3)) 0.017296 0.05609 0.308364 0.7636 D(LNCF(-4)) 0.101757 0.066644 1.526867 0.155 Case 2: Restricted Constant—IND Trent—Interest Statistic Variable Coefficient Error Statistic Prob. CH 0.310394 0.191836 1.618017 0.1339 LNCF 0.413888 0.157207 2.632762 0.0233 C 6.619554 1.575576 4.201354 0.0015 EC = LNPBI - (0.3104*CH + 0.413***LNCF + 6.5196) Null Hypothesis: No levels relationship F-Bounds Test 1(0) 1(1) Asymptotic relationship F-statistic Value Signif. 1(0) 3.35 4.38 Restatistic 10.80474 10% 2.53 3.35 4.438 <td>D(CH(-1))</td> <td>-0.110355</td> <td>0.057074</td> <td>1.933537</td> <td>0.0793</td>	D(CH(-1))	-0.110355	0.057074	1.933537	0.0793		
D(LNCF(-1)) -0.049005 0.045416 1.079025 0.3037 D(LNCF(-2)) -0.034015 0.043006 0.790924 0.4457 D(LNCF(-3)) 0.017296 0.05609 0.308364 0.7636 D(LNCF(-4)) 0.101757 0.066644 1.526867 0.155 Levels Equation Case 2: Restricted Constant = Use Equation Std. t T Variable Coefficient Error Statistic Prob. CH 0.310394 0.191836 1.618017 0.1339 LNCF 0.413888 0.157207 2.632762 0.0233 EC = LNPBI - (0.3104*CH + 0.4138**) + LNCF + 6.5196) Null Hypothesis: No levels relationship Est Statistic Value Signif. I(0) I(1) Asymptotic relationship F-statistic Value Signif. I(0) I(1) Asymptotic relationship Actual Sample Size 2.63 3.55 4.38 Actual Sample Size 2.845 3.623 <td>D(CH(-2))</td> <td>-0.054171</td> <td>0.046611</td> <td>1.162187</td> <td>0.2698</td>	D(CH(-2))	-0.054171	0.046611	1.162187	0.2698		
D(LNCF(-2))	D(LNCF)	0.26301	0.029006	9.067467	0		
D(LNCF(-3)) 0.017296 0.05609 0.308364 0.7636 D(LNCF(-4)) 0.101757 0.066644 1.526867 0.155 DUMMY -0.086028 0.015016 5.729101 0.0001 Levels Equation Case 2: Restricted Constant → No Trend Std. t Variable Coefficient Error Statistic Prob. CH 0.310394 0.191836 1.618017 0.1339 LNCF 0.413888 0.157207 2.632762 0.0233 C 6.619554 1.575576 4.201354 0.0015 EC = LNPBI - (0.3104*CH + 0.4139*LNCF + 6.6196) Null Hypothesis: No Null Hypothesis: No F-Bounds Test 1(0) I(1) Asymptotic: n=1000 F-statistic 1080474 10% 2.63 3.35 k 2.50% 3.55 4.38 1 (A) 4.13 5 Finite Sample: n=35 Actual Sample Size	D(LNCF(-1))	-0.049005	0.045416	1.079025	0.3037		
D(LNCF(-3)) 0.017296 0.05609 0.308364 0.7636 D(LNCF(-4)) 0.101757 0.066644 1.526867 0.155 DUMMY -0.086028 0.015016 5.729101 0.0001 Levels Equation Case 2: Restricted Constant → No Trend Std. t Variable Coefficient Error Statistic Prob. CH 0.310394 0.191836 1.618017 0.1339 LNCF 0.413888 0.157207 2.632762 0.0233 C 6.619554 1.575576 4.201354 0.0015 EC = LNPBI - (0.3104*CH + 0.4139*LNCF + 6.6196) Null Hypothesis: No Null Hypothesis: No F-Bounds Test 1(0) I(1) Asymptotic: n=1000 F-statistic 1080474 10% 2.63 3.35 k 2.50% 3.55 4.38 1 (A) 4.13 5 Finite Sample: n=35 Actual Sample Size	D/LNCE/-2\\	-0.024015	0.043006	- 700024	0.4457		
D(LNCF(-4)) 0.101757 0.066644 1.526867 0.1557 DUMMY -0.086028 0.015016 5.729101 0.0001 Levels Equation Std. t- Variable Coefficient Error Statistic Prob. CH 0.310394 0.191836 1.618017 0.1339 LNCF 0.413888 0.157207 2.632762 0.0233 C 6.619554 1.575576 4.201354 0.0015 EC = LNPBI - (0.3104*CH + 0.4139*ENCF + 6.5196) Null Hypothesis: No levels relationship Test Statistic Value Signif. I(0) I(1) Asymptotic: n=1000 F-statistic 10.80474 10% 2.63 3.35 k 2 5% 3.1 3.87 Actual Sample Size 28 1% 4.13 5 Finite Sample: n=35 10% 2.845 3.623 5% 3.478 4.335 10% 2.915 3.69							
Nummy -0.086028 0.015016 5.729101 0.0001 Levels Equation Std. t- Variable Coefficient Error Statistic Prob. CH 0.310394 0.191836 1.618017 0.1339 LNCF 0.413888 0.157207 2.632762 0.0233 C 6.619554 1.575576 4.201354 0.0015 EC = LNPBI - (0.3104*CH + 0.4139*LNCF + 6.5196) Null Hypothesis: No levels relationship F-Bounds Test Value Signif. I(0) I(1) Asymptotic: n=1000 F-statistic Value Signif. I(0) I(1) Asymptotic: n=1000 F-statistic 10.80474 10% 2.63 3.35 k 2.50% 3.1 3.87 Actual Sample Size 28 1% 4.13 5 Finite Sample: n=30 10% 2.845 3.623 Finite Sample: n=30 4.428							
Levels Equation	D(LNCF(-4))	0.101757	0.000044	1.520807	0.155		
Case 2: Restricted Constant I No Treut Variable Coefficient Error Statistic Prob. CH 0.310394 0.191836 1.618017 0.1339 LNCF 0.413888 0.157207 2.632762 0.0233 C 6.619554 1.575576 4.201354 0.0015 EC = LNPBI - (0.3104*CH + 0.4135*LNCF + 6.6196) Null Hypothesis: No levels relationship F-Bounds Test Value Signif. I(0) I(1) Asymptotic n=1000 F-statistic 10.80474 10% 2.63 3.35 k 2 5% 3.1 3.87 F-statistic 10.80474 10% 2.63 3.35 k 2 5% 3.1 3.87 Actual Sample Size 28 1% 4.13 5 Finite Sample: n=35 Actual Sample Size 28 10% 2.845 3.623 5% 3.478 4.335 1 4.948 6.028 Finite Sample: n=30 10 2.915	DUMMY			5.729101	0.0001		
Variable Coefficient Std. Error Statistic Error Prob. Statistic Prob. 1330394 LNCF 0.310394 0.191836 1.618017 0.13399 LNCF 0.413888 0.157207 2.632762 0.0233 C 6.619554 1.575576 4.201354 0.0015 EC = LNPBI - (0.3104** CHT** CHT**) + UNCF + 6.196) Null Hypo** H		· ·					
Variable Coefficient Error Statistic Prob. CH 0.310394 0.191836 1.618017 0.1339 LNCF 0.413888 0.157207 2.632762 0.0233 C 6.619554 1.575576 4.201354 0.0015 EC = LNPBI - (0.3104** CH** CH**) **LNCF + 6.196) Null Hypo**	Case 2: Restr	icted Constant a					
CH 0.310394 0.191836 1.618017 0.13389 LNCF 0.413888 0.157207 2.632762 0.0233 EC = LNPBI - (0.3104*CH+2.4135*LNCF + 6.196) Null Hypothesis: No levels relationship F-Bounds Test Value Signif. I(0) I(1) Asymptotation=1000 F-statistic 10.80474 10% 2.63 3.35 k 2 5% 3.1 3.87 F-statistic 10.80474 10% 2.63 3.35 k 2 5% 3.1 3.87 4 2 5% 3.1 3.87 Actual Sample Size 28 10% 2.845 3.623 Actual Sample Size 28 10% 2.845 3.623 Base of the properties of the propert	Variable	Coefficient		-	Prob.		
C 6.619554 1.575576 4.201354 0.0015 EC = LNPBI - (0.3104*CH + 0.4139*LNCF + 6.6196) Null Hypothesis: No levels relationship F-Bounds Test I(0) I(1) I(1) I(1) I(1) I(1) I(1) I(1) Asymptotic near 10000 Fried near 10000 I(1) Asymptotic near 10000 Asymptotic near 10000 I(1) Asymptotic near 10000 Asymptotic near 10000 <th colspan<="" td=""><td></td><td></td><td>0.191836</td><td>1.618017</td><td></td></th>	<td></td> <td></td> <td>0.191836</td> <td>1.618017</td> <td></td>			0.191836	1.618017		
C 6.619554 1.575576 4.201354 0.0015 EC = LNPBI - (0.3104*CH + 0.4139*LNCF + 6.6196) Null Hypothesis: No levels relationship F-Bounds Test I(0) I(1) I(1) I(1) I(1) I(1) I(1) I(1) Asymptotic near 10000 Fried near 10000 I(1) Asymptotic near 10000 Asymptotic near 10000 I(1) Asymptotic near 10000 Asymptotic near 10000 <th colspan<="" td=""><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td></td>						
EC = LNPBI - (0.3104*CH + 0.4139*LNCF + 6.6196) Null Hypothesis: No levels relationship Test Statistic Value Signif. I(0) I(1) Asymptotic: n=1000 F-statistic 10.80474 10% 2.63 3.35 k 2.50% 3.1 3.87 2.50% 3.55 4.38 1% 4.13 5 Finite Sample: n=35 10% 2.845 3.623 5% 3.478 4.335 1% 4.948 6.028 Finite Sample: n=30 10% 2.915 3.695 5% 3.538 4.428							
F-Bounds Test Test Statistic Value Value Signif. I(0) I(1) Asymptotic: n=1000 F-statistic 10.80474 10% 2.63 3.35 3.87 3							
Test Statistic Value Signif. Asymptotic: n=1000 I(1) Asymptotic: n=1000 F-statistic 10.80474 10% 2.63 3.35 k 2 5% 3.1 3.87 2.50% 3.55 4.38 1% 4.13 5 Finite Sample: n=35 10% 2.845 3.623 5% 3.478 4.335 1% 4.948 6.028 Finite Sample: n=30 10% 2.915 3.695 10% 2.915 3.695 5% 3.538 4.428	·		Null Hypot	othesis: No			
Asymptotic: n=1000		Value		•	1(1)		
F-statistic 10.80474 10% 2.63 3.3 k 2 5% 3.1 3.87 2.50% 3.55 4.38 1% 4.13 5 Finite Sample: n=35 10% 2.845 3.623 5% 3.478 4.335 1% 4.948 6.028 Finite Sample: n=30 Finite Sample: n=30 10% 2.915 3.695 5% 3.538 4.428	rest statistic	value	Sigilii.	Asymptotic:			
k 2 5% 3.1 3.87 2.50% 3.55 4.38 1% 4.13 5 Finite Sample: 10% 2.845 3.623 10% 2.845 3.623 10% 2.845 4.335 10% 4.948 6.028 Finite Sample: 10% 5.015 3.695 10% 2.915 3.695 5% 3.538 4.428	F-statistic	10.80474	10%		3.35		
2.50% 3.55 4.38							
1% 4.13 5 Finite Sample: 1 1 1 1 1 1 1 1 1		_					
Actual Sample Size 28 Finite Sample: 10% 2.845 3.623 10% 2.845 4.335 10% 4.948 6.028 Finite Sample:							
10% 2.845 3.623 5% 3.478 4.335 1% 4.948 6.028 Finite Sample: n=30 10% 2.915 3.695 5% 3.538 4.428	Astroni Cararda Cina	22	_,*	Finite Sam			
5% 3.478 4.335 1% 4.948 6.028 Finite Sample: n=30 10% 2.915 3.695 5% 3.538 4.428	Actual Sample Size	28	4001		2.622		
1% 4.948 6.028 Finite Sample: n=30 10% 2.915 3.695 5% 3.538 4.428							
Finite Sample: n=30 10% 2.915 3.695 5% 3.538 4.428							
n=30 10% 2.915 3.695 5% 3.538 4.428			1%				
5% 3.538 4.428					pie.		
			10%	2.915	3.695		
<u>1%5.1556.265</u>			5%	3.538	4.428		
			1%	5.155	6.265		